Identifying External Influences on Global Precipitation
Supporting Information

S1 Model Output

We use model output from the 3rd [1] and 5th [2] phases of the Coupled Model Intercom-
parison Project (CMIP3/5). All data is available for download via the Earth System Grid
(see http://cmip-pemdi.llnl.gov for further information). Tables S2 and S3 list the official
acronyms and modeling center information for all models used in this study. In CMIP5, we
analyzed:

Historical simulations with estimated changes in anthropogenic and natural forcings over
the period 1979-2005 inclusive.

RCP8.5 simulations in which 21st century changes in greenhouse gases and anthropogenic
aerosols are prescribed according to the Representative Concentration Pathway 8.5 [3],
generally over the period 2005-2012

piControl simulations: pre-industrial runs with no changes in external climate forcings

historicalNat simulations with estimated changes in natural forcings only over the period
1979-2005

Table S4 lists the CMIP5 historical and RCP8.5 simulations used, along with the unique
tracking identifier found in the metadata. Table S5 lists the control runs, tracking ids, and
the total length of each control run used in this study. To prevent models with longer runs
dominating our calculation of internal noise, we use only the first 200 years of every model
control simulation.

Of the data available in the CMIP3 archive, we analyzed

Historical simulations with estimated changes in anthropogenic and natural forcings over
the period 1979-2000

A1B experiments in which emissions are increased according to Standard Reference Scenario
A1B corresponding to a medium-high emissions trajectory [4].



Approximately half of the CMIP3 models include anthropogenic stratospheric ozone deple-
tion as an external climate forcing [5]. These models are indicated in Table S6.

The pre-industrial control runs used do not incorporate changes in external anthropogenic
or natural forcings. As such, they provide information about internal variability of the
climate system. We have established that the observed trends are very unlikely to result
from this internal variability alone, and is consistent with externally forced model results.
However, external forcings can be divided into two categories: anthropogenic forcings, such
as increased GHG concentrations or stratospheric ozone depletion, and natural forcings due
to volcanic activity or solar variability. In order to ascertain the roles of natural and human
forcings, we use the CMIP5 historicalNat experiments, which incorporate observed changes
in natural external forcings but not anthropogenic contributions. The vast majority of these
experiments end in December 2005, meaning we must test 26-year trends over the period
1979-2005. Table S7 lists the historicalNat simulations used in this study.

S2 Splicing

For extended analysis, CMIP5 historical simulations are combined with RCP8.5 runs, and
CMIP3 historical simulations with A1B runs. In CMIP5, model metadata are checked and
a spliced file is created provided:

e The designated parent experiment of the RCP8&.5 run is historical

e The ensemble member identifiers (as defined in the CMIP5 Data Reference Syntax
Document) of the RCP8.5 run and indicated parent match

e Historical experiments end in December 2005 (November 2005 for Hadley Centre mod-
els)

e RCPS8.5 experiments begin January 2006.

Imposing these criteria excludes several available models from the splicing process; those
used in this study are listed in Table S4.

S3 Observational Datasets

We used version 2.2 of the Global Precipitation Climatology Project (GPCP) dataset [6],
available at http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. This dataset con-
sists of monthly means from January 1979-January 2013. Because we considered boreal
winter (DJF) seasonal means and required that all three months be present, we used 33
years of winter mean data. The observational data is gridded to a 2.5x2.5 degree latitude-
longitude grid, which is sufficiently highly resolved to detect shifts in the latitudes of zonal
mean precipitation features. GPCP is also the most reasonable dataset over ocean [7]. The
dataset is believed to be more reliable post-1988, when measurements from the Special Sensor



Microwave Imager (SSM/I, [8]) begin to be incorporated [9]. Figure S1 shows the observed
signal-to-noise ratio, calculated from GPCP-derived thermodynamic and dynamic indica-
tors, as a function of the trend start year. Even when the preceding years are excluded from
the record, the 1988-2012 trend remains significant at the 95% confidence level.

