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1. DISTRIBUTION OF POTENTIAL OUTCOMES FROM DISTRIBUTION OF OBSERVED DATA

We demonstrate how to deduce the joint distribution pY ∗(āK),X̄∗K(āK−1)(y, x̄K) and condi-

tional distributions pY ∗(āK)|X̄∗K(āK−1)(y | x̄K) and pX∗
k

(āk−1)|X̄∗
k−1

(āk−2)(x̄k | x̄k−1) for a fixed

āK ∈ ĀK from the distribution of the observed data. Under the consistency and no unmeasured

confounders assumptions, the joint density of (W, ĀK) is

pW,ĀK (w, āK) = pW (w)pĀK |W (āK | w)

= pW (w)pĀK |ĀK−1,W
(aK | āK−1, w)× · · · × pA1|W (a1 | w)

= pW (w)pĀK |ĀK−1,X̄K ,W
(aK | āK−1, x̄K , w)× · · · × pA1|W (a1 | w)

= pW (w)pĀK |ĀK−1,X̄K
(aK | āK−1, x̄K)× · · · × pA1|X1

(a1 | x1)
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= pW (w)pA1|X1
(a1 | x1)

K∏
j=2

pĀj |Āj−1,X̄j
(aj | āj−1, x̄j).

Moreover,

pW,ĀK |Y,X̄K ,ĀK (w, āK | y, x̄K , āK) =
pW,ĀK (w, āK)∫

{u:Y ∗(āK)=y,X̄∗K(āK−1)=x̄K} pW,ĀK (u, āK)dvW (u)

=
pW (w)pA1|X1

(a1 | x1)
∏K
j=2 pĀj |Āj−1,X̄j

(aj | āj−1, x̄j)∫
{u:Y ∗(āK)=y,X̄∗K(āK−1)=x̄K} pW (u)pA1|X1

(a1 | x1)
∏K
j=2 pĀj |Āj−1,X̄j

(aj | āj−1, x̄j)dvW (u)

=
pW (w)pA1|X1

(a1 | x1)
∏K
j=2 pĀj |Āj−1,X̄j

(aj | āj−1, x̄j)

pA1|X1
(a1 | x1)

∏K
j=2 pĀj |Āj−1,X̄j

(aj | āj−1, x̄j)
∫
{u:Y ∗(āK)=y,X̄∗K(āK−1)=x̄K} pW (u)dvW (u)

=
pW (w)∫

{u:Y ∗(āK)=y,X̄∗K(āK−1)=x̄K} pW (u)dvW (u)
= pW |Y ∗(āK),X̄∗K(āK−1)(w | y, x̄K).

Thus,

pY ∗(āK),X̄∗K(āK−1)(y, x̄K) =
pW (w)

pW |Y ∗(āK),X̄∗K(āK−1)(w | y, x̄K)

=
pW (w)

pW,ĀK |Y,X̄K ,ĀK (w, aK | y, x̄K , aK)

=
pA1|X1

(a1 | x1)
∏K
j=2 pĀj |Āj−1,X̄j

(ak | āj−1, x̄j)pW (w)

pA1|X1
(a1 | x1)

∏K
j=2 pĀj |Āj−1,X̄j

(ak | āj−1, x̄j)pW,ĀK |Y,X̄K ,ĀK (w, āK | y, x̄K , āK)

=
pW,ĀK (w, āK)

pA1|X1
(a1 | x1)

∏K
j=2 pĀj |Āj−1,X̄j

(ak | āj−1, x̄j)pW,ĀK |Y,X̄K ,ĀK (w, āK | y, x̄K , āK)

=
pY,X̄K ,ĀK (y, x̄K , āK)

pA1|X1
(a1 | x1)

∏K
j=2 pĀj |Āj−1,X̄j

(aj | āj−1, x̄j)

= pY |X̄K ,ĀK (y | x̄K , āK)pX1(x1)
K∏
j=2

pXj |X̄j−1,Āj−1
(xj | x̄j−1, āj−1).

Let Wk = {X1, X
∗
2 (a1), X∗3 (ā2), . . . , X∗k(āk−1)) for all āk ∈ Āk}, k = 2, . . . ,K. Using the

same argument, pWk,Āk
(w, āk) = pWk

(wk)pA1|X1
(a1 | x1)

∏k
j=2 pĀj |Āj−1,X̄j

(aj | āj−1, x̄j)

and pX̄∗
k

(āk−1)(x̄k) = pX1(x1)
∏k
j=2 pXj |X̄j−1,Āj−1

(xj | x̄j−1, āj−1). It follows that

pY ∗(āK)|X̄∗K(āK−1)(y | x̄K) =
pY ∗(āK),X̄∗K(āK−1)(y, x̄K)

pX̄∗K(āK−1)(x̄K)

=
pY |X̄K ,ĀK (y | x̄K , āK)pX1(x1)

∏K
j=2 pXj |X̄j−1,Āj−1

(xj | x̄j−1, āj−1)

pX1(x1)
∏k
j=2 pXj |X̄j−1,Āj−1

(xj | x̄j−1, āj−1)

= pY |X̄K ,ĀK (y | x̄K , āK).
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Similarly, pX∗
k

(āk−1)|X̄∗
k−1

(āk−2)(x̄k | x̄k−1) = pXk|X̄k−1,Āk−1
(xk | x̄k−1, āk−1) , k = 2, . . . ,K.

