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We present here the details of our modeling, data analysis and simulations of the photoresponse
and dark noise. We start by presenting our model based on spatially resolved reaction-diffusion
equations. The model accounts for the fundamental constraints imposed by the rod geometry and the
biochemistry of the transduction cascade. We further present stochastic simulations of the molecular
network leading to PDE activations, a required step to derive the dark noise and the variability of
the photoresponse. Finally, we derive analytical expressions from the power spectrum of the dark
current to extract key parameters that we use in simulations.

1 Modeling of the single-photon response (SPR) and dark noise

Coarse graining the outer segment (OS) geometry

The geometry of the rod OS is divided by internal parallel disks into compartments connected to
each other through narrow gaps between the disk rim and the OS membrane and through incisures
(Fig. S1). This compartmentalization reduces the diffusion of cGMP and calcium between compart-
ments, whereas diffusion within a compartment is not hindered and produces rapid equilibration.
We therefore adopt the approximation of a transversally well stirred OS where the three-dimensional
geometry can be reduced to an effective one-dimension model [1]. The number of disk incisures
varies considerably among species. Whereas toad and amphibian rods can have up to 30 incisures, a
mouse rod has only a single incisure [2, 3, 4, 5]. Incisures have two main effects: first, they facilitate
longitudinal diffusion between the disks [6, 7]; and second, they hinder the diffusion of proteins on
the disk membrane and thereby affect PDE activation [8, 9]. The major effect of incisures is the
facilitation of longitudinal diffusion [7, 6], and in our model we incorporate this feature of outer
segment structure by using an effective longitudinal diffusion constant for cGMP and calcium. In
mouse, because there is only a single incisure, restriction of membrane diffusion due to incisures is not
important [10]. However, even in amphibian rods with many incisures, diffusional restriction due to
incisures does not significantly affect the photoresponse [7]. This result is probably a consequence of
the fast transversal cGMP diffusion, in which case the the position on the disk were PDE is activated
does not much affect the rate of cGMP hydrolysis. In addition, because the dark noise is generated
by fast and uniformly distributed spontaneous PDE activations and deactivations, it is also little
affected by diffusional restrictions due to incisures.

The concentration of cGMP is modeled by an effective longitudinal reaction-diffusion equation
with calcium-dependent synthesis catalyzed by guanylyl cyclase (GC) and with hydrolysis catalyzed
by light-activated and spontaneously activated phosphodiesterase (PDE), with GC and PDE both
located on the surface of the disk membrane (see [11, 12]). Calcium dynamics also follows effective
longitudinal diffusion with additional source terms arising from the currents through the cGMP-
gated channels and the Na+Ca2+K+-exchanger. Because an effect of calcium on spontaneous PDE
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Fig. S1: Compartmental model of a rod outer segment. We show a section through a cylin-
drical rod outer segment, containing a stack of parallel and uniformly distributed disks. The domain
delimited by two adjacent disks will be referred to as a compartment.

activation has not yet been conclusively demonstrated (though see [13]), we do not account for this
possibility in our model.

Stochastic model for spontaneous PDE activation

PDE molecules activate and deactivate spontaneously with Poisson rates νsp and µsp according to
the biochemical reaction

PDE
νsp


µsp

P ∗
sp . (1)

We use Eq. 1 together with the Gillespie algorithm [14] to simulate the time course of the stochastic
number of spontaneously activated PDE in a compartment. The average number of spontaneously
activated PDE in a compartment is [15]

P̄ ∗
sp,comp = 2ρpdeπR

2 νsp
µsp

, (2)

where ρpde is the PDE surface density and R is the compartment radius. For example, for toad rods,
assuming νsp = 4×10−4s−1 and µsp = 1.8s−1 [15], R = 3µm and ρpde = 100µm−2 (see Table S3), we
find P̄ ∗

sp,comp = 1.25. Fig S2a shows a simulation of the stochastic number of spontaneously activated
PDE in a toad compartment with P̄ ∗

sp,comp = 1.25 and µsp = 1.8s−1, and Fig S2b corresponds to a
mouse compartment with P̄ ∗

sp,comp = 0.9 and µsp = 12.4s−1 (see Table S3).

Stochastic model for PDE activation following a photon absorption

To simulate the time course of the stochastic number of activated PDE after a photon absorption
(denoted shortly by light-activated PDE), we use the model previously described in [16] (see also
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Fig. S2: Spontaneous PDE activation. (a) Simulation of the stochastic number of activated
PDE in a toad compartment with P̄ ∗

sp,comp = 1.25 and µsp = 1.8s−1. (b) Simulation of the stochastic
number of activated PDE in a mouse compartment with P̄ ∗

sp,comp = 0.9 and µsp = 12.4s−1.

[17, 18, 19, 20, 21]). A list of all of the parameters is given in Tables S1 and S2, their values are
given in Tables S3 and S4.

Biochemical reactions leading to PDE activation following a photon absorption

The biochemical reactions leading to PDE activation that we considered in our model are the follow-
ing: An activated rhodopsin R∗ activates PDE via a G-protein coupled amplification cascade. R∗

activity becomes gradually quenched via Np phosphorylation steps catalyzed by rhodopsin kinase
(RK), and finally rhodopsin is deactivated through arrestin binding. We neglect calcium feedback
on the PDE activation process [22, 23, 24, 25]. Depending on the number of phosphorylations
n = 0, . . . , Np, activated rhodopsin is in state R∗

n. The phosphorylation rates λn and the transducin
activation rates γrt,n depend on the phosphorylation state. Eventually R∗

n becomes deactivated
through arrestin binding with a phosphorylation dependent rate µn. The kinetic reactions are

R∗
n

λn−→ R∗
n+1

R∗
n

µn−→ R

R∗
n + T

γrt,n−→ R∗
n + T ∗ (3)

T ∗ + P
γtp−→ P ∗

li

P ∗
li

µli−→ P

We apply Eq. 3 together with the Gillespie algorithm [14] to simulate the time course of the number
of light-activated PDE after a photon absorption.

Choice of parameter values

We now briefly explain how we chose the parameter values for the simulations (for a more detailed
discussion see [16]): We used Np = 6 and assumed that λn and γrt,n decay exponentially with rate
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ω = 0.1 as a function of n and arrestin binds only when R∗ is fully phosphorylated; so

λn = λmaxe
−ωn , 0 ≤ n ≤ Np − 1

γrt,n = γrt,maxe
−ωn , 0 ≤ n ≤ Np

µn = δnNpλmaxe
−ωNp .

