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Clathrin-Coated Pit Lifetime Analysis
Clathrin-coated pits (CCPs) were analyzed in terms of their lifetimes
following the work of Loerke et al. (1). The lifetime of a CCP is
determined from the appearance and disappearance of a clathrin
fluorescence spot in the total internal reflection fluorescence (TIRF)
fieldof view. Some trajectoriesmayboth appear anddisappearwithin
the movie recording total time, but others may be truncated by the
movie start or finish. For instance, if a CCP initiates before the start
of the movie, an unknown portion of the beginning of the cycle is
missing. In the case of a trajectory that is recorded in its full length, its
lifetime equals the length of the trajectory. However, when the tra-
jectory is truncated, the lifetime is unknown. Thus, the estimation
of relative frequency of lifetimes is biased toward smaller times. This
bias depends in turn on themovie length.Assuming a particle appears
withequalprobabilityatanypoint intime,foragivenmovieofduration
~T, the probability of a pit with lifetime~l to be truncated by the end of
themovie recording is cð~l; ~TÞ= ð1+~lÞ=~T for~l< ~T . The units of~l and
~T are in frames, such that l=~lΔt results in units of seconds,whereΔt
is the frame time. Note that this is the only section of the manu-
script where times are expressed in frames instead of seconds. The
probability mass function of observing the entire trajectory from
start to finish is eð~l; ~TÞ= 1− cð~l; ~TÞ. Therefore, the number of
trajectories with length~l that are experimentally observed in their
entirety is Eð~lÞ=Rð~lÞeð~lÞ, where Rð~lÞ is the true number of tra-
jectories with length ~l. To account for trajectories that are trun-
cated, the lifetime distribution is corrected, Rð~lÞ= ½~T=ð~T −~lÞ�Eð~lÞ.
The cumulative distribution function (CDF) of the CCP lifetimes
is then built from Rð~lÞ and used for model fitting.

Model Selection for Lifetime Distribution
Bayesian information criterion (BIC) model selection was used to
identify the number of subpopulations and their parameters for the
CCP lifetime distributions. BIC is a popular model selection cri-
terion, which presents a measure of fit between data and models
and penalizes overparameterization (2). To avoid bias due to bin
size, all models were fit to the CDF of the given data [i.e., the CDF
of Rð~lÞ�. The BIC was minimized to select the best model:

BIC= n lnðRSS=nÞ+ p lnðnÞ; [S1]

where n is the sample size, RSS is the residual sum of squares, and
p is the number of free parameters (2). The model that minimizes
the BIC optimizes both residuals and the number of parameters.
Exponential and Rayleigh distributions with one, two, three,

and four populations were fit along with the combination of
Rayleigh and exponential distributions. Equations for a single
exponential, single Rayleigh, two exponential, and combination of
one Rayleigh and two exponential distributions are provided
below. Other combinations were built in a similar manner.

PDFeðlÞ= 1
τ
expð−l=τÞ; [S2]
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In the equations above, A is the weight of each distribution and τi
is the corresponding characteristic time. For fitting purposes, the
CDFs of these distributions were used. The results of the BIC
model comparison are shown in Table S1.
The model that minimizes the BIC is the combination of

a single Rayleigh and two exponential distributions (Eq. S5).
The model consisting of two Rayleigh and one exponential
distribution also yields a BIC that is close to the minimum.
These two models include three subpopulations of CCP life-
times and they agree that the shortest lifetime population is
best modeled by a Rayleigh distribution, whereas the longest
lifetime population is best modeled by an exponential distri-
bution. Their discrepancy lies in the middle lifetime population.
Fig. S1 displays a direct comparison between the two models. For
the purpose of this manuscript, the difference between these two
models is negligible. We chose to use the model with a single
Rayleigh and two exponential functions, Eq. S5, due to its ap-
pearance to fit the probability density function (PDF) of CCP
lifetimes better.
We find that the characteristic time constants are τ1 = 2:28±

0:02 s, τ2 = 8:6± 0:2 s, and τ3 = 45± 2 s (estimates ± SEs). The
weight of the shortest (Rayleigh) population is A1 = 0.439 ± 0.007,
the second (exponential) population A2 = 0.509 ± 0.006, and
the third (exponential) population A3 = 1−A1 −A2 = 0.052 ±
0.004.
Even though a model that includes the combination of

Rayleigh and exponential distributions accurately describes
CCP lifetime data, there may be other empirical distributions
that explain the data as well. In fact, the BIC model selection is
only as good as its definition set. We have examined combi-
nations of other distributions without finding any other suc-
cessful model.

Derivation of Trapping Model
The parameters used in this derivation are as follows:

α Characteristic exponent, α=KS0τc
B Time shift in the growth of a CCP as

exemplified in Fig. 1D
k1 Dissociation constant between a cargo molecule

and an adaptor protein
Kf Fast dissociation rate from a circular domain
Ks Slow dissociation rate from a circular domain
koff Instantaneous dissociation rate between a cargo

molecule and a CCP
l CCP lifetime
N No. of adaptors within a CCP
Ps Survival probability
R Radius of a CCP
T Time since initiation of the CCP
τ Binding time
t0 Time at which a cargo molecule is captured
τc Average time interval between the arrival of two adaptor

proteins to a CCP
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Here, we derive a kinetic model for the interactions between
CCPs and cargo. Within this model, the channel diffuses lat-
erally across the membrane and it is randomly captured by
a growing CCP by binding to an adaptor protein. It dissociates
from a single adaptor according to a constant k1. The pit cycle
begins at time t= 0, it grows via the addition of adaptor pro-
teins at a rate of 1=τc, and it is terminated either abortively or
productively at time t= l (the lifetime of the pit). After being
captured in the pit, the cargo molecule remains there for
a (stochastic) time τ until it escapes. In our derivation, we first
focus on the times at which the channels are captured and
then on the binding times.