2. DETAILS OF Q- AND A-LEARNING

The Q-learning procedure involves solving ordinary or weighted least squares estimating equa-

tions for each k in a backward iterative fashion. Using ordinary least squares for definiteness,

solve in βk for k = K, . . . , 1

n∑
i=1

∂Qk(X̄ki, Āki;βk)

∂βk
{Ṽ(k+1)i −Qk(X̄ki, Āki;βk)} = 0,

where Ṽ(K+1)i = Yi, Ṽ(k+1)i = maxak+1∈Φk+1{X̄(k+1)i,Āki}Qk+1{X̄(k+1)i, Āki, ak+1; β̂k+1},

k = K − 1, . . . , 1, and Ṽ1i = maxa1∈Φ1(X1i)Q1(X1i, a1; β̂1); and ∂/∂βk{Qk(x̄k, āk;βk)}

is the vector of partial derivatives of Qk(x̄k, āk;βk) with respect to elements of

βk. The estimated optimal regime is ĝopt
Q = (ĝopt

Q,1, . . . , ĝ
opt
Q,K), where ĝopt

Q,1(x1) =

gopt
Q,1(x1; β̂1) = arg maxa1∈Φ1(x1)Q1(x1, a1; β̂1), and ĝopt

Q,k(x̄k, āk−1) = gopt
Q,k(x̄k, āk−1; β̂k) =

arg maxak∈Φk(x̄k,āk−1)Qk(x̄k, āk−1, ak; β̂k), k = 2, . . . ,K. An estimator for E{Y ∗(gopt)} is

then n−1∑n
i=1 Ṽ1i. Note that Q-learning as presented here is straightforward even in the case of

arbitrary feasible treatment options Φk(X̄k, Āk−1) ∈ Ak and is not restricted to two options at

each decision k.

The A-learning procedure we consider is a version of g-estimation proposed by Robins

(2004) and described in Equation (2) of Moodie et al. (2007). As noted in the main

paper, AkCk(x̄k, āk−1) for decision k is equivalent to the optimal-blip-to-zero func-

tion of Robins (2004) in the case of two treatment options at each k considered

here. The corresponding value function is hk(x̄k, āk−1) + Ck(x̄k, āk−1)I{Ck(x̄k, āk−1) > 0};

Ck(x̄k, āk−1)[I{Ck(x̄k, āk−1) > 0} − ak] is the regret of Murphy (2003). Robins (2004) and

Moodie et al. (2007) discuss the relationship between regrets and optimal blip functions.
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The general approach is as follows. Given posited models as described in the main paper,

estimators ψ̂k for ψk may be found iteratively by solving simultaneously in ψk and αk for k =

K, . . . , 1

n∑
i=1

λk(X̄ki, Ā(k−1)i;ψk){Aki − πk(X̄ki, Ā(k−1)i; γ̂k)} (S.1)

×{Ṽ(k+1)i −AkiCk(X̄ki, Ā(k−1)i;ψk)− hk(X̄ki, Ā(k−1)i;αk)} = 0, (S.2)

n∑
i=1

∂hk(X̄ki, Ā(k−1)i;αk)

∂αk
{Ṽ(k+1)i −AkiCk(X̄ki, Ā(k−1)i;ψk)− hk(X̄ki, Ā(k−1)i;αk)} = 0,

where Ṽ(K+1)i = Yi, Ṽki = Ṽ(k+1)i + Ck{X̄ki, Ā(k−1)i; ψ̂k}
(
I[Ck{X̄ki, Ā(k−1)i; ψ̂k} >

0]−Aki
)

, k = K, . . . , 2, Ṽ1i = Ṽ2i + C1(X1i; ψ̂1)[I{C1(X1i; ψ̂1) > 0} −A1i]. In (S.1),

λk(X̄ki, Ā(k−1)i;ψk) are arbitrary functions, and the entire term in (S.1) is analogous to

Sj(Aj)− E{Sj(Aj)|historyj} in Equation (2) of Moodie et al. (2007). The term in (S.2) is

analogous to Hj(ψ)− E{Hj(ψ)|historyj} in (2) of Moodie et al. (2007). This demonstrates

that the approach we refer to as A-learning is equivalent to the form of g-estimation Moodie

et al. (2007) cite as being refined to gain efficiency over the inefficient version in their Equation

(1). See also Moodie et al. (2009).

As noted in the main paper, the γ̂k, k = K, . . . , 1, are found via solving the maximum likeli-

hood estimating equations for binary regression for each k.

As discussed by in an unpublished article (Schulte et al., 2013), available from the last author,

a reasonable choice in practice is to take λk(X̄ki, Ā(k−1)i;ψk) to be equal to

∂/∂ψk{Ck(x̄k, āk−1;ψk)}, (S.3)

where this expression and ∂/∂αk{hk(x̄k, āk−1;αk) are the obvious vectors of partial

derivatives. For k = K, if var(Y |X̄K , ĀK−1) is constant, then the optimal choice of

λK(X̄Ki, Ā(K−1)i;ψK) is in fact (S.3). For other k = K − 1, . . . , 1, the form of the optimal

choice of λk(X̄ki, Ā(k−1)i;ψk) is very complicated, and hence the efficient estimator solv-
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ing equations of form (S.1), (S.2) is virtually impossible to implement. Accordingly, taking

λk(X̄ki, Ā(k−1)i;ψk) to be equal to (S.3) is a feasible practical alternative. In our simulations,

we adopt this choice in our implementation of A-learning in (S.1), (S.2). Indeed, in their simu-

lations, which are based on the same set-up as our first scenario in §5 of the main paper, Moodie

et al. (2007) also use this same formulation in their implementations of g-estimation.

In the event that var(Y |X̄K , ĀK−1) is not constant, the optimal choice for k = K would also

be complex; it is not a simple matter of incorporating weights equal to 1/var(Y |X̄K , ĀK−1).

The estimated optimal regime is then ĝopt
A = (ĝopt

A,1, . . . , ĝ
opt
A,K), where ĝopt

A,1(x1) =

gopt
A,1(x1; ψ̂1) = I{C1(x1; ψ̂1) > 0} and ĝopt

A,k(x̄k, āk−1) = gopt
A,k(x̄k, āk−1; ψ̂k) =

I{Ck(x̄k, āk−1; ψ̂k) > 0}, k = 2, . . . ,K, and E{Y ∗(gopt)} is estimated by n−1∑n
i=1 Ṽ1i.