(4)

The mean R∗ lifetime computed in [16] is

τrh =
1

λmax

1− eωNp

1− eω
. (5)

For a measured R∗ lifetime, we use Eq. 5 to calibrate λmax such that the mean lifetime equals the
measured lifetime. Finally, we use γrt,max to adapt the mean maximal number of light-activated
PDE P ∗

li,max during the time response.
For mouse rod, the measured R∗ lifetime is τrh = 40ms [26, 27] and the lifetime of light-activated

PDE is µ−1
li = 200ms [28, 27, 29, 30]. For toad τrh is not precisely known, for example, a value of

2.5 seconds is estimated in [31], and in [23] a range between 0.8-3 seconds is found with a mean of
around 1.7 seconds. For the lifetime of activated PDE (µ−1

li ) in toad we found in the literature the
value 1 second given in [23], and in [31] a lifetime around 2.1 second is estimated. For the lifetime of
light-activated PDE in a salamander rod we found 1.5 seconds [32] and 1.6 seconds [33]. In general,
to obtain a photoresponse with a peak around 2 seconds and a duration around 5 seconds when
the PDE lifetime is around 1-2 seconds, we must have an activated rhodopsin lifetime around 2-3
seconds. For the toad simulations, we therefore use τrh = 2.5sec and µ−1

li = 1.6s−1. With these toad
values we could additionally explore the impact of two very different sets of conditions for excitation
of the transduction cascade: in mouse the R∗ lifetime is smaller than the P ∗

li lifetime, and in toad it is
opposite. As shown in [16], this difference has significant implications for the value of the coefficient
of variation (CV) of the peak number of P ∗

li, because the CV can be much smaller in toad compared
to mouse (see Fig. 2e in [16] for the CV in toad, and Eq. 58 for mouse). If R∗ deactivation is
rate limiting, the variability in PDE activation during the initial phase up to the peak can be very
low, and in this case much of the variability is shifted to the recovery phase. However, when P ∗

li

deactivation is rate limiting the CV of the peak number of P ∗
li is higher and limited by the number

of deactivation steps [16].
The toad simulations in Fig. 1 in the main text with βd = 1s−1 show that P ∗

li,max ∼ 150 is needed
to produce a single-photon response that reduces the current by around 5% [34, 23], which is achieved
with γrt,max ∼ 200s−1. Such a value for the maximal transducin activation rate is still compatible
with experimental data, suggesting that transducin activation proceeds with a mean rate ∼ 120s−1

[35]. In section 6 we show that the reduced value γrt,max ∼ 80s−1 would already be sufficient to
produce a single-photon response that reduces the current by around 5% in case of βd = 0.5s−1.
In mouse, a rate γrt,max = 200s−1 would lead to P̄ ∗

li,max ≈ 5, which is not sufficient to match the
single-photon response amplitude of our experimental recordings (Fig. 4A in the main text) with the
simulations (Fig. 4B in the main text). We estimated that in mouse we need a rate γrt,max = 350s−1

leading to P̄ ∗
li,max ≈ 8.2, a factor 1.75 higher compared to toad. Higher transducin activation rates

in mouse compared to toad could result from the higher mouse body temperature [24, 35, 36, 37, 38].

cGMP hydrolysis by spontaneously and light-activated PDE

A key feature of this work is that we model cGMP hydrolysis by spontaneously and light-activated
PDE with different rate constants denoted by ksp and kli.
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cGMP hydrolysis by light-activated PDE

Light-activated PDE is an extremely efficient enzyme with a maximal turnover rate of the order of
kcat ∼ 2200s−1 [35]). This suggests that cGMP hydrolysis by light-activated PDE is limited by the
diffusional encounter rate kenc. The average encounter rate between an activated PDE molecule on
the disk surface and a single cGMP molecule diffusing in the cytoplasm is defined by the geometry
of the compartment and is given by [39, 1]

kenc =
Dg

R2

(
π
h

a

a0(h/a)√
2

+
4 ln(R/a)− 3

8

)−1

, (6)

where a is the reaction radius (in first approximation this is the sum of the radii of a PDE and a
cGMP molecule) and h the compartment height (with a = 3nm and h = 15nm we have a0(h/a) ≈ 0.7
[39]). For a toad rod, we compute kenc ≈ 2.9s−1, and for a mouse with smaller OS radius we find
kenc ≈ 61s−1. Our calculated rate kenc = 61s−1 for mouse is close to the hydrolysis rate 43s−1

estimated previously [29]. To obtain the total encounter rate between activated PDE and cGMP, we
need to multiply kenc with the number of cGMP molecules in a compartment. For a toad rod with a
dark cGMP concentration around 3µM [32, 40, 41] we find 250 cGMP molecules per compartment,
and the overall encounter rate is 2.9 × 250s−1 = 740s−1, much less than kcat. This shows that in a
toad compartment cGMP hydrolysis by light-activated PDE is indeed diffusion limited (this would
not be true if the overall rate would be larger than kcat). Because kenc ∼ R−2 and Vcomp ∼ R2, the
overall cGMP hydrolysis rate is independent of the compartment radius, and our conclusion therefore
also applies to other rods with the same dark cGMP concentration but a different OS radius. In
particular, this finding shows that cGMP hydrolysis in the smaller-diameter mouse outer segment
compartment is also diffusion limited. In summary, cGMP hydrolysis by light-activated PDE is
diffusion limited and is given by the encounter rate, kli = kenc.

cGMP hydrolysis by spontaneously activated PDE

To estimate the rate of cGMP hydrolysis by a spontaneously activated PDE ksp, we use the dark
cGMP hydrolysis rate βd and P̄ ∗

sp,comp and the relation [39, 1]

βd = kspP̄
∗
sp,comp . (7)

For a toad rod, the experimental value of βd is not well known, and we found several values in
the literature: βd = 0.1s−1 [15], βd = 0.8 − 1.5s−1 [23], βd = 1s−1 [17]. For a salamander rod
a value βd ∼ 1−1 is mostly reported [41, 33, 42, 43, 44]. We used the median βd = 1s−1 for our
toad simulations shown in Fig. 1 in the main text and we investigated the effect of changing the
value of βd in section 6. For toad with βd = 1s−1 and P̄ ∗

sp,comp = 1.25 we find ksp ≈ 0.8s−1. For a
mouse rod with βd = 4.1s−1 [29] and P̄ ∗

sp,comp = 0.9 (estimated in this work) we get ksp = 4.5s−1.
Thus, in both species cGMP hydrolysis by spontaneously activated PDE is not diffusion limited, and a
spontaneously activated PDE enzyme is less efficient compared to a light-activated PDE. The different
values of ksp in toad and mouse might be due to the temperature, due to the different encounter
rates between PDE and cGMP, or due to differences in the PDE enzyme between amphibians and
mammals.

In summary, cGMP hydrolysis by light-activated PDE is diffusion limited and it occurs with a
rate kli = kenc computed from Eq. 6, whereas the hydrolysis rate ksp from a spontaneously activated
PDE is computed from Eq. 7 with values for βd and P̄ ∗

sp,comp.
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Modeling cGMP dynamics

We shall now present our model for the number G(n, t) of cGMP molecules in the nth compartment
which can be obtained from the flux balance

∂G(n, t)

∂t
= JD(n, t)− JH(n, t) + JS(n, t) (8)

where JS(n, t) is the local cGMP synthesis rate, JH(n, t) the hydrolysis rate due to spontaneously
and light-activated PDE, and JD(n, t) is the diffusional flux between neighboring compartments. The

molar cGMP concentration is g(n, t) = G(n,t)
NAVcomp

, where NA is the Avogadro constant and Vcomp ≈
πR2h is the compartment volume where we neglect the small volume of the narrow gaps that connect
adjacent compartments (Fig. S1). The cytosolic volume of the outer segment is Vos = NcompVcomp.

We now explicitly evaluate Eq. 8:

1. cGMP synthesis is catalyzed by the enzyme guanylyl cyclase (GC) uniformly distributed on
the surface of the disks. The synthesis rate depends on guanylyl cyclase activating proteins
(GCAPs), that inhibit GC activity at high calcium concentration [45, 46, 47]. Because of the
narrow compartments and the fast transversal diffusion, we can model cGMP synthesis as a
uniform volume production rate:

JS(n, t) = NAVcompα(n, t) = NAVcomp
2ρgc
h

αmax

(
rα + (1− rα)

Knα
α

Knα
α + caf (n, t)nα

)
, (9)

where ρgc is the surface density of GC, αmax is the maximal synthesis rates attained at low
free calcium concentrations, rα = αmin

αmax
is the ratio between the minimal and maximal synthesis

rate, Kα is the calcium concentration for which the synthesis rate is (αmax + αmin)/2, and nα

is the Hill coefficient. The value of Kα further depends on Mg2+ [46, 48, 49].