90% significance
A /\ /,\ - 95% significance
2
\ A
1’4
1_
o
=
©
< 0
£
w
_1_
—<
TH80 1985 19881990 1995 2000 2005 2010

Trend Start Year

Figure S1: Signal-to-noise ratio as a function of trend start time. All trends end in 2012.

To regress out the effects of ENSO (Section S8), we used the historical monthly Nino 3.4
index (defined as the average sea surface temperature in the region bounded by 5°North-
5°South and 170-120°West) available at http://www.cpc.ncep.noaa.gov/data/indices/.

S4 Observed and Modeled Time Series

We apply scale-space smoothing with smoothing parameter 5 degrees to December-February
(DJF) seasonal precipitation climatologies. Considering a single season is useful because
expected thermodynamic and dynamic trends vary with the seasonal cycle; DJF is chosen
because dynamic changes are expected to be largest in boreal winter [5, 10]. The smoothing
is performed via diffusion on the sphere as discussed in [11]. This choice of smoothing method
removes fine-scale variability, preserves the native model grid, and does not introduce new
structure into the map as an artifact of the smoothing procedure. The resulting smoothed
fields are then zonally averaged, yielding a simple picture of the latitude structure of global
precipitation.

All models have exactly five extrema in the 30-year mean DJF climatology, and most
models have exactly five extrema for every individual year. To handle those that do not, we
adopt the following procedure: for each model year, if more than five extrema are found,
only the three(two) maxima(minima) closest to the maxima(minima) in the 30-year average
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are retained. Similarly, if fewer than five extrema are found, only those extrema closest to
the 30-year mean values are retained; the other points are masked.

S5 Fingerprint Analysis

What is the estimated response of the climate system to external forcing? Various methods
exist to determine the fingerprint of climate change (see, e.g.,[12, 13, 14, 15, 16]). We adopt
the methods used in e.g. [17], in which the fingerprint is defined as the first empirical
orthogonal function (EOF) of the spatiotemporal data matrix that results from averaging
the CMIP5 historical/RCP8.5 data, first over an individual model’s realizations, if more
than one is available, and then over all models. In the case of D/, (t), the anomalies in the
latitudes of local extrema in the zonal average, along with the half-max points, measure the
dynamic changes due to natural and externally forced variability. The double average over
realizations and models damps internal variability, because manifestations of random natural
phenomena such as ENSO are uncorrelated across models. This means that the resulting
average D', (t) in theory measures changes in the locations of extrema resulting primarily
from externally forced variability. The same holds for the averaged thermodynamic changes
m, which yields a picture of the response of precipitation intensity to external forcing.
In this paper, the climate change fingerprint is taken to be the first multivariate EOF of
D’ (t) (11 spatial dimensions) and T (t) (5 spatial dimensions). The tildes indicate that the
input time series have been scaled to unit variance before input. The first EOF is then the

eigenvector corresponding to the 16x16 covariance matrix obtained by first concatenating

D), (t) and T4 (t) along their spatial dimensions. The expansion coefficients of the first EOF
form a time series: the first principal component. These coefficients show how the primary
mode of variability oscillates in time.

S6 Single-variable fingerprints

In this section, we calculate the first empirical orthogonal functions (EOF) of the multi-model
average D'y (t) and T (t) and their corresponding principal components (Fig S2a-d).

Figure S2a shows that in boreal winter the leading dynamic response to external forcing,
F (D), is characterized by poleward expansion in both hemispheres, especially in the storm
tracks and on the poleward flank of the dry zones, consistent with previous studies, e.g. [18].
The associated principal component shows a positive trend (Figure S2b), indicating that
this response is more strongly expressed over time. Figure S2c indicates that the primary
thermodynamic response to forcing, denoted F(7T'), shows the wet-get-wetter, dry-get drier
pattern dictated by the Clausius-Clapeyron relation in a warming world. As for the dynamic
indicator, the first principal component (Figure S2d) has a positive trend.
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Figure S2: Single-variable fingerprints and first principal components for (a-b): the dynamic

indicator D’;(t) and (c-d): the thermodynamic indicator T} (t).