If the contrast functions and propensity models are correctly specified, then it may be

shown (Robins, 2004) that ψ̂k will be consistent for ψk even if the models hk(x̄k, āk−1;αk),

k = K, . . . , 2, and h1(x1;α1) are misspecified, and ĝopt
A will consistently estimate gopt. Thus,

a simpler version of A-learning that will still lead to consistent estimation of the ψ̂k and hence

the optimal regime when the contrast functions are correctly specified is to set all the hk to be

identically equal to zero. This is analogous to the inefficient version of g-estimation of Robins

(2004) in (1) of Moodie et al. (2007). Moodie et al. (2007) also describe the related approach of

Murphy (2003), which they refer to as iterative minimization of optimal regimes. This method is

based on postulated models for the regrets Ck(x̄k, āk−1)I{Ck(x̄k, āk−1) > 0} and on taking the

hk to be identically equal to a constant for all k.

As demonstrated by Moodie et al. (2007), iterative minimization of optimal regimes and the

inefficient version of g-estimation noted above in (1) of Moodie et al. (2007) yield inefficient

estimators for parameters ψk in postulated models for the contrast functions. Accordingly, in

the main paper we restrict attention to the version of A-learning in (S.1) and (S.2) here, with
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the λk(X̄ki, Ā(k−1)i;ψk) taken equal to (S.3) as described above. Given the complexity in-

volved in implementing the fully efficient version, and given that in our simulation scenarios

var(Y |X̄K , ĀK−1) is in fact constant, we are in all likelihood implementing a version of g-

estimation that is as close to the efficient (impossible) version as could be hoped to be obtained

in practice.

3. RESULTS UNDER THE ASSUMPTION OF COARSENING AT RANDOM

We demonstrate pWgη |Cη ,GCη (Wgη )(w | k, v) = pWgη |Gk(Wgη )(w | v) and

pWgη |Cη≥k,Gk(Wgη )(w | v) = pWgη |Gk(Wgη )(w | v), k = 1, . . . ,K, when the coarsening at

random assumption holds. Under this assumption, pr(Cη = k |Wgη) = πCη{k,Gk(Wgη)}, a

function of Wgη only through Gk(Wgη), for k = 1, . . . ,K,∞. Let νWgη
be the dominating

measure for Wgη . First,

pWgη |Cη ,GCη (Wgη )(w | k, v) =
pCη ,Wgη

(k,w)∫
{u:Gk(u)=v} pCη ,Wgη

(k, u) dνWgη
(u)

=
pCη |Wgη

(k | w)pWgη
(w)∫

{u:Gk(u)=v} pCη |Wgη
(k | u)pWgη

(u) dνWgη
(u)

=
πCη(k, v)pWgη

(w)

πCη(k, v)
∫
{u:Gk(u)=v} pWgη

(u) dνWgη
(u)

=
pWgη

(w)∫
{u:Gk(u)=v} pWgη

(u)dνWgη
(u)

= pWgη |Gk(Wgη )(w | v).

The second result follows because

pWgη |Cη≥k,Gk(Wgη )(w | v) =

∫
k′≥k pCη ,Wgη

(k′, w)dνCη(k′)∫
{u:Gk(u)=v}{

∫
k′≥k pCη ,Wgη

(k′, u)dνCη(k′)} dνWgη
(u)

=
{1−

∑k−1
k′=1 pCη |Wgη

(k′ | w)}pWgη
(w)∫

{u:Gk(u)=v}{1−
∑k−1
k′=1 pCη |Wgη

(k′ | u)}pWgη
(u) dνWgη

(u)

=
{1−

∑k−1
k′=1 πCη(k′, v)}pWgη

(w)

{1−
∑k−1
k′=1 πCη(k′, v)}

∫
{u:Gk(u)=v} pWgη

(u) dνWgη
(u)

=
pWgη

(w)∫
{u:Gk(u)=v} pWgη

(u)dνWgη
(u)

= pWgη |Gk(Wgη )(w | v).
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Here, πCη(k, v) and {1−
∑k−1
k′=1 πCη(k′, v)} cancel in the numerator and denominator because

of coarsening at random.

4. DOUBLE ROBUSTNESS PROPERTY

We demonstrate the double robustness property for estimators of the form of (4) of the main

paper with fitted models substituted. Specifically, we show that such an estimator is consistent if

either the propensity score models π1(x1; γ1), πk(x̄k, āk−1; γk), k = 2, . . . ,K, or η-dependent

regression models Rηk(x̄k; ξk), k = 1, . . . ,K, for E{Y ∗(gη) | X̄∗k(ḡηk) = x̄k}, are correctly

specified. Here, we use the generic notation Rηk(x̄k; ξk) to indicate that the models that might

be substituted in (4) of the main paper for the Lk(X̄k) could be correctly or incorrectly specified

models µηk(x̄k, āk; ξk) as in the construction of the estimator DR(η) in (6) or could be fitted

Q-functions Qk{X̄ki, ḡηk(X̄ki); β̂k} as in the AIPWE(η) in (7).

Whether or not the propensity score models are correctly specified, the maximum likeli-

hood estimator γ̂ will converge to some constant γ∗. If the models are correctly specified, then

γ∗ = γ0, where π1(x1; γ01) = π01(x1) and πk(x̄k, x̄k−1; γ0k) = π0k(x̄k, x̄k−1), k = K, . . . , 2,

say, the true propensity scores. For the regression models, we also have ξ̂ will converge to a con-

stant ξ∗. If the models are correctly specified, then ξ∗ = ξ0, where Rηk(x̄k; ξ0k) = E{Y ∗(gη) |

X̄∗(ḡηk) = x̄k}, k = 1, . . . ,K.