2. The rate of cGMP hydrolysis in a compartment is proportional to the number of spontaneously
activated PDE P ∗

sp(n, t) and the number of light-activated PDE P ∗
li(n, t):

JH(n, t) =
(
kspP

∗
sp(n, t) + kliP

∗
li(n, t)

)
G(n, t) = NAVcomp

(
kspP

∗
sp(n, t) + kliP

∗
li(n, t)

)
g(n, t) .(10)

3. The longitudinal cGMP diffusion between compartments generates fluxes with an effective lon-
gitudinal diffusion constant Dg,l < Dg, where Dg is the transversal cGMP diffusion constant [6].
The one-dimensional fluxes between neighboring compartments separated by the longitudinal
distance h+ w (compartment height plus disk width) is approximated as

JD(n, t) ≈ NADg,l
πR2 (g(n+ 1, t) + g(n− 1, t)− 2g(n, t))

h+ w

= NAVcompD̃g,l (g(n+ 1, t) + g(n− 1, t)− 2g(n, t)) , (11)

where the rate of diffusional exchange between neighboring compartments is

D̃g,l =
Dg,l

h(h+ w)
. (12)

Finally, the equation for the molar cGMP concentration g(n, t) is

d

dt
g(n, t) = D̃g,l (g(n+ 1, t) + g(n− 1, t)− 2g(n, t)) + α(n, t)

−
(
kspP

∗
sp(n, t) + kliP

∗
li(n, t)

)
g(n, t) . (13)
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Modeling calcium dynamics

To model Ca2+-dynamics, we need to account for longitudinal diffusion between compartments,
exchange between the OS and the extracellular medium through cGMP gated channels and
Ca2+Na+K+ exchangers, and buffering [50].

Calcium exchange through the membrane via channels and exchangers

Ca2+ ions are exchanged between the OS and the extracellular medium through cGMP gated chan-
nels and Ca2+Na+K+ exchangers with fluxes Jch,ca(n, t) and Jex,ca(n, t), respectively. We use the
convention that a flux of ions into the OS is positive, but the current defined by the inward flux of
positive ions is negative.

The local calcium influx through the channel depends on the probability pch(n, t) that a channel
is open, which is a function of the local cGMP concentration:

pch(n, t) =
g(n, t)nch

g(n, t)nch +Knch
ch

. (14)

The calcium efflux through the exchanger depends on the local free calcium concentration caf (n, t)
and the exchanger saturation level:

pex(n, t) =
caf (n, t)

caf (n, t) +Kex
. (15)

The net local calcium flux Φ(n, t) through the membrane is

Φ(n, t) = Jch,ca(n, t) + Jex,ca(n, t) = Jch,ca,maxpch(n, t) + Jex,ca,maxpex(n, t) . (16)

We now relate Φ(n, t) to experimentally measured currents. The inward current through the channels
carried by Na+ and Ca2+ ions is

Ich(n, t) = Ich,na(n, t) + Ich,ca(n, t) =
Ich,ca(n, t)

fca
= −

2e+Jch,ca(n, t)

fca
, (17)

where we used that the fraction fca ∼ 0.1− 0.15 of the current is carried by Ca2+ ions [32]. We have
neglected the small contributions due to ions other than Na+ and Ca2+ [51]). The extrusion of a
single Ca2+ ion by the exchanger is accompanied by the influx of four Na+ and the efflux of one K+

[52]. Thus, the extrusion of one Ca2+ ion leads to the influx of a single positive charge, producing
an exchanger current

Iex(n, t) = e+Jex,ca(n, t) . (18)

From Eq. 17 and Eq. 18, the total local current is

I(n, t) = Ich(n, t) + Iex(n, t) = e+
(
− 2

fca
Jch,ca(n, t) + Jex,ca(n, t)

)
. (19)

At steady state in darkness, calcium influx and efflux balance one another, and we have
⟨Jex,ca(n, t)⟩d + ⟨Jch,ca(n, t)⟩d = Jex,ca,comp,d + Jch,ca,comp,d = 0. From Eq. 19 we obtain for the
average dark current associated with a single compartment

Icomp,d = ⟨I(n, t)⟩d = −e+
(

2

fca
+ 1

)
Jch,ca,comp,d = e+

(
2

fca
+ 1

)
Jex,ca,comp,d . (20)
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The calcium fluxes as a function of the current are

Jch,ca(n, t) = Jch,ca,comp,d
Jch,ca(n, t)

Jch,ca,comp,d
= −

Icomp,d

e+
fca

fca + 2

pch(n, t)

pch,d

Jex,ca(n, t) = Jex,ca,comp,d
Jex,ca(n, t)

Jex,ca,comp,d
=

Icomp,d

e+
fca

fca + 2

pex(n, t)

pex,d
,

(21)

with (gd and cad are the mean steady state cGMP and calcium concentrations in darkness)

pch,d =
gnch
d

gnch
d +Knch

ch

and pex,d =
cad

cad +Kex
. (22)

By inserting these expressions into Eq. 16 we obtain

Φ(n, t) = NAVcompϕ

(
pch(t)

pch,d
− pex(t)

pex,d

)
, (23)

with the molar flux (Ios,d = NcompIcomp,d, Vos = NcompVcomp and F = NAve
+ = 9.65× 104C/mol is

the Faraday constant)

ϕ =
fca

fca + 2

|Icomp,d|
VcompF

=
fca

fca + 2

|Ios,d|
VosF

. (24)

In a mouse rod, with a dark current Ios,d = 16pA and a cytosolic volume Vos = πR2L
2 ≈ 18µm3 =

18× 10−15l [32], we estimate

ϕ ≈ 500
µM

s
= 0.5

µM

ms
. (25)

From the dark calcium concentration cad ∼ 0.3µM [32], we estimate that the dynamics of calcium
exchange ∼ ϕ

cad
occurs at the time scale of a millisecond.

Finally, by inserting Eq. 21 into Eq. 19 we find that the local current is

I(n, t) = Icomp,d

(
2

fca + 2

pch(n, t)

pch,d
+

fca
fca + 2

pex(n, t)

pex,d

)
. (26)

Calcium buffering

In darkness, a free calcium concentration cad ≈ 0.3µM [32] corresponds on average to ∼ 3.3 free
calcium ions in a compartment. Moreover, because the free calcium concentration decreases as a
function of the light intensity, this is the maximum amount. Because adaptation and many other key
phototransduction reactions are regulated by calcium [53], such a low number would be surprising
unless most of the calcium in the OS is bound and buffered. Calcium buffering is due to several
proteins: recoverin, guanylyl cyclase-activating proteins (GCAPs), and calmodulin. For example,
the concentration of recoverin in a mammalian rod is ∼ 600µM [32], around 2000 times larger than
the free calcium concentration; and the GC membrane concentration ∼ 50µm−2 [32] corresponds to
∼ 150 enzymes in a mouse compartment, around 40 times more than the number of free calcium
ions.

From the law of mass-action, the equation for the buffered calcium concentration cab(n, t) is
[18, 13]

d

dt
cab(n, t) = αbca(n, t)(cab0 − cab(n, t))− βbcab(n, t) , (27)
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with cab0 the total buffer concentration. On the assumption that the buffering reactions proceed
rapidly in comparison to the rate of changes of the free calcium concentration, and that the total
buffer concentration is much larger than the amount of buffered calcium (cab0 ≫ cab), we can use
the steady state solution of Eq. 27 to derive the relation

cab(n, t) =
αbcab0
βb

ca(n, t) = Bcaca(n, t) , (28)

where the buffering capacity is Bca =
αbcab0

βb
= cab(n,t)

caf (n,t)
. In the absence of diffusion, the change in the

total amount of calcium in a compartment is due to the inward and outward fluxes, that is

NAVcomp
d

dt
(cab(n, t) + ca(n, t)) = Φ(n, t) .