S6.1 Observed dynamic trends

Figure S3a shows the projection of the observed dynamic indicator Dy, (t) onto the fingerprint
F(D) and the trend, obtained by least-squares regression. This projection should not be
confused with the principal component in Figure S2b, which expresses the strength of the
fingerprint in the multimodel average and involves no observational data. The corresponding
signal-to-noise ratio, obtained by dividing the trend by the standard deviation of the control
distribution, is shown in Figure 3b, as well as fitted probability density functions for the pre-
industrial control (blue), ALL5 (green), ALL3 (cyan), and NoOz3 (orange) S/N ratios. As
expected, the three forced distributions are offset significantly (Table S1) from the control
distribution, which is centered around zero. ALL5 and ALL3 trend distributions do not
differ significantly from each other (see Table S1) and are both shifted toward the positive
values, indicating that the poleward shift characteristic of F'(D) is present in both classes
of models. The NoOz3 distribution differs from the ALL3 and ALL5 distribution and has
smaller mean trend. This is expected: increased GHG concentrations and stratospheric
ozone depletion both contribute to poleward expansion of the general circulation [10, 19, 20]
and models that include both forcings will exhibit stronger trends. The observed S/N ratio
of 3.83 is significant at the 5% level (Figure S3b). This indicates that the observed trend
in the dynamic indicator is very unlikely to result from internal variability alone. However,
the observed S/N ratio lies in the far right tail of all three forced distributions, and is
thus is also highly unlikely to be compatible with the models’ estimate of the dynamic
precipitation response to forcing. This is consistent with previous literature, e.g. [5, 21, 22]
that suggests the observed expansion of the tropical Hadley cell exceeds model results by
an order of magnitude. We therefore detect a dynamic change in precipitation, but are
unable to attribute it to any particular forcing or combination of forcings using the current
generation of models.

S6.1.1 Comparision with previous studies

Observed dynamic changes appear to be robust across numerous variables such as the jet
stream and accompanying storm tracks [23], the Southern Annular Mode [24, 25, 26|, the
Hadley cell edge calculated from the meridional overturning stream function [27], and the
expansion of dry zones determined from zeros of precipitation minus evaporation [28]. These
observed dynamic shifts, particularly the widening of the tropical belt, are larger than those
predicted by models [5, 21, 22]. This discrepancy between models and observations is not well
understood and appears highly sensitive to the metric used [29]. The discrepancy may be
due in part to model forcing errors arising from observational uncertainty in ozone changes
[30] or to response errors; [31] suggest that models do not accurately capture convective
changes in response to warming. Additionally, we find evidence (section S9) that models
systematically under-estimate interannual and decadal variability in the dynamic indicator;
this means that the model-obtained noise ¢ may be too small and the resulting S/N ra-
tio spuriously inflated. We note, however, that in computing the covariance matrix from
which F,,,(D,T) is calculated, we normalize Dp,(t) to unit variance, thereby removing the
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Figure S3: Projection time series and best-fit normal probability distribution functions
(PDFs) for trends in the projection of model data onto the fingerprints F'(D) (a-b) and
F(T) (c-d). In the PDFs, all trends have been normalized by the relevant e, the standard
error of the control distribution to obtain signal-to-noise ratios. The blue line shows the PDF
of non-overlapping 33-year trends from the concatenated model pre-industrial control runs.
The green line shows the PDF for individual CMIP5 historical/ RCP8.5 model projection
trends. Yellow/cyan lines show the PDF for CMIP3 models excluding/including strato-
spheric ozone depletion. For all PDFs, the two-sided 95% confidence intervals are shaded.
The red line indicates the observed S/N ratio, and the shaded red box + one standard error
in estimating the trend from assumed independent annual samples.



amplitude of variability. Our fingerprint therefore measures the relationship between the
thermodynamic and dynamic indicators, not their respective amplitudes.

S6.2 Observed thermodynamic trends

Figure S3c shows the projection of the observed thermodynamic indicator T}, (t) onto the
fingerprint F'(T"). No clear trend is apparent in the time series. Figure S3d shows the S/N
ratios for the different classes of model. The ALL3, ALL5, and NoOz3 cases do not differ
significantly from each other (Table S1), although they do differ from the control distribution.
This is consistent with expected thermodynamic effects: increasing GHG concentrations lead
to higher temperatures and an intensification of the hydrological cycle, while ozone depletion
alone does not affect precipitation intensity. The observed S/N ratio of -0.8 is compatible
with internal variability: we do not detect a thermodynamic change alone.