The estimator in (4) of the main paper converges in probability to

E

[
I(Cη =∞)

KK(X̄K ; γ∗)
Y +

K∑
k=1

I(Cη = k)− λk(X̄k; γ
∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)
Rηk(X̄k; ξ

∗
k)

]

= E

[
I(Cη =∞)

KK(X̄K ; γ∗)
Y ∗(gη) +

K∑
k=1

I(Cη = k)− λk(X̄k; γ
∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)
Rηk(X̄k; ξ

∗
k)

]

= E{Y ∗(gη)}+ E

[{
I(Cη =∞)

KK(X̄K ; γ∗)
− 1

}
Y ∗(gη)

]
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+E

{
K∑
k=1

[
I(Cη = k)− λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)
Rηk(X̄k; ξ

∗
k)

]}
.

It can be shown that (Tsiatis, 2006, Chapter 10) that

{
1− I(Cη =∞)

KK(X̄K ; γ∗)

}
=

K∑
k=1

[
I(Cη = k)− λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)

]
,

so that the estimator converges to

E{Y ∗(gη)} − E
{

K∑
k=1

[
I(Cη = k)− λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)

] [
Y ∗(gη)−Rηk(X̄k; ξ

∗
k)
]}
.

Therefore, to demonstrate the double robustness property, it suffices to show that, for k =

1, . . . ,K,

E

{[
I(Cη = k)− λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)

] [
Y ∗(gη)−Rηk(X̄k; ξ

∗
k)
]}

= 0

if either the propensity score models π1(X1; γ1), πk(X̄k, Āk−1; γk), k = 2, . . . ,K, or the models

Rηk(X̄k; ξk), k = 1, . . . ,K, are correctly specified.

Consider first the case where the propensity score models are correctly specified. Then

λk(X̄k; γ
∗
k) = λk(X̄k; γ0k) = λ0k(X̄k), say, the true discrete hazards. For k = 1, . . . ,K, define

the random vector Fk = {I(Cη = 1), . . . , I(Cη = k − 1),W}. Deriving the expectation by first

conditioning on Fk,

E

{[
E{I(Cη = k) | Fk} − λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)

] [
Y ∗(gη)−Rηk(X̄k; ξ

∗
k)
]}

= E

{[
λk(X̄k; γ

∗
k)I(Cη ≥ k)− λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)

] [
Y ∗(gη)−Rηk(X̄k; ξ

∗
k)
]}

= 0.

Next consider the case where the Rηk(X̄k; ξk), k = 1, . . . ,K, are correctly specified. Then

Rηk(x̄k; ξ
∗
k) = Rηk(x̄k; ξ0k) = E{Y ∗(gη) | X̄∗k(ḡηk) = x̄k}. Using the coarsened data notation

Gk(Wgη) as in § 4 of the main paper,

E

{[
I(Cη = k)− λk(X̄k; γ

∗
k)I(Cη ≥ k)

Kk(X̄k; γ∗)

] [
Y ∗(gη)−Rηk(X̄k; ξ

∗
k)
]}
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= E

{[
I(Cη = k)

Kk{Gk(Wgη); γ∗}

] [
Y ∗(gη)− E{Y ∗(gη) | Gk(Wgη)}

]}

−E
{[

λk{Gk(Wgη); γ∗k}I(Cη ≥ k)

Kk{Gk(Wgη); γ∗}

] [
Y ∗(gη)− E{Y ∗(gη) | Gk(Wgη)}

]}
.

By first conditioning on {I(Cη ≥ k), Gk(Wgη)}, we have

E

{[
λk{Gk(Wgη); γ∗k}I(Cη ≥ k)

Kk{Gk(Wgη); γ∗}

] [
Y ∗(gη)− E{Y ∗(gη) | Gk(Wgη)}

]}

= E

{[
λk{Gk(Wgη); γ∗k}I(Cη ≥ k)

Kk{Gk(Wgη); γ∗}

] [
E{Y ∗(gη) | Cη ≥ k,Gk(Wgη)} − E{Y ∗(gη) | Gk(Wgη)}

]}
.

In §3 of this document, it is shown that pWgη |Cη≥k,Gk(Wgη )(w | v) = pWgη |Gk(Wgη )(w | v) and

Y ∗(gη) is a function of Wgη , so E{Y ∗(gη) | Cη ≥ k,Gk(Wgη)} = E{Y ∗(gη) | Gk(Wgη)}. We

have

E

{[
λk{Gk(Wgη); γ∗k}I(Cη ≥ k)

Kk{Gk(Wgη); γ∗}

] [
Y ∗(gη)− E{Y ∗(gη) | Gk(Wgη)}

]}
= 0.

A similar argument, conditioning on {I(Cη = r), Gk(Wgη)} and using pWgη |Cη ,Gk(Wgη )(w |

k, v) = pWgη |Gk(Wgη )(w | v) from §3 of this document, yields

E

{[
I(Cη = k)

Kk{Gk(Wgη); γ∗}

] [
Y ∗(gη)− E{Y ∗(gη) | Gk(Wgη)}

]}
= 0,

so that

E

{[
I(Cη = k)− λk{Gk(Wgη); γ∗k}I(Cη ≥ k)

Kk{Gk(Wgη); γ∗}

] [
Y ∗(gη)−Rηk(X̄k; ξ

∗
k)
]}

= 0.