From Eq. 28 and Eq. 23 we obtain (1 +Bca ≈ Bca)

d

dt
ca(n, t) =

ϕ

Bca

(
pch(t)

pch,d
− pex(t)

pex,d

)
(29)

Effective longitudinal diffusion of calcium

As for cGMP, we assume that longitudinal calcium diffusion proceeds with an effective diffusion
constant Dca,l. The rate of diffusional calcium exchange between neighboring compartments is then

D̃ca,l =
Dca,l

h(h+ w)
. (30)

By adding diffusional exchange to Eq. 29 we obtain a final equation

d

dt
ca(n, t) = D̃ca,l (ca(n+ 1, t) + ca(n− 1, t)− 2ca(n, t)) +

ϕ

Bca

(
pch(t)

pch,d
− pex(t)

pex,d

)
. (31)

System of equations for cGMP, calcium and the current

With the steady state values given by gd, cad, P̄
∗
sp,comp and Icomp,d, we use the scaled quantities

ĝ(n, t) =
g(n, t)

gd
, ĉa(n, t) =

c(n, t)

cad
, P̂ ∗

sp(n, t) =
P ∗
sp(n, t)

P̄ ∗
sp,comp

,

Î(n, t) =
I(n, t)

Icomp,d
Îos(t) =

Ios(t)

Ios,d

kα =
Kα

cad
, kex =

Kex

cad
, kch =

Kch

gd
.

(32)

The set of equations for the scaled variables are

dĝ(n, t)

dt
= D̃g,l (ĝ(n+ 1, t) + ĝ(n− 1, t)− 2ĝ(n, t)) + βd

rα + (1− rα)
knα
α

knα
α +ĉa(n,t)nα

rα + (1− rα)
knα
α

knα
α +1

−
(
βdP̂

∗
sp(n, t) + kliP

∗
li(n, t)

)
ĝ(n, t)

dĉa(n, t)

dt
= D̃ca,l (ĉa(n+ 1, t) + ĉa(n− 1, t)− 2ĉa(n, t)) + γd

(
pch(n, t)

pch,d
− pex(n, t)

pex,d

)
Î(n, t) =

2

fca + 2

pch(n, t)

pch,d
+

fca
fca + 2

pex(n, t)

pex,d

Îos(t) =
1

Ios,d

Ncomp∑
n=1

I(n, t) =
1

Ncomp

Ncomp∑
n=1

Î(n, t)

(33)
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where

βd = kspP̄
∗
sp,comp

pch(n, t)

pch,d
=

1 + knch
ch

ĝ(n, t)nch + knch
ch

ĝ(n, t)nch

pex(n, t)

pex,d
=

1 + kex
ĉa(n, t) + kex

ĉa(n, t) ,

γd =
1

Bca

ϕ

cad
=

1

Bca

fca
fca + 2

|Ios,d|
cadVosF

.

(34)

We further introduce the normalized currents

Î(n, t) = 1− Î(n, t)

Îos(t) = 1− Îos(t).
(35)

2 Analysis of the power spectrum and variance of the dark current

From a linear analysis of the equations we derived in the previous section, we now derive analytical
expressions for the power spectrum. These expression will later be used to extract parameters from
electrophysiological data.

Expressions for the power spectrum and variance of the dark current

By taking the Fourier transform and expanding expressions in Eq. 33 to first order in the absence of
the photoresponse (P ∗

li(n, t) = 0), we obtain the following system of equations

−iωδĝ(n, ω) = D̃g,l (δĝ(n+ 1, ω) + δĝ(n− 1, ω)− 2δĝ(n, ω))

+βdξαδĉa(n, ω)− βdδĝ(n, ω)− βdδP̂
∗
sp(n, ω)

−iωδĉa(n, ω) = D̃ca,l (δĉa(n+ 1, ω) + δĉa(n− 1, ω)− 2δĉa(n, ω))

+γd (ξchδĝ(n, ω)− ξexδĉa(n, ω))

δÎ(n, ω) =
2

fca + 2
ξchδĝ(n, ω) +

fca
fca + 2

ξexδĉa(n, ω)

δÎos(ω) =
1

Ncomp

(
2

fca + 2
ξchδĝ(ω) +

fca
fca + 2

ξexδĉa(ω)

)

(36)

with

ξα = −nα
1

knα
α + 1

(1− rα)
knα
α

knα
α +1

rα + (1− rα)
knα
α

knα
α +1

, ξch = nch
knch
ch

1 + knch
ch

, ξex =
kex

1 + kex
(37)

and

δĝ(ω) =

Ncomp∑
n=1

δĝ(n, ω) , δĉa(ω) =

Ncomp∑
n=1

δĉa(n, ω) . (38)
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By summing over the compartments, we obtain from the second term in Eq. 36

δĉa(ω) =
γd

γdξex − iω
ξchδĝ(ω) , (39)

and by inserting this into the first term of Eq. 36 we get after summation

δĝ(ω) =
βd

βd − iω − βdξα
γdξch

γdξex−iω

Ncomp∑
n=1

δP̂ ∗
sp(n, ω) . (40)

Finally, with the last expression in 36, the overall current fluctuation depends on the spontaneous
PDE fluctuation by the relation

δÎos(ω) =
1

Ncomp

(
2

fca + 2
+

fca
fca + 2

γdξex
γdξex − iω

)
ξchδĝ(ω)

= χI(ω)
1

Ncomp

Ncomp∑
n=1

δP̂ ∗
sp(n, ω) (41)

with the transfer function

χI(ω) =

(
1 +

fca
fca + 2

iω

γdξex − iω

)
ξchβd

βd

(
1− γ2

dξαξchξex
γ2
dξ

2
ex+ω2

)
− iω

(
1 + βdγdξαξch

γ2
dξ

2
ex+ω2

)
≈ − ξchβd

βd

(
1− γ2

dξαξchξex
γ2
dξ

2
ex+ω2

)
− iω

(
1 + βdγdξαξch

γ2
dξ

2
ex+ω2

) (42)

Because the activation of PDE in a compartment occurs independently of other compartments, the
spectrum of the overall scaled current Îos(t) is (P

∗
sp,os = NcompP̄

∗
sp,comp)

SÎos
(ω) = |χI(ω)|2

1

Ncomp
ŜP ∗

sp
=

1

Ncomp

|χI(ω)|2

P ∗
sp,comp

4µsp

µ2
sp + ω2

=
|χI(ω)|2

P ∗
sp,os

4µsp

µ2
sp + ω2

. (43)

The variance of the scaled current is

Σ2
Îos

=
1

2π

∫ ∞

0
SÎos

(ω)dω . (44)

The power spectrum scaled by the current variance

ŜÎos
(ω) =

SÎos
(ω)

Σ2
Îos

(45)

is independent of the number of spontaneously activated PDE.