S6.2.1 Comparison with previous studies

This is not surprising: any mode of natural variability that moistens the tropics or dries
the subtropics, ENSO included, will project onto F(T'), thereby reducing the signal-to-noise
ratio. However, previous studies, e.g. [32, 33], have found that models underestimate the
observed strengthening of the hydrological cycle. One possible explanation for the differences
between this finding and previous literature is the dataset used. We use observational data
from the GPCP dataset, which spans only the satellite era 1979-2012. This time period is
shorter than that used in [33, 34] and includes the so-called global warming “hiatus”: the
past fifteen years, over which the global temperature rise is significantly slower [35, 36] than
that predicted by models [37].

The importance of both dataset and timescale can be seen in Figure S4, which repeats the
analysis of [33] using GPCP 1979-2012 data. As in the original paper, annual anomaly data
is used (in contrast with our work, which relies on DJF averages), and trends are calculated
by zonally averaging and averaging over 10° -wide latitude bands. Anomalies are calculated
with respect to the entire 1979-2012 period. The ocean mask used by the CCSM4 CMIP5
land model is re-gridded to the coarser GPCP grid and used to extract observational data
over land only. We find that only the northern hemisphere drying trend differs significantly
from zero.

Wentz et al [8] use the SSM/I dataset over ocean supplemented with GPCP data to
show that the increase in observed precipitation is larger than that predicted by models and
scales at roughly the same rate as tropospheric water vapor. Figure 2A in [8] shows an
increasing trend in global average precipitation. However, this trend appears to disappear
once updated GPCP data is incorporated, as shown in Figure S5, perhaps due to the muted
warming trend in recent years.

We also note the low spatial resolution of our thermodynamic indicator: T},(t) measures
variations at only five spatial points and moistening or drying over large regions is not
necessarily captured by changes at a single latitude. Additionally, our study is designed to
detect changes in the zonal mean and therefore ignores local changes that may be large in
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Figure S4: Repeating the analysis of [33] using GPCP data with oceans masked. Time
series (black solid lines) are calculated by averaging land-only GPCP data over 10° latitude
bands and all longitudes. Green (yellow) shading indicates bands where the trend is positive
(negative) and agrees with the trend found by [33]. Gray shading indicates bands where the
GPCP trend disagrees with [33]. Dashed lines indicate best-fit trends: red if the trend is
significantly different from zero at 95% confidence; black otherwise.
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Figure S5: Anomaly time series of global average precipitation for 1988-2006 (dark blue)
and 1988-2012 (light blue). As in [8], the seasonal cycle has been removed and data has
been smoothed by convolution with a Gaussian distribution of width + 4 months. The
“minimum-norm” constraint [38] has been used at the boundaries, however, trends are not
highly sensitive to the boundary conditions chosen. Trends are shown as dashed lines.

magnitude, particularly in the tropics [9]. As shown in Figure S6, the spatial structure of
observed DJF precipitation trends in the tropics shows a large east-west gradient. These
features, perhaps associated with an observed strengthening of the tropical Walker circulation
[39], are averaged over in our methodology.

Natural vs. Anthropogenic Forcing Figure S7 is identical to Figures S3b and d, apart
from two changes: trends are now calculated over the 26-period only, and results from
model simulations incorporating historical natural forcing only are included. The results for
projection onto F,,(D,T) are shown in the main text (Fig 3c). The trend distributions in
the historicalNat model runs are nearly identical to those obtained from the pre-industrial
control runs, indicating that natural forcing terms (solar variability and volcanic eruptions)
do not change the overall distribution.

S7 Relative Frequency Histograms

Figure S8 shows the relative frequency histograms of 33-year trends in CMIP5 control and
spliced historical/RCP8.5 runs and in CMIP3 models including and excluding anthropogenic
stratospheric ozone depletion. Best-fit normal distributions are shown in Figures S3b, S3d
and 3b.