5. CONDITIONAL EXPECTATION OF POTENTIAL OUTCOMES FROM OBSERVED DATA

We wish to derive E{Y ∗(gη) | X̄∗k(ḡηk−1
) = x̄k}, k = 1, . . . ,K. First consider k =

K and the random variable Y ∗{ĀK−1, gηK (X̄K , ĀK−1)}, and define fηK (X̄K , ĀK−1) =

E[Y ∗{ĀK−1, gηK (X̄K , ĀK−1)} | X̄K , ĀK−1]. Under the consistency and no unmeasured con-

founders assumptions,

fηK (X̄K , ĀK−1) = E[Y ∗{ĀK−1, gηK (X̄K , ĀK−1)} | X̄K , ĀK−1]
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= E[Y ∗{ĀK−1, gηK (X̄K , ĀK−1)} | X̄K , ĀK−1, AK = gηK (X̄K , ĀK−1)]

= E{Y | X̄K , ĀK−1, AK = gηK (X̄K , ĀK−1)} = µ{X̄K , ĀK−1, gηK (X̄K , ĀK−1)}.

When Cη ≥ K, ĀK−1 = ḡηK−1(X̄K−1) and X̄∗K(ḡηK−1) = X̄K ; using pWgη |Cη≥K,GK(Wgη )(w |

v) = pWgη |GK(Wgη )(w | v) from §3 of this document, E{Y ∗(gη) | X̄∗K(ḡηK−1) = x̄K} =

E{Y ∗(gη) | Cη ≥ K, X̄∗K(ḡηK−1) = x̄K} = E{Y ∗(gη) | ĀK−1 = ḡηK−1(x̄K−1), X̄K =

x̄K} = fηK{x̄K , ḡηK−1(x̄K−1)} = µ{x̄K , ḡηK (x̄K)}, where µηK (x̄K , āK) = E(Y | X̄K =

x̄K , ĀK = āK).

Next consider E{Y ∗(gη) | X̄∗K−1(ḡηK−2) = x̄K−1}. Under no unmeasured confounders,

Y ∗{ĀK−2, gηK−1(·), gηK (·)}⊥⊥AK−1 | X̄K−1, ĀK−2, where gηK−1(·) = gηK−1(X̄K−1, ĀK−2)

and gηK (·) = gηK [X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2, gηK−1(·)]; similarly,

X∗K{ĀK−2, gηK−1(X̄K−1, ĀK−2)}⊥⊥AK−1 | X̄K−1, ĀK−2. Define fηK−1(X̄K−1, ĀK−2) =

E(fηK [X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2, gηK−1(·)] | X̄K−1, ĀK−2). Under the consistency

and no unmeasured confounders assumptions, fηK−1(X̄K−1, ĀK−2) = E{fηK (X̄K , ĀK−1) |

X̄K−1, ĀK−2, AK−1 = gηK−1(X̄K−1, ĀK−2)}. By the definition of fηK ,

fηK [X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2, gηK−1(·)]

= E[Y ∗{ĀK−2, gηK−1(·), gηK (·)} | X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2, AK−1 = gηK−1(X̄K−1, ĀK−2)]

= E[Y ∗{ĀK−2, gηK−1(·), gηK (·)} | X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2].

Therefore, by the definition of fηK−1 ,

fηK−1(X̄K−1, ĀK−2) = E(fηK [X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2, gηK−1(·)] | X̄K−1, ĀK−2)

= E(E[Y ∗{ĀK−2, gηK−1(·), gηK (·)} | X̄K−1, X
∗
K{ĀK−2, gηK−1(·)}, ĀK−2] | X̄K−1, ĀK−2)

= E[Y ∗{ĀK−2, gηK−1(·), gηK (·)} | X̄K−1, ĀK−2].
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When Cη ≥ K − 1, ĀK−2 = ḡηK−2(X̄K−2) and X̄∗K−1(ḡηK−2) = X̄K−1; thus, using

pWgη |Cη≥K−1,GK−1(Wgη )(w | v) = pWgη |GK−1(Wgη )(w | v) from §3 of this document,

E{Y ∗(gη) | X̄∗K−1(ḡηK−2) = x̄K−1} = E{Y ∗(gη) | Cη ≥ K − 1, X̄∗K−1(ḡηK−2) = x̄K−1} =

E{Y ∗(gη) | ĀK−2 = ḡηK−2(x̄K−2), X̄K−1 = x̄K−1} = fηK−1{x̄K−1, ḡηK−2(x̄K−2)} =

µ{x̄K−1, ḡηK−1(x̄K−1)}, where µηK−1(x̄K−1, āK−1) = E{fηK (x̄K−1, XK , āK−1) | X̄K−1 =

x̄K−1, ĀK−1 = āK−1}. The rest of the argument follows iteratively.

Consequently, the algorithm for building models is as follows. At decision

K, specify a model µηK (X̄K , ĀK) = E(Y | X̄K , ĀK). Define fηK (X̄K , ĀK−1) =

µηK{X̄K , ĀK−1, AK = gηK (X̄K , ĀK−1)}. As fηK (X̄K , ĀK−1) is a function of X̄K ,

ĀK−1, for the ith individual we can derive the corresponding predicted value. Next

build a model µηK−1(X̄K−1, ĀK−1) = E[fηK (X̄K , ĀK−1) | X̄K−1, ĀK−1] and define

fηK−1(X̄K−1, ĀK−2) = µηK−1{X̄K−1, ĀK−2, AK−1 = gηK−1(X̄K−1, ĀK−2)}. In general,

µηk(X̄k, Āk) = E[fηk+1
(X̄k+1, Āk) | X̄k, Āk] and fηk(X̄k, Āk−1) = µηk{X̄k, Āk−1, Ak =

gηk(X̄k, Āk−1)}, k = K − 1, . . . , 2; for k = 1, µη1(X1, A1) = E{fη2(X1, X2, A1) | X1, A1},

fη1(X1) = µη1{X1, gη1(X1)}.