Analytic expressions for the power spectrum and variance of the dark current in
a GCAPs−/− rod

In a GCAPs−/− rod, cGMP synthesis is not calcium dependent and thus ξα = 0 (Eq. 37). In this
case the transfer function χI(ω) in Eq. 42 reduces to

χI(ω) = − ξchβd
βd − iω

(46)

11



and the spectrum and variance of the overall scaled current are

SÎos,gcap
(ω) =

4ξ2ch
P̄ ∗
sp,osµsp

β2
dµ

2
sp

(β2
d + ω2)(µ2

sp + ω2)
(47)

Σ2
Îos,gcap

=
ξ2ch

P̄ ∗
sp,os

1

1 +
µsp

βd

=
ξ2ch

NcompP̄ ∗
sp,comp

1

1 +
µsp

βd

. (48)

From the mouse parameter values in Table S4, we compute ΣÎos,gcap
≈ 0.055, which agrees well with

the value 0.056 extracted from the GCAPs−/− simulations shown in Fig. 2 in the main text.
The spectrum scaled by the variance depends only on βd and µsp,

ŜÎos
(ω) = 4

(βd + µsp)βdµsp

(β2
d + ω2)(µ2

sp + ω2)
(49)

Analytic expressions for the power spectrum and variance of the dark current
with fast calcium dynamics

In general, it is difficult to derive explicit expressions for the power spectrum and the current variance
from Eq. 43 and Eq. 44 with calcium feedback. However, as will be shown now, provided the rate
of calcium change is sufficiently rapid, we can obtain analytical formulas for the power spectrum
and the variance of the dark current which can be compared to the case of GCAPs−/− with no
calcium feedback. Negative calcium feedback on cGMP synthesis reduces the current variance and
is most efficient when the rate of change of calcium is fast compared to PDE fluctuations. Such
considerations make it possible to estimate the maximal effect of calcium feedback on the variance
of the current.

In a mouse rod without buffering, the change in calcium in Eq. 33 proceeds with a fast rate of
γd ≈ 1670s−1 (Eq. 34 with Bca = 1 and other parameter values from Table S4). Buffering (Bca > 1)
slows down the dynamics and reduces the feedback. For ω ≪ γdξex Eq. 42 simplifies to

χI(ω) ≈ −1

ζ

ξchβ̃d

β̃d − iω
(50)

with

ζ = 1− ξαξch
ξex

, β̃d = βdζ
1

1− βd(ζ−1)
γdξex

. (51)

The spectrum and variance of the dark current are

SÎos,fastCa(ω) =
1

ζ2
4ξ2ch

P̄ ∗
sp,osµsp

β̃2
dµ

2
sp

(β̃2
d + ω2)(µ2

sp + ω2)
(52)

Σ2
Îos,fastCa

=
1

ζ2
ξ2ch

P̄ ∗
sp,os

1

1 +
µsp

β̃d

. (53)

The spectrum scaled by the variance depends on µsp and β̃d and

ŜÎos,fastCa(ω) = 4

(
β̃d + µsp

)
β̃dµsp

(β̃2
d + ω2)(µ2

sp + ω2)
. (54)
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Compared to GCAPs−/− rods, calcium feedback reduces the standard deviation of the dark
current by a factor

ΣÎos,gcap

ΣÎosfastCa

= ζ

√√√√1 +
µsp

β̃d

1 +
µsp

βd

. (55)

With the parameters given in Table S4 (with Bca = 80 and rα = 0.066) we compute ζ = 4.7,
β̃d ≈ 86s−1 and

ΣÎos,gcap

ΣÎosfastCa

≈ 2.5 . (56)

From the experimental data and the dark current simulations shown in Fig. 2 and 3 in the main
text, we find a ratio ∼ 0.056/0.023 ≈ 2.4, in good agreement with the above theoretical estimation.
Calcium feedback is maximal when there is no buffering (Bca = 1) and when cGMP synthesis is
affected also at a high free calcium concentration in darkness (rα = 0, see Eq. 33). With Bca = 1
and rα = 0 we get ζ ≈ 7.4, β̃d ≈ 31s−1 and

ΣÎos,gcap

ΣÎosfastCa

≈ 4.4 . (57)

In summary, by comparing Eq. 48 with Eq. 53, we conclude that calcium feedback reduces the
current variance due to a global factor ζ and due to increasing the value of βd to an effective value
β̃d. This increase in βd is also responsible for the faster dynamics of the single-photon response in
wild type compared to GCAPs−/− mice.

3 Simulation Protocol

We now briefly describe our simulation method. For each compartment, we use the Gillespie algo-
rithm [14] to generate independent spontaneously activated PDE P ∗

sp(n, t) from Poisson activation
and deactivation rates νsp and µsp. To model the single-photon response, we simulated the number
of light-activated PDE P ∗

li(t) in the compartment where the photon is absorbed. For simplicity, we
assume that the photon is absorbed at the center of the outer segment. However, a different loca-
tion would not have a significant effect on the results. Finally, with P ∗

sp(n, t) and P ∗
li(t) as input

functions, we integrated the system of equations for calcium and cGMP (Eq. 33) and obtained the
local currents Î(n, t) and the overall current Îos(t). Finally, we computed the normalized currents
Î(n, t) = 1− Î(n, t) and Îos(t) = 1− Îos(t).

4 Data analysis and parameter extraction

We analyzed experimental recordings of dark currents in wild type (WT) and GCAPs−/− knockout
mice and used our expressions for the power spectrum and variance to extract unknown parameters.

Extraction of µsp and P ∗
sp,comp from current recordings in GCAPs−/−

knockout mice

In GCAPs−/− knockout mice, the power spectrum of the dark current scaled by the variance reduces
to a double Lorentzian given by Eq. 49 and depends only on the parameters µsp and βd. We first
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tried to use Eq. 49 as a function of ω to extract µsp and βd by fitting current recordings obtained
from GCAPs−/− knockout mice. Unfortunately, it is not possible to fit both parameters µsp and βd
reliably at the same time, because distinct pairs (µsp, βd) result in very similar curves (see Fig S3c).
However, because β = 4.1s−1 [29] has been recently estimated for a mouse rod, we used this value
in Eq. 49 and fitted only the unknown parameter µsp, which gave reliable results.

To compute µsp we proceeded as follows. We acquired current recordings from 15 rods in darkness
and in bright light to estimate the dark and instrumental noise. We filtered currents at 20Hz, and
because instrumental and dark noise are independent, we computed for each rod the dark noise power
spectrum by subtracting the power spectrum of the instrumental noise from the power spectrum of
the recordings in darkness [15]. We then scaled for each rod the dark noise power spectrum with the
corresponding dark-light current variance. Finally we used Eq. 49 within the frequency range 0.1-5Hz
to fit for each rod an individual value µsp. From recordings of 15 rods, we obtained µsp = 12.0±3.7s−1.
The large variability is the result of noisiness in the power spectra (Fig S3a), in part the result of
the relatively short duration (between 5 and 15 seconds) of patch-clamp current recordings from
individual rods.

To obtain a longer current trace, we first normalized the currents for each rod and then con-
catenated these individual normalized currents. For each rod, we scaled the dark and light currents
with the standard deviation dark-light and then concatenated these normalized dark and light cur-
rents. From this much longer current trace, we computed the dark-light power spectrum (Fig S3b),
and by fitting this spectrum we obtained µsp = 12.8s−1, which is close to the mean value obtained
from individual rod spectra. For the simulations in the main text, we used the interpolated value
µsp = 12.4s−1. The analytic curve in Fig S3a,b computed with µsp = 12.4s−1 and β = 4.1s−1 is
added to show the agreement with the data.