In order to determine whether the observed trends could have been drawn from the same
distribution, we performed Kolmogorov-Smirnov tests on all pairs of distributions. The
results are summarized in Table S7.

These tests show that:

CMIP3 and CMIP5 are similar. In all cases, the ALL5 trend distributions are statisti-
cally indistinguishable (N) from ALL3 trend distributions, indicating that CMIP5 and
CMIP3 models that incorporate stratospheric ozone depletion perform similarly.
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Figure S6: Trends in GPCP DJF average precipitation. Green lines show the range of
latitudes identified as tropical peaks at each time step in the zonal average, while red lines
show the range of latitudes identified as dry zone troughs in the zonal average. There is
a clear east-west pattern in the trends, with drying in the central equatorial Pacific and
moistening in the west, consistent with the persistent La Nina-like trend reported by e.g.
40].

(a): Model Projections on F(D) (b): Model Projections on F(T)
- : : :

0.5 0.5 T

= historicalNat
CMIP30z
CMIP3no0z

= CMIPS historical + RCP85
0.4} = Picontrol J 04l
= OBS

=
[

0.3F

o
[N

0.2F

Probability Density

0.1f 0.1r

~6 —4 ) 0 2 4 "6 —4 )
S/N Ratio S/N Ratio

Figure S7: Same as Figure S2b and c, but using 26-year trends and including historicalNat
experiments (purple)

11



Dynamic trends D(t)

0.25
= OBS
0201 =3 PiCcontrol
015 [ hist_rcp85
CMIP3no0Oz
0.10f CMIP30z J_l
l
0.05f I L I_l—
1l T — L=

0.00 s rd [ ‘ J - _l N

: -0.2 -0.1 0.0 0.1 0.2
0.20 Thermodynamic Trends T(t)
0.15
0.10 I’

| =

0.05F IL B '| J
0.0 =10 —I—

—0.015 -0.010 —0. 005 0. DDD O 005 O DlO 0.015

Multivariate Trends

0.25 T T r
0.20
0.15
0.10 J' ].I'1 -
0.05| I_‘_|'|_|"JJ T "ud I: Jrl
0.0 . . " -l ﬂ 1 LI-|I'|- 1 i 171 . m |

'—%.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Figure S8: Relative-frequency histograms of 33-year trends in the projection of D’(t) onto
F(D)(top), T'(t) on to F(T) (middle), and D'(t) and T"(t), scaled to unit variance, onto
F.(D,T) (bottom)

12



Control ALL5 ALL3 NoOz3
Control — RFHE [RFEE RFE PR [ R N [RFEF REEF
ALLS | R¥** JR#HK /R¥*H — N/N/N R**/N/N
ALL3 | R*#* JR**H JR*HH N/N/N — R**/N/N
NoOz3 N /R JR*H* R**/N/N R**/N/N —

Table S1: Results of Kolmogorov-Smirnov tests on the CMIP5 control and historical/RCP8.5
trend distributions and CMIP3 models including and excluding anthropogenic stratospheric
ozone depletion. Results are reported for distributions of 33-year trends in projections onto
F(D)/F(T)/F,,(D,T). An N indicates that we do not reject the hypothesis that the trends
are drawn from the same distribution, while R means we reject the null hypothesis with 90%
(*), 95% (**), or 99%(***) confidence.

Ozone is important for dynamical shifts. Anthropogenic stratospheric ozone depletion
is required to produce positive trends in the projection on F'(D). Both the ALL5 and
ALL3 trend distributions differ significantly from Control (at the 95% confidence level;
R***), while the NoOz3 distribution is statistically indistinguishable from Control
(N). The trend distributions also differ between models including (ALL3, ALL5) and
excluding (NoOz3) ozone depletion.

External forcings other than ozone depletion are important for thermodynamic
For the projection onto F(T'), all three forced distributions (ALL5, ALL3, and NoOz3)
differ significantly from the control distribution (R***). This suggests, consistent with
theory [41, 42], that models that do not include ozone depletion can still produce a
thermodynamic response in the hydrological cycle.