6. PRACTICAL IMPLEMENTATION WHEN Gη IS DIRECTLY SPECIFIED

When the class of regimes of interest Gη is directly specified without reference to models

for Q-functions or Q-contrasts, the following is a practical approximate approach to circum-

vent the computational burden maximizing the estimator DR(η) in (6) of the main paper, anal-

ogous to that leading to AIPWE(η) in (7) discussed below (6). Thus, assume here that regimes

gη ∈ Gη do not necessarily correspond to regimes arising from conventional linear or nonlinear

models; for example, regimes with rules of the form gηk(x̄k, āk−1) = I(xk1 > ηk1, xk2 > ηk2),

xk = (xk1, xk2)T, ηk = (ηk1, ηk2)T. Here, the strategy in the main paper of substituting fitted
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Q-functions (that is, maximizing AIPWE(η) instead) is not appropriate, as these would almost

certainly not be compatible with the form of the regimes.

Instead, to avoid the computationally intensive refitting of the models µηk(x̄k, āk−1; ξk) for

each η encountered in the maximization of DR(η), we suggest the following approach.

(i) Obtain a preliminary estimator for η, η̂(0), say, by maximizing IPWE(η) in (5) or AIPWE(η) in

(7) (for some specification of Q-functions) of the main paper. Let ` = 0.

(ii) Fix η at η̂(`), and fit the postulated models µηk(x̄k, āk−1; ξk) as described in the main paper to

obtain ξ̂(`)
k , k = 1, . . . ,K.

(iii) Substitute the fitted models into DR(η) in (6) of the main paper, continuing to hold ξk in these

models fixed at ξ̂(`)
k , and maximize DR(η) in η where it appears elsewhere in the expression for

DR(η) (so not refitting the models µηk(x̄k, āk−1; ξk) for each η encountered). Let ` = `+ 1,

and call the resulting maximizing value η̂(`). One can stop and use η̂(`) as an approximation

to η̂opt
DR , or return to step (ii) and iterate one or more times.

7. IMPLEMENTATION OF GENETIC ALGORITHM

In the third simulation scenario of Section 5 of the main paper with K = 3 decision points,

the dimension of η makes a simple grid search untenable for maximization of IPWE(η), DR(η),

and AIPWE(η) in η. Because of the nonsmooth nature of these quantities as functions of η, stan-

dard optimization algorithms may be problematic. Accordingly, to carry out the required max-

imizations of IPWE(η), DR(η), and AIPWE(η) in η, we used a genetic algorithm discussed by

Goldberg (1989), implemented in the rgenoud package in R (Mebane & Sekhon, 2011). In the

genoud function, we adopted all default settings except we took max=TRUE; optim.method

= Nelder-Mead, recommended in the documentation for discontinuous objective functions;

and pop.size = 5000, which we determined to be sufficiently large to achieve satisfac-
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tory results via preliminary testing. We took starting.values = c(0,0,0), and set the

Domains matrix to be the 3 × 2 matrix with columns {min(X1),min(X2),min(X3)}T and

{max(X1),max(X2),max(X3)}T, where each row corresponds to lower and upper bounds on

each element of η, so that the algorithm searched in this region.

8. ADDITIONAL SIMULATION RESULTS

We report here on results under a more complex simulation scenario with K = 2 de-

cision points; here, the rules at each decision point involve several variables and al-

low all possible combinations of treatment options. Defining X1 = (X11, X12, X13)T,

X1j , j = 1, 2, 3, were generated as independent N(0, 1); given X1, A1 was Bernoulli

with success probability pr(A1 = 1 | X1) = expit(0.5X11 + 0.5X12 − 0.25X13). For X2 =

(X21, X22, X23)T, X2j , j = 1, 2, 3, were independent N(0, 1); given X2, A2 was Bernoulli

with pr(A2 = 1 | X2) = expit(0.5X21 − 0.25X22 + 0.5X23), and the outcome was gener-

ated as Y ∼ Z − (X11 +X12 +X13 − 1)2 × {A1 − I(2X11 + 2X12 −X13 − 0.3 > 0)}2 −

(X21 +X22 +X23 − 1)2{A2 − I(2X21 −X22 + 2X23 − 0.3 > 0)}2, where Z ∼ N(10, 1).

Thus, gopt = (gopt
1 , gopt

2 ) with gopt
1 (x1) = I(2x11 + 2x12 − x13 − 0.3 > 0) and gopt

2 (x̄2, a1) =

I(2x21 − x22 + 2x23 − 0.3 > 0), and E{Y ∗(gopt)} = 10.

The true Q- and Q-contrast functions are complicated, and it would be impossible to posit cor-

rect models in practice. For A-learning, we took h2(x1, x2, a1;α2) = α20 + α21x11 + α22x12 +

α23x13 + α24x21 + α25x22 + α26x23 + a1(α27x11 + α28x12 + α29x13), C2(x1, x2, a1;ψ2) =

ψ20 + ψ21x21 + ψ22x22 + ψ23x23, h1(x1;α1) = α10 + α11x11 + α12x12 + α13x13 and

C1(x1;ψ1) = ψ10 + ψ11X11 + ψ21X12 + ψ13X13. For Q-learning, we analogously posited Q-

functions Q2(x1, x2, a1, a2;β2) = β20 + β21x11 + β22x12 + β23x13 + β24x21 + β25x22 +

β26x23 + a1(β27x11 + β28x12 + β29x13) + a2(ψ20 + ψ21x21 + ψ22x22 + ψ23x23) and
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Q1(x1, a1;β1) = β10 + β11x11 + β12x12 + β13x13 + a1(ψ10 + ψ11x11 + ψ12x12 + ψ13x13.

Thus, the Q-contrast and Q-functions are misspecified. For the propensity scores, we considered

correctly specified models π2(x1, x2, a1; γ2) = expit(γ20 + γ21X21 + γ22X22 + γ23X23)

and π1(x1; γ1) = expit(γ10 + γ11X11 + γ12X12 + γ13X13) and incorrect versions

π2(x1, x2, a1; γ2) = γ2 and π1(x1; γ1) = γ1.