Next, from the values of µsp and βd we estimated the mean number of spontaneously activated
PDE per compartment P̄ ∗

sp,comp from the expression for the scaled current variance given in Eq. 48
(we use Ncomp = 810). We computed for each rod the dark-light variance of the current recordings
scaled by the dark current, and then used µsp estimated for that rod to compute P̄ ∗

sp,comp. With this
procedure, we obtained P̄ ∗

sp,comp = 0.9 ± 0.42. From the concatenated scaled current we computed
P̄ ∗
sp,comp = 0.94. For the simulations in the main text we used P̄ ∗

sp,comp = 0.9.

Extraction of rα and Bca from current recordings in WT mice

We utilized β = 4.1s−1 and µsp = 12.4s−1 to compute the power spectrum for WT rods from Eq. 43
and compared it with experimental observations. For WT rods, the dark noise additionally depends
on calcium feedback. The standard deviation of the WT dark noise amplitude is reduced by a factor
around 2-2.5 (see Fig. 2 and 3 in the main text) compared to the GCAPs−/− value, which is less
than a factor of 4.4 predicted for maximal calcium feedback. As discussed previously, the the amount
of calcium feedback depends significantly on the values for rα and Bca, which are both not precisely
known. In most models rα = 0 is assumed [54, 18, 32], in [25] a value of rα = 0.072 is used, which is
is also in the range of what is suggested by experimental recordings [46, 48]. In [32, 54] a buffering
capacity Bca = 50 is assumed, and Bca = 20 is used in [25]. In [18] it was assumed that ∼ 300µM
calcium was buffered in the dark, corresponding to Bca ∼ 100.

To clarify the values of rα and Bca, we decided to use the dark-light power spectrum derived from
recordings in WT mice and fit rα and γd from Eq. 43. From the fitted value for γd, we computed Bca

from Eq. 34. In WT mice the separation between physiological and instrumental noise is much less
compared to GCAPs−/− knockout mice, which resulted in much noisier individual spectra (Fig. S4b).
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(c)

Fig. S3: Dark-light power spectrum scaled by the variance for GCAP−/− mouse rod. (a)
Superposition of 15 dark-light power spectra scaled by the variance dark-light obtained from current
recordings from 15 rods from GCAPs−/− knockout mice. The dashed line is computed from Eq. 49
with β = 4.1s−1 and µsp = 12.4s−1. (b) Dark-light power spectrum obtained from the normalized
currents that were concatenated. The dashed line is the same as in (a). (c) The curves are computed
from Eq. 49 with β and µsp as indicated in the legend.
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Fig. S4: Dark-light power spectrum for WT mouse rod. (a) The experimental dark-light power
spectrum is computed from the scaled currents of 11 rods that were subsequently concatenated. The
best fit from Eq. 43 is obtained for rα = 0.06 and γd = 23.4 (with β = 4.1s−1 and µsp = 12.4s−1). The
additional curves show the analytic spectrum for various rα and γd. (b) The experimental dark-light
power spectra for each rod. The analytic curve is the best fit from (a).

Unfortunately, we could not reliably fit rα and γd separately for each rod from these individual power
spectra. Nevertheless, to obtain an estimation for rα and γd, we concatenated the scaled currents
from the 11 rods and computed the less noisy dark-light spectrum shown in Fig. S4. By fitting this
spectrum with Eq. 43, we obtained rα = 0.066 and γd = 23.4s−1. In Fig. S4a we additionally show
how the analytic spectrum changes by varying rα and γd, and in Fig. S4b we compare the analytic
spectrum with the individual spectra. From the measured mean dark current of 17.9pA, we computed
Bca = 80 from Eq. 34.

5 Single-photon response simulations and calcium feedback for
mouse rod

We combined our previous analysis and simulated the normalized dark current and single-photon
response (Fig. S5a). The variability of the response (Fig. S5e) arises from fluctuations in the number
of spontaneous and light-activated PDE; however, experimentally, it is very difficult to separate the
impact of these two noise sources. We therefore used our approach to dissect their contributions
by performing simulations with noise due only to spontaneous PDE activation or due only to light-
activated PDE.

When noise is generated exclusively by spontaneous PDE activation (Fig. S5b), we expect that,
to a first approximation, the variance is time independent and equals the variance of the dark noise
(we found Σdark ≈ 0.023, see Fig. 3 in the main text). Fig. S5e shows that this general view is
only partly correct, and we surprisingly found a decrease in the standard deviation around time to
peak to a value of Σdark ≈ 0.018. We checked that this result is not simply a statistical fluctuation
by performing additional simulations that gave similar results. The reduced variance around time
to peak is probably related to the decrease in the cGMP concentration when the number of light-
activated PDE increases. However, a more precise analysis has to be performed in future work.

Next we performed simulations without dark noise (Fig. S5c) where the variability (Fig. S5f) is
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only due to fluctuations in the number of light-activated PDE. The standard deviation of the peak
current extracted from the simulations is Σpeak ≈ 0.028. We noted that the noise at peak time
in Fig. S5a is not simply the sum of the noise from spontaneous and light-activated PDE because√

(0.0182+0.0282) ≈ 0.033 is around 10% larger than the value of 0.030 in Fig. S5d. Similar to what
we found about the reduction in the variance at time to peak in Fig. S5e, this result confirms the
coupling of the effects of spontaneous and light-activated PDE with the cGMP concentration, which
therefore cannot be independent. With 0.072 for the mean peak amplitude, we compute that the
coefficient of variation (CV, ratio of mean to standard deviation) of the peak current amplitude in
Fig. S5c is CVpeak = 0.028/0.072 ≈ 0.39. We compared this value to the CV of the peak number of
light-activated PDE (CVP ∗

li,max
). As shown in [16], CVP ∗

li,max
strongly depends on whether R∗ or PDE

deactivation limits the photoresponse recovery, and the coefficient of variation of R∗ lifetime (CVτrh)
is in general not a good estimate for CVP ∗

li,max
. In a toad rod, where rhodopsin deactivation is rate

limiting, we find CVP ∗
li,max

≈ 0.19 (see Fig 1A in the main text), much lower than the minimum value

1/
√

Np + 1 ≈ 0.37 for CVτrh [16]. In mouse, where rhodopsin deactivation occurs much faster than
the deactivation of a light-activated PDE, we can use Eq.43 from [16] with N = Np + 1 = 7 and
P̄ ∗
li,max = 8.2 to approximate

CVP ∗
li,max

≈

√
1 + N

P̄ ∗
li,max

N
≈ 0.51 , (58)

in agreement with CVP ∗
li,max

≈ 0.49 extracted from the simulations shown in Fig. 4C in the main
text. Furthermore, when rhodopsin deactivation is faster than PDE deactivation, it was shown in
[16] that the PDE variance peaks around the same time as the PDE mean, and Fig. S5f shows that
this is also true for the current. Moreover, the time course of the current variance closely follows that
of the mean. In contrast, when PDE deactivation is faster than rhodopsin deactivation, the variance
peaks later than the mean [16, 22].

We were then interested to know whether the reduction from CVP ∗
li,max

≈ 0.51 to CVpeak ≈ 0.39 is
due to negative calcium feedback affecting cGMP synthesis. To resolve this question, we performed
simulations without dark noise for a GCAPs−/− rod without calcium feedback (Fig. S6a) and for a
situation with increased calcium feedback (Bca = 1 and rα = 0) (Fig. S6b). Calcium feedback indeed
reduces the standard deviation of the peak current from a value Σpeak ≈ 0.053 in a GCAPs−/− rod
by a factor around 3.3 to a value Σpeak ≈ 0.016 with increased feedback (Fig. S6c,d), similar to the
factor 4.4 computed for the reduction of the standard deviation of the dark noise in Eq. 57. At the
same time, however,the peak current amplitude is also reduced by a factor around 3.6 from 0.14 to
0.039, such that the CV of the peak current remains almost unchanged, CVpeak = 0.053/0.14 ≈ 0.38
and CVpeak = 0.016/0.039 ≈ 0.41. This shows that the lower CV of the peak current amplitude
compared to light-activated PDE is not due to calcium feedback but due to intrinsic properties of
Eqs. 33. To conclude, because calcium feedback reduces both the fluctuations and the photoresponse
peak amplitude by a similar factor, it does not increase the fidelity of the single-photon response
amplitude, in agreement with [22, 24] but different from the result published in [54].