The covariance between T and D increases in forced models. All three forced dis-
tributions differ significantly from the control distribution of trends in the projection
onto the multivariate fingerprint F,,(D,T).

S8 Role of ENSO

In the main text, we contend (Figures 2a and 2c) that ENSO does not project well onto our
multivariate fingerprint, and that projection onto F,,(D,T) acts as a passive noise filter. In
this section we provide support for that claim. We investigate the role of ENSO, the primary
mode of natural variability, by regressing the observed Dy, (t) and Tf,(t) on the observed sea-
surface temperature 1979-2012 anomalies in the NINO3.4 region (120° W-170°W and 5°S-
5°N) and re-calculating the projection trend with the regression removed to create ENSO-
removed indicators Dp pyso(t) and 1) pygo(t). For the multivariate projection, trends
are re-calculated using the ENSO-removed location and intensity time series normalized to
unit variance. This provides a fast and simple means of assessing the response of both
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thermodynamic and dynamic indicators to ENSO variability. Figure S9 show the effect of
removing ENSO in this way.

Removing ENSO from Dy (t) and T}, (t) individually changes the projection of these
indicators onto their respective fingerprints. The trend in the projection of Dj, 5y go(t) onto
F (D) is slightly reduced relative to the trend in the raw projection. This indicates that
removing ENSO flattens the trend slightly. The projection of T, pygo(t) onto F/(T) reduces
the size of the 1998 peak, and yields a non-significant positive trend. Both single-variable
projection time series are noticeably altered when ENSO effects are regressed out.

When the ENSO-removed indicators are normalized and projected onto the multivariate
fingerprint F,,(D,T), however, the result is almost completely unchanged. This provides
evidence for our contention that F,,,(D,T') acts as an effective noise filter, because the primary
noise mode, shown in Figure 2c¢ in the main text, does not project onto the multivariate
fingerprint.

S9 Variability

In this section, we compare modeled and observed variability in the projections on D&A
studies rely on credible model estimates of internal variability [43, 44]. If models system-
atically underestimate the amplitude of natural climate noise, this may lead to spurious
detection due to artificially low noise, which inflates the S/N ratio. To investigate this pos-
sibility, we compare variability in observations and spliced CMIP5 historical /RCP8.5 runs.
We first detrend modeled and observed time series of projections onto position F'(D) and
intensity F'(T') fingerprints and then apply a band-pass filter to extract variability on scales
between 5 and 20 years, as in [44]. We also apply a high-pass filter to extract variability
on scales less than three years. Figure S1 shows the performance of models at simulating
medium and high-frequency variability in the projections.

We find:

e Climate models indeed systematically underestimate variability in the projection of the
modeled dynamic indicator D’(t) onto the multimodel fingerprint F'(D) (Figure S10).
This appears to be the case for both short and longer time scales. The multi-model
average (white box) lies well in the lower left-hand quadrant.

e For the projection of T"(t) onto the fingerprint F'(T'), the multi-model average over-
estimates decadal (5-20 year) variability, and captures observed short-term variability
very well (Figure S11). However, there is considerable spread in model performance,
with several underestimating variability on both short and long time scales.
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Figure S9: Projections onto the single-variable fingerprints a: F(D), b: F(T), and the
multivariate fingerprint F,,(D,T) including time series in which the regression on NINO3.4
SSTs has been removed from the observations.
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Figure S10: Comparison of modeled and observed variability in the projection of boreal
winter mean peak location D’(t) on the fingerprint F(D).
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Figure S11: Comparison of modeled and observed variability in the projection of boreal
winter mean peak intensity 7”(¢) on the fingerprint F(T).