For the proposed methods, we took Gη to have elements gη = (gη1 , gη2), where

gη2(x̄2, a1) = I(η20 + η21x21 + η22x22 + η23x23 > 0), gη1(x1) = I(η10 + η11x11 + η12x12 +

η13x13 > 0), η2 = (η20, η21, η22, η23)T, η1 = (η10, η11, η12, η13)T and thus η = (ηT
1 , η

T
2 )T.

Clearly, gopt ∈ Gη. Expressed in this form, regimes in Gη do not have a unique representa-

tion. For computational convenience in automating the simulations, we achieved uniqueness

by normalizing the coefficients in each rule, imposing {(η21, η22, η23)(η21, η22, η23)T}1/2 =

1 and {(η11, η12, η13)(η11, η12, η13)T}1/2 = 1. Thus, gopt ∈ Gη corresponds to ηopt =

(ηopt T

1 , ηopt T

2 )T, ηopt
1 = (−0.1, 0.67, 0.67,−0.33)T, ηopt

2 = (−0.1, 0.67,−0.33, 0.67)T. We

used the same propensity models, and, for (6) and (7) in main paper, the same Q-function models

as above. For (6), we posited the same models as those for the Q-functions, as in the previous

simulations.

Because the high dimension of η made a grid search infeasible, to carry out the maxi-

mizations, we used a genetic algorithm discussed by Goldberg (1989), implemented in the

rgenoud package in R (Mebane & Sekhon, 2011). In the genoud function, we adopted

all default settings except we took max=TRUE; optim.method = Nelder-Mead, rec-

ommended in the documentation for discontinuous objective functions; and pop.size =

5000, which we determined to be sufficiently large to achieve satisfactory results via pre-

liminary testing. We took starting.values = c(0,0,0,0,0,0,0,0), and set the

Domains matrix to be the 8 × 2 matrix with columns (−1,−1,−1,−1,−1,−1,−1,−1)T and
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(1, 1, 1, 1, 1, 1, 1, 1)T, where each row corresponds to lower and upper bounds on each element of

η, so that the algorithm searched in this region. As above, to identify a unique η̂opt, we imposed

{(η21, η22, η23)(η21, η22, η23)T}1/2 = 1 and {(η11, η12, η13)(η11, η12, η13)T}1/2 = 1 at the value

of η̂opt obtained from genoud for each Monte Carlo data set.

Table 1 presents the results, which are qualitatively similar to those for the scenarios in the

main paper.
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Table 1. Results for the additional simulation scenario, 1000 Monte Carlo data sets, n = 500. For the true optimal regime gopt = gopt

η ∈ Gη,

ηopt
1 = (−0.1, 0.67, 0.67,−0.33)T, ηopt

2 = (−0.1, 0.67,−0.33, 0.67)T and E{Y ∗(gopt
η )} = 10.

Estimator η̂10 η̂11 η̂12 η̂13 η̂20 η̂21 η̂22 η̂23 Ê(η̂
opt

) SE Cov. E(η̂
opt

)

Q-learning -0.46 (0.11) 0.70 (0.07) 0.69 (0.07) 0.09 (0.13) -0.46 (0.12) 0.70 (0.07) 0.10 (0.13) 0.69 (0.07) 9.50 (0.20) – – 8.85 (0.10)

Propensity score correct

A-learning -0.37 (0.09) 0.69 (0.06) 0.69 (0.06) 0.16 (0.11) -0.37 (0.09) 0.69 (0.06) 0.16 (0.12) 0.69 (0.06) 9.97 (0.23) – – 8.82 (0.08)

AIPWE -0.11 (0.16) 0.68 (0.08) 0.64 (0.09) -0.30 (0.16) -0.01 (0.14) 0.67 (0.10) -0.22 (0.12) 0.68 (0.10) 10.05 (0.15) 0.16 95.5 9.69 (0.18)

DR -0.12 (0.16) 0.68 (0.09) 0.63 (0.10) -0.29 (0.19) -0.01 (0.13) 0.68 (0.10) -0.21 (0.12) 0.68 (0.10) 10.04 (0.16) 0.16 94.9 9.67 (0.19)

IPWE -0.18 (0.33) 0.67 (0.25) 0.42 (0.28) 0.11 (0.47) -0.07 (0.25) 0.63 (0.25) -0.06 (0.24) 0.64 (0.24) 11.01 (0.37) 0.52 50.3 9.04 (0.33)

Propensity score incorrect

A-learning -0.46 (0.11) 0.70 (0.07) 0.69 (0.07) 0.09 (0.13) -0.46 (0.12) 0.70 (0.07) 0.10 (0.13) 0.69 (0.07) 9.50 (0.20) – – 8.85 (0.10)

AIPWE -0.10 (0.15) 0.68 (0.07) 0.65 (0.07) -0.32 (0.10) -0.02 (0.12) 0.68 (0.07) -0.24 (0.11) 0.68 (0.07) 10.19 (0.19) 0.20 88.8 9.73 (0.14)

DR -0.10 (0.15) 0.68 (0.06) 0.64 (0.07) -0.32 (0.10) 0.01 (0.12) 0.68 (0.07) -0.23 (0.11) 0.68 (0.07) 10.25 (0.20) 0.21 78.7 9.72 (0.13)

IPWE -0.06 (0.18) 0.71 (0.12) 0.61 (0.13) -0.28 (0.14) -0.01 (0.13) 0.69 (0.12) -0.18 (0.13) 0.67 (0.13) 17.11 (0.82) 0.88 0.00 9.52 (0.16)