Finally, in Fig. S7 and in Fig. 5 in the main text we present simulations that reveal how important
adaptations between the biochemistry and the geometry are in order to preserve the fidelity of a
single-photon response. In Fig. 5A in the main text we show that the SPR is lost in the background
noise if the PDE density and the ratio νsp/µsp are the same in mouse and toad rods, leading to
P̄ ∗
sp,comp = 0.08 in a mouse rod. If a spontaneous activated PDE has the hydrolytic activity of a

light-activated PDE, ksp = kli = 61s−1, a value P̄ ∗
sp,comp = 0.9 results in βd ≈ 55s−1, in which case 8

light-activated PDE are not enough to produce a noticeable single-photon response (Fig. S7).
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Fig. S5: Single-photon response simulations for WT mouse. (a) Superposition of the nor-
malized currents Îos(t) = 1 − Îos(t) from 50 SPR simulations (black) with mean (red) and with a
noiseless simulation of the mean (green). The noiseless simulation (shown in all panels) is obtained
from the mean number of spontaneously activated PDE per compartment and from the analytic
curve for the mean number of light-activated PDE computed with equations from [16] (see Fig. 1A
and Fig. 4C in the main text). Time to peak and peak amplitude of the noiseless simulation are
110ms and 0.072. (b) Superposition of 50 simulations with noise from spontaneous PDE only. (c)
Superposition of 50 simulations with noise from light-activated PDE only. (d) Time dependent stan-
dard deviation computed from the simulations in (a). We further show the rescaled variance and the
rescaled noiseless simulation to compare the time courses (we rescaled such that the maximal values
agree). The standard deviation of the peak current is Σpeak ≈ 0.030. (e) Time dependent standard
deviation computed from the simulations in (b). The standard deviation near the peak of the current
is reduced to Σpeak ≈ 0.018. (f) Time dependent standard deviation computed from the simulations
in (c). The standard deviation at the peak is Σpeak ≈ 0.028. Parameters are from Tables S3,S4
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Fig. S6: Single-photon response simulations for mouse rod without dark noise. (a) Su-
perposition of 50 simulations for GCAPs−/− rod with no calcium feedback. Time to peak and peak
amplitude of the noiseless simulation are 270ms and 0.14. (b) Superposition of 50 simulations for a
rod with strong calcium feedback (Bca = 1 and rα = 0). Time to peak and peak amplitude of the
noiseless simulation are 100ms and 0.039. (c-d) Time dependent standard deviations computed from
the simulations in (a-b). The rescaled time courses of the variance and the noiseless mean simulation
from (a-b) are shown for comparison. The peak standard deviations in (c-d) are Σpeak ≈ 0.053 and
Σpeak ≈ 0.016 respectively.
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Fig. S7: Single-photon response simulations for mouse rod with ksp = kli. Superposition of
10 simulations with a single-photon absorption at time t=0s when spontaneous and light-activated
PDEs have the same hydrolytic activity, ksp = kli = 61s−1 leading to βd ≈ 55s−1 with P̄ ∗

sp,comp = 0.9.
All other parameters are as in Tables S3,S4.

6 Effect of calcium feedback and the value of βd on the single-
photon response in a toad rod

Because there is uncertainty in the literature about the value of βd for a toad rod, we performed
single-photon response simulations with βd = 0.5s−1 (Fig. S8) to estimate the effect of a reduced
value of βd. Surprisingly, with βd = 0.5s−1 only around 60 light-activated PDEs are needed (Fig. S8a)
to reduce the current by around 5% (Fig. S8b). The simulations in Fig. S8b with βd = 0.5s−1 and
60 light-activated PDEs are almost indistinguishable from the simulations shown in Fig. 1B in the
main text generated with βd = 1s−1 and 150 light-activated PDEs. The reduction in βd does not
slow down the dynamics because rhodopsin and PDE deactivation proceed at a similar time scale.

Next we analyzed the impact of calcium buffering. In a toad rod, a buffering capacity Bca = 80 as
estimated for mouse rod would reduce the rate γd (Eq. 34) from 92s−1 to around 1s−1, which would
inappropriately alter the dynamics of the photonresponse (Fig. S9a). For salamander, a much lower
a calcium buffering capacity around 20 is found [33], and Bca = 20 is used for the modeling in [20].
However, if the assumption o fast calcium binding dynamics would not not justified in amphibians,
the simplified model with an effective parameter Bca would not be appropriate, and the calcium
binding reactions would have to be modeled explicitly [17, 18].

We do not have experimental recordings from toad rods which we could use to (1) validate whether
a model with an effective parameter Bca is justified, and (2), to estimate the values of Bca and rα.
We therefore used the generic parameters Bca = 1 and rα = 0 for the simulations shown in Fig1B
in the main text, and obtained good agreement with experimental recordings [23]. Nevertheless, we
present here additional simulations where we modify the calcium dynamics in Fig. S9 to establish
whether the conclusions in the main text are affected by changing the values for Bca and rα.

Increasing the buffering capacity up to a value of Bca = 20 does not much alter the photon
response (Fig. S9a,b). In contrast, with a value of rα = 0.066 both amplitude of the photon response
and the dark noise level increase by a factor of about 1.5 (Fig. S9c). Thus, with rα = 0.066, around
100 light-activated PDE would induce the same amplitude as 150 light-activated PDE in the case
with rα = 0. Other quantities like standard deviation or the CV are little affected.
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Fig. S8: Simulation of dark noise and single-photon response for a toad rod with βd =
0.5s−1 and γrt,max = 80s−1. (A) Superposition of 20 simulations (black) of the time course for the
number of light-activated PDE after a photon absorption. The mean is red and the analytic curve
for the mean is green. Time to peak and peak value of the analytic curve are 1.85 sec and 60. The
coefficient of variation (CV) extracted from the simulations is around 0.23.(B) Superposition of 20
single-photon response simulations (black, normalized current) obtained with the light-activated PDE
shown in (A). The mean is red, and the noiseless simulation (green) is obtained without spontaneous
PDE noise and with the analytic curve for light-activated PDE from (A). The noiseless simulation
from Fig. 1B in the main text (blue) is also superimposed for comparison. Time to peak and peak
amplitude of the noiseless simulation are around 2 sec and 0.044. The standard deviation of the dark
noise and the CV of the peak amplitude extracted from the simulations are around 0.007 and 0.22.
Except for βd and γrt,max, all parameters are given in Table S3 and S4.

7 Impact of longitudinal cGMP diffusion on the single-photon re-
sponse in a mouse rod

Because there is uncertainty about the effect and value of the cGMP longitudinal diffusion constant
in rods (see for example [29, 44], we decided to run simulations to test how the background noise and
the single-photon response is affected by a change in this constant. In Fig. S10 we show simulations
of a single-photon absorption in a mouse rod with various longitudinal cGMP diffusion constants

Dg,l = 0, 2, 10, 40µm2

s . The upper panels show the normalized current Î(n, t) = 1 − Î(n, t) in the
compartment where the photon is absorbed, and the lower panels show the normalized overall current
Îos(t) = 1 − Îos(t). We did not investigate the effect of changing the calcium diffusion coefficient,
because the longitudinal cGMP and calcium spread are strongly coupled due to calcium exchange
through exchanger and cGMP gated channels.