17



Table S2: Official acronyms and modeling center infor-
mation of the CMIP5 models used in this study.

| Model | Country | Modeling Center |
ACCESS1-0 Australia CSIRO (Commonwealth Scientific and Industrial
Research Organisation), and BOM (Bureau of
Meteorology), version 1.0
ACCESS1-3 Australia CSIRO (Commonwealth Scientific and Industrial
Research Organisation, and BOM (Bureau of Me-
teorology),version 1.3

bee-csmil-1 China Beijing Climate Center(BCC),China Meteorolog-
ical Administration

bee-csm1-1-m China Beijing Climate Center(BCC),China Meteorolog-
ical Administration

BNU-ESM China College of Global Change and Earth System Sci-
ence, Beijing Normal University

CanESM?2 Canada Canadian Centre for Climate Modelling and
Analysis

CCSM4 USA NSF/DOE NCAR (National Center for Atmo-
spheric Research) Boulder, CO

CESM1-CAM5-1- USA NSF/DOE NCAR (National Center for Atmo-

FV2 spheric Research) Boulder, CO

CESM1-WACCM USA NSF/DOE NCAR (National Center for Atmo-
spheric Research) Boulder, CO, USA

CMCC-CMS Italy CMCC - Centro Euro-Mediterraneo per i Cambi-
amenti Climatici, Bologna

CNRM-CM5 France CNRM (Centre National de Recherches Meteo-

rologiques, Meteo-France, Toulouse,France) and
CERFACS (Centre Europeen de Recherches et
de Formation Avancee en Calcul Scientifique,
Toulouse, France)

CSIRO-Mk3-6-0 Australia Australian Commonwealth Scientific and Indus-
trial Research Organization (CSIRO) Marine and
Atmospheric Research (Melbourne, Australia)
in collaboration with the Queensland Climate
Change Centre of Excellence (QCCCE) (Bris-
bane, Australia)

EC-EARTH EU EC-Earth (European Earth System Model)

FGOALS-g2 China IAP (Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China) and THU
(Tsinghua University)

‘ Continued on next page ‘
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Table S2 — continued from previous page

| Model

‘ Country ‘

Modeling Center

FGOALS-s2

FIO-ESM

GFDL-CM3

GFDL-ESM2M

GISS-E2-H

GISS-E2-R

HadGEM2-CC

HadGEM2-ES

IPSL-CM5A-LR

IPSL-CM5A-MR

IPSL-CM5B-LR

MIROC-ESM

MIROC-ESM-
CHEM

China

China
USA
USA
USA
USA

UK

UK

France
France
France

Japan

Japan

[AP(Institute of Atmospheric
Physics),CAS(Chinese ~ Academy  of  Sci-
ences),Beijing,China

FIO(The First Institution of Oceanogra-
phy,SOA Qingdao,China)

NOAA GFDL(201 Forrestal Rd, Princeton, NJ,
08540)

NOAA GFDL(201 Forrestal Rd, Princeton, NJ,
08540)

NASA/GISS (Goddard Institute for Space Stud-
ies) New York, NY

NASA/GISS (Goddard Institute for Space Stud-
ies) New York, NY

Met Office Hadley Centre, Fitzroy Road, Exeter,
Devon, EX1 3PB, Carbon Cycle configuration
(http://www.metoffice.gov.uk)

Met Office Hadley Centre, Fitzroy Road, Exeter,
Devon, EX1 3PB, Earth System Configuration,
(http://www.metoffice.gov.uk)

IPSL (Institut Pierre Simon Laplace, Paris), ver-
sion Ha, low-resolution configuration

IPSL (Institut Pierre Simon Laplace, Paris, ver-
sion ba, medium-resolution configuration)

IPSL (Institut Pierre Simon Laplace, Paris, ver-
sion 5b, low-resolution configuration)
JAMSTEC (Japan Agency for Marine-Earth Sci-
ence and Technology, Kanagawa, Japan), AORI
(Atmosphere and Ocean Research Institute, The
University of Tokyo, Chiba), and NIES (National
Institute for Environmental Studies, Ibaraki)
JAMSTEC (Japan Agency for Marine-Earth Sci-
ence and Technology, Kanagawa, Japan), AORI
(Atmosphere and Ocean Research Institute, The
University of Tokyo, Chiba), and NIES (National
Institute for Environmental Studies, Ibaraki)