AIPWE, DR, and IPWE, estimators based on maximizing AIPWE(η) DR(η), and IPWE(η), respectively; η̂10, η̂11, η̂12, η̂13, η̂20, η̂21, η̂22, η̂23, Monte Carlo average estimates (standard

deviations); Ê(η̂opt), Monte Carlo average and standard deviation of the estimated values of the true E{Y ∗(goptη )}; SE, Monte Carlo average of sandwich standard errors; Cov.,coverage of

associated 95% Wald-type confidence intervals for E(ηopt); E(η̂opt), the Monte Carlo average and standard deviation of values E{Y ∗(ĝoptη )} obtained using 106 Monte Carlo simulations for

each data set.
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9. APPLICATION TO STAR*D

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a multi-site, multi-

step clinical trial enrolling 4041 patients with nonpsychotic major depressive disorder to compare

treatment options for patients who do not attain a satisfactory response with citalopram. The trial

involved four levels, each consisting of a 12-week follow-up phase. All patients received citalo-

pram during level 1. Patients without sufficient symptomatic benefit were randomized to level

2 treatments, classified as either (i) switch: sertraline, bupropion, venlafaxine, or cognitive ther-

apy, or (ii) augment: citalopram plus one of bupropion, buspirone, or cognitive therapy. Patients

assigned to cognitive therapy (switch or augment options) at level 2 were eligible, in case of in-

adequate improvement, to be randomized to level 2A switch options (bupropion or venlafaxine).

All patients without adequate response at levels 2 and 2A were randomized to level 3 options,

(i) switch: mirtazepine or nortriptyline or (ii) augment: add lithium or triiodothyronine. Patients

without adequate improvement at level 3 continued to be randomized to level 4 switch options

(tranylcypromine or mirtazepine combined with venlafaxine). The decision to proceed to the next

level depended on clinician-rated versions of the Quick Inventory of Depressive Symptomatol-

ogy (QIDS) score. At the end of each level, patients deemed to have sufficient improvement using

that level’s treatment did not move to future levels, where sufficient improvement was defined

by 12-week QIDS score≤ 5 (remission) or showing a 50% or greater decrease from the baseline

score at the beginning of level 1 (successful reduction). See Rush et al. (2004) for details.

Following Schulte et al. (2013), we take level 2A to be part of level 2 and consider only

levels 2 and 3, denoting entry to levels 2 and 3 as decision points 1 and 2, respectively (K = 2),

and consider the 1260 patients who entered level 2, 330 of whom continued to level 3. Let Ak,

k = 1, 2, be assigned treatment at decision k, taking values 0 (augment) or 1 (switch); both

options are feasible for all subjects. Let X10 and X11 denote QIDS score at baseline and at
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decision k = 1, and define X12 to be the slope of QIDS score based on X10 and X11, so that

X1 = (X11, X12)T is the information available immediately prior to the first decision. Let X21

denote QIDS score at decision k = 2 and X22 be the QIDS score slope based on X11 and X21,

so that X2 = (X21, X22)T is the information available between decision points 1 and 2. Letting

T be QIDS score at the end of level 3 and L0 = max(5, X10/2), define the outcome as Y =

−I(X21 ≤ L0)X21 − I(X21 > L0)(X21 + T )/2, the cumulative average negative QIDS score.

It can be deduced that Q2(x̄2, ā2) = E(Y | X̄2 = x̄2, Ā2 = ā2) = {I(x21 ≤ l0) + I(x21 >

l0)/2}x21 + I(x21 > l0)E(−T | X̄2 = x̄2, Ā2 = ā2, x21 > l0)/2. As in Schulte et al. (2013),

who carried out preliminary exploratory analysis, we positedQ2(x̄2, ā2;β2) = −{I(x21 ≤ l0) +

I(x21 > l0)/2}x21 + I(X21 > l0)(β20 + β21x21 + β22x22 + β23a2)/2, where β2 can be esti-

mated using the data from patients continuing to level 3; thus, V2(x̄2, a1;β2) = {I(x21 ≤ l0) +

I(x21 > l0)/2}x21 + I(x21 > l0){β20 + β21x21 + β22x22 + β23I(β23 > 0)}. At decision 1,

we specified Q1(x1, a1;β1) = β10 + β11x11 + β12x12 + a1(β13 + β14x12). For A-learning, we

analogously took h2(x̄2, a1;α2) = α20 + α21x21 + α22x22, C2(x̄2, a1;ψ2) = ψ2, h1(x1;α1) =

α10 + α11x11 + α12X12 and C1(x1;ψ1) = ψ10 + ψ11X12 and specified π2(x̄2, a1; γ2) =

expit(γ20 + γ21x21 + γ22x22 + γ23a1) and π1(x1; γ1) = expit(γ10 + γ11x11 + γ12x12).

Q-learning suggests a treatment switch for patients with decision 1 QIDS slope greater than

−0.97; A-learning assigns a switch for QIDS slope greater than −1.07. At the second decision,

both suggest that all patients should switch. Using DR(η) to estimate E{Y ∗(gopt)} for all meth-

ods for consistency yields -7.97 (-8.50, -7.45) and -8.03 (-8.56,-7.50) for Q- and A-learning,

respectively.

Analogous to the above, we define the class of regimes Gη with elements gη = (gη1 , gη2),

where gη1(x1) = (x12 > η1) and gη2(x̄2, a1) = I(x22 > η2). Using the same Q-function and

propensity models as above and estimating η = (η1, η2)T by maximizing DR(η) and AIPWE(η)
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in η via a grid search over all possible jump points (x12,i, x22,j), i, j = 1, . . . , n, as in the

simulations, η̂opt
AIPWE,1 = η̂opt

DR,1 = −1.78, suggesting that patients with larger decision 1 QIDS

slope switch treatments, and η̂opt
AIPWE,2 = η̂opt

DR,2 = −7.50, the minimum value of X22, indicat-

ing that all patients should switch treatments at the second decision. Using DR(η) to estimate

E{Y ∗(gopt
η )} yields -7.85 (-8.36, -7.33).
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