Consistent with Eq. 42, the simulations confirm that the variance of Îos(t) is almost independent
of cGMP diffusion (Fig. S10e-g). In contrast, the variance of the local currents Î(n, t) strongly de-
pends on the diffusional coupling between the compartments (Fig. S10a-d). Without longitudinal
diffusion the compartments are independent and the variance Î(n, t) is around Ncomp = 810 times
larger compared to Îos(t) (Fig. S10a,e). In this case, the spectrum in Eq. 43 can be considered as
the average spectrum obtained from Ncomp = 810 independent currents Î(n, t). Without longitu-
dinal cGMP diffusion, spontaneous PDE noise induces huge current fluctuations in a compartment
(Fig. S10a). We further notice that such fluctuations that decrease the number of spontaneously ac-
tivated PDE and thereby increase the local cGMP concentration (denoted by positive fluctuations)
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Fig. S9: Single-photon response simulations for a toad rod with modified calcium feed-
back. Parameters are as in Fig. 1 in the main text (βd = 1s−1 and γrt,max = 200s−1), except for
Bca and rα that have values as specified in the figure.(a) Superposition of noiseless simulations to
show the effect of changing calcium feedback. The analytic curve shown in Fig. 1A in the main
text is used for the number of light-activated PDE. (B) Superposition of 10 single-photon response
simulations (black) with intrinsic noise for Bca = 10 and rα = 0. There is no significant difference to
the simulations with Bca = 0 shown in Fig. 1 in the main text. (c) Superposition of 10 single-photon
response simulations with Bca = 10 and rα = 0.066. Time to peak is similar to (a), but the peak
amplitude is increased by a factor 1.5 from 0.044 to 0.63. The standard deviation of the dark noise
is increased by a a similar factor from around 0.08 to 0.12. The CV of the peak current in (a) and
(b) is in both cases around 0.20. Except for the specified parameters, all parameters are as given in
Table S3 and S4.
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Fig. S10: Effect of longitudinal cGMP diffusion on the dark noise and single-photon
response in a mouse rod. The longitudinal cGMP diffusion constant is as depicted in the figure.
Each upper panel shows a superposition of 10 simulations of the normalized current Î(n, t) in the
compartment where the photon is absorbed at time t = 2s. The lower panels show the corresponding
normalized outer segment current Îos(t) (red is the average).

have a much stronger impact on the current compared to such fluctuations that increase the number
of spontaneously activated PDE and that decrease the local cGMP concentration (denoted by nega-
tive fluctuation). This asymmetry is due to the fact that only a small fraction of channels are open
in darkness: a positive fluctuation additionally opens a large amount of channels leading to a large
current influx, whereas a negative fluctuation can at most close all the channels and suppress the
current. The large impact of such positive fluctuations also shifts the mean value of Îos(t) from zero

to -0.25 (Fig. S10a). Surprisingly, already a small longitudinal cGMP diffusion Dg,l = 2µm2

s strongly
reduces the amplitude of the fluctuations (Fig. S10b,f). By further increasing longitudinal diffusion,
the fluctuations of Î(n, t) and Îos(t) become more and more similar (Fig. S10c,d,g,h). Indeed, for
very fast longitudinal diffusion Eq. 43 can be considered as the power spectrum with only a single
compartment where Î(n, t) and Îos(t) have the same statistics.

Fig. S10 further illustrates how longitudinal diffusion affects the amplitude of a single-photon
response locally and globally. Without diffusion, a single-photon absorption closes all the channels in
the compartment where the photon is absorbed, Î(n, t) = 0 and Î(n, t) = 1− Î(n, t) = 1 (Fig. S10a).
Although the local response is maximal in this case, the overall response is negligible (Fig. S10e).
Longitudinal diffusion decreases the amplitude in the compartment where the photon is absorbed,
but the spread of the signal increases the overall response. Surprisingly, the simulations reveal
that the response amplitude and dark noise level change only little by increasing the diffusion from

Dg,l = 10µm2

s to Dg,l = 40µm2

s (Fig. S10c,d,g,h)).
We conclude that the exact value of the longitudinal cGMP diffusion is not a key parameter for

the fidelity of the rod photon response, as long as diffusion does not become too restricted.
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Table S1: Parameters for PDE activation

Parameter Definition

P̄ ∗
sp,comp Mean number of spontaneous actived PDE molecules per compartment

P̄ ∗
li,max Mean of the peak number of light-activated PDE

ρpde PDE surface density

νsp Spontaneous PDE activation rate

µsp Spontaneous PDE deactivation rate

µli Deactivation rate for light-activated PDE

τrh Activated Rhodopsin lifetime

Np Number of Rhodopsin phosphorylation steps

γrt,max Maximal transducin activation rate

ω Decay rate of transducin activation with the number of phosphorylation steps

γtp Rate by which activated transducin activates PDE
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Table S2: Parameters for the photocurrent simulation

Parameter Definition

Ncomp Number of compartments

R OS radius

h Compartment height

w Disk width

a Reaction radius for cGMP hydrolysis by an activated PDE molecule

kenc Encounter rate between a cGMP and an activated PDE molecule

kli Rate constant for cGMP hydrolysis by a light-activated PDE

ksp Rate constant for cGMP hydrolysis by a spontaneous activated PDE
Determined from the equation βd = kspP̄

∗
sp,comp

βd cGMP hydrolysis rate in the dark

gd cGMP concentration in the dark

cd Free calcium concentration in the dark

Ios,d OS current in the dark

fca Fraction of current carried by calcium

Bca Buffering capacity for calcium

Kα Michaelis constant for cGMP synthesis

Kch Michaelis constant for channel opening

Kex Michaelis constant for calcium exchanger

nα Hill coefficient for cGMP synthesis

rα Ratio of minimal to maximal cGMP synthesis rate

nch Hill coefficient for channel opening

Dg Radial cGMP diffusion constant

Dca Radial calcium diffusion constant

Dg,l Effective longitudinal cGMP diffusion constant

Dca,l Effective longitudinal calcium diffusion constant

γd Rate for calcium exchange

Table S3: Parameters used to simulate PDE activation

Parameter Toad Mouse

P̄ ∗
sp,comp 1.25 0.9

P̄ ∗
li,max 150 8.2

µsp(s
−1) 1.8 12.4

µli (s
−1) 0.625 5

τrh (s) 3 0.04

Np 6 6

γrt,max (s−1) 200 350

ω 0.1 0.1

γtp (s−1) 300 300
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Table S4: Parameter values used to simulate the photocurrent

Parameter Toad Mouse

Ncomp 2000 810

R (µm) 3 0.7

h (nm) 15 15

w (nm) 15 15

a (nm) 3 3

kenc(s
−1) 2.9 61

kli(s
−1) 2.9 61

βd (s−1) 1 4.1

gd (µM) 3 3

cd (µM) 0.3 0.3

Ios,d (pA) 40 17.9

fca 0.12 0.12

γd (s−1) 92 23.4

Bca 1 80

Kα (µM) 0.15 0.1

Kch (µM) 20 20

Kex (µM) 1.6 1.6

nα 2 2

rα 0 0.066

nch 3 3

Dg (µm2s−1) 150 150

Dca (µm2s−1) 15 15

Dg,l (µm
2s−1) 20 40

Dca,l (µm
2s−1) 2 2
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