Continued on next page
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Table S2 — continued from previous page
| Model | Country | Modeling Center |
MIROCH Japan AORI (Atmosphere and Ocean Research Insti-
tute, The University of Tokyo, Chiba, Japan),
NIES (National Institute for Environmental
Studies, Ibaraki, Japan), JAMSTEC (Japan
Agency for Marine-Earth Science and Technol-
ogy, Kanagawa)

MPI-ESM-LR Germany Max Planck Institute for Meteorology, low-
resolution configuration

MPI-ESM-MR Germany Max Planck Institute for Meteorology, medium-
resolution configuration

MRI-CGCM3 Japan MRI  (Meteorological ~ Research  Institute,
Tsukuba)

NorESM1-M Norway  Norwegian Climate Centre

NorESM1-ME Norway  Norwegian Climate Centre

‘ Continued on next page
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Table S3: Official acronyms and modeling center infor-
mation of the CMIP3 models used in this study.

| Model | Country | Modeling Center |
BCCR-BCM2-0 Norway ~ BCCR (Bjerknes Centre for Climate Re-
search)  University of Bergen,  Norway

(www.bjerknes.uib.no) NERSC (Nansen En-
vironmental and Remote Sensing Center,
Norway (www.nersc.no) GFI  (Geophysical
Institute) University of Bergen),www.gfi.uib.no

CCCMA-CGCM3-  Canada  CCCma (Canadian Centre for Climate Modelling

1 and Analysis, Victoria, BC)

CCCMA-CGCM3-  Canada  CCCma (Canadian Centre for Climate Modelling

1-T63 and Analysis, Victoria, BC)

CNRM-CM3 France CNRM (Centre National de Recherches Meteo-
rologiques, Meteo-France, Toulouse)

CSIRO-MK3-5 Australia CSIRO (CSIRO Atmospheric Research, Mel-
bourne)

GFDL-CM2-0 USA NOAA GFDL (US Dept of Commerce / NOAA /
Geophysical Fluid Dynamics Laboratory, Prince-
ton, NJ)

GFDL-CM2-1 USA NOAA GFDL (US Dept of Commerce / NOAA /
Geophysical Fluid Dynamics Laboratory, Prince-
ton, NJ)

GISS-AOM USA GISS (NASA/Goddard Institute for Space Stud-
ies, New York)

IAP-FGOALS1-0- P.R. TAP(LASG, Institude of Atmospheric Physics,

G China P.O. Box 9804, Beijing 100029)

INGV-ECHAM4 Italy INGV (National Institute of Geophysics and Vol-
canology, Bologna)

INMCM3-0 Russia INM (listitute for Numerical Mathematics,
Moscow)

MIROC3-2-HIRES  Japan CCSR/NIES/FRCGC (Center for Climate Sys-
tem Research, Tokyo / National Institute for En-
vironmental Studies, Ibaraki / Frontier Research
Center for Global Change, Kanagawa)

MIROC3-2- Japan CCSR/NIES/FRCGC (Center for Climate Sys-

MEDRES tem Research, Tokyo / National Institute for En-
vironmental Studies, Ibaraki / Frontier Research
Center for Global Change, Kanagawa)

‘ Continued on next page ‘
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Table S3 — continued from previous page

| Model | Country | Modeling Center |

MPI-ECHAMb)5 Germany MPI (Max Planck Institute for Meteorol-
ogy,Hamburg)

NCAR-CCSM3-0 USA NCAR (National Center for Atmospheric Re-

search, Boulder, CO)

Continued on next page
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Table S6: List of CMIP3 coupled climate model simulations used

Model Number of realizations | Includes ozone depletion?
BCCR-BCM2-0 1 No
CCCMA-CGCM3-1 5 No
CCCMA-CGCM3-1-T63 1 No
CNRM-CM3 1 No
CSIRO-MK3-5 1 Yes
GFDL-CM2-0 1 Yes
GFDL-CM2-1 1 Yes
GISS-AOM 2 No
IAP-FGOALS1-0-G 3 No
INGV-ECHAMA4 1 Yes
INMCM3-0 1 No
MIROC3-2-HIRES 1 Yes
MIROC3-2-MEDRES 3 Yes
MPI-ECHAMS5 4 Yes
NCAR-CCSM3-0 7 Yes
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