(A) Times of Capture.We obtain PðljcaptÞ, the conditional PDF of
CCP lifetimes given that cargo becomes captured within the pit,
by using Bayes’ theorem:

PðljcaptÞ=PðcaptjlÞPðlÞ
PðcaptÞ : [S6]

PðlÞ is experimentally measured (Fig. 1D), and to obtain PðcaptjlÞ
we integrate over the possible times of capture t0, PðcaptjlÞ=R l
0 Pðt0; captjlÞdt0. The probability of binding at time t0 given that
the pit lifetime is l, Pðt0; captjlÞ, is proportional to the perimeter of
the pit. So, following our linear growth assumption,

Pðt0; captjlÞ∼ r∼
ffiffiffiffiffiffiffiffiffiffiffi
Nðt0Þ

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0 +BÞ=τc

p
; [S7]

under the condition that 0< t0 < l, where r is the radius of the
pit and N(t) is the number of adaptor proteins at time t. (Eq.
1). Explicitly,

Pðt0; captjlÞ=
�
c1

ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p
; 0< t0 < l

0; otherwise
; [S8]

where c1 is a normalization factor. Thus, we can find the prob-
ability of capture given the lifetime of the pit,

PðcaptjlÞ=
Z l

0

Pðt0; captjlÞdt0 =
Z l

0

c1
ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p
dt0

= c2
h
ðl+BÞ3=2 −B3=2

i
: [S9]

Using Eq. S6, we obtain

PðljcaptÞ= c2
cB

h
ðl+BÞ3=2 −B3=2

i
PðlÞ; [S10]

where the a priori probability of capturing is equal to a constant,
PðcaptÞ= cB.
Using similar arguments as thoseofEq.S8, assuming that a channel

binds to the pit so that
R l
0 Pðt0jlÞdt0 = 1, we find the conditional PDF

of the time of capture, given a known CCP lifetime l,
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3
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i ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p
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;
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Then, it is straightforward to find the a priori PDF of times of
capture,

Pðt0Þ=
Z∞
t0

Pðt0jlÞP ðljcaptÞdl=C
ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p Z∞
t0

PðlÞdl; [S12]

where the normalization factor is found by integration, C= 1=
R∞
0

Pðt0Þdt0 = 3=
R∞
0 2½ðl+BÞ3=2 −B3=2�PðlÞdl. In the main manuscript,

Pðt0Þ is shown in Fig. 2.

(B) Binding Times. When a channel encounters a CCP, it is cap-
tured at the outer edge of the pit. Then, it may turn around and
rapidly escape or it may explore different binding sites inside,
hopping from one binding site to another. This is depicted in Fig.
4A in the main manuscript. We first derive the conditional PDF
of binding times for each escape mode, ψKf

ðτjt0Þ and ψKs
ðτjt0Þ,

and then we obtain the a priori PDFs of binding times, ψKf
ðτÞ

and ψKs
ðτÞ.

(i) Conditional probability of binding times given that the channel binds at
time t0. We first derive the binding time for the fast-escaping
population. We formulate a master equation for the survival
probability, i.e., the probability the channel is still bound at time τ,
dPs=dτ= − koffPs. When the escape rate is independent of pit
size, this master equation yields the following:

PsKf ðτjt0; lÞ=
�
e−Kf τ; 0< τ≤ l− t0

0; otherwise
: [S13]

The conditional PDF of stalling times is ψðτjt0; lÞ= − dPs ðτjt0; lÞ=
dτ. So,

ψKf
ðτjt0; lÞ=

�
Kf e−Kf τ + e−Kf ðl−t0Þδðl− t0 − τÞ; 0< τ≤ l− t0

0; otherwise
:

[S14]

Similarly, for the slowly escaping population, we formulate a mas-
ter equation dPs=dτ= −KsðτÞPs, where Ks is time dependent due
to its dependence on pit size. Using the simulation results shown
in Fig. 4C, we can write the slow escape rate as KsðτÞ= Ks0=N =
Ks0τc=ðτ+ t0 +BÞ. This master equation yields a power law solu-
tion PsKs ∼ ðτ+t0+BÞ−α with the associated conditional probability
density for the binding times:

ψKs
ðτjt0; lÞ=

αðt0 +BÞα
ðτ+ t0 +BÞ1+α +

�
t0 +B
l+B

	α

δðl− t0 − τÞ; 0< τ≤ l− t0

0; otherwise;

8><
>:

[S15]

where α=Ks0τc.
The PDF of stalling times, given the channel is captured in the

pit at time t0, is

ψðτjt0Þ=
Z∞
t0

ψðτjt0; lÞP ðljt0Þdl; [S16]

where Pðljt0Þ=PðlÞ= R∞
t0

Pðl′Þdl′ for l≥ t0. Then Eqs. S14 and S15
for Kf and Ks, respectively, yield the conditional PDFs of binding
times for each population,

ψKf
ðτjt0Þ= 1Z ∞

t0
PðlÞdl

Kf e−Kf τ

2
4 Z∞

t0 + τ

PðlÞdl+Pðl = t0 + τÞ
Kf

3
5;
[S17]
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and

ψKs
ðτjt0Þ= 1Z ∞

t0
PðlÞdl

"
αðt0 +BÞα

ðτ+ t0 +BÞ1+α
#

3

2
4 Z∞

t0 + τ

PðlÞdl+ ðτ+ t0 +BÞ
α

Pðl= t0 + τÞ
3
5:

[S18]

(ii) The a priori probability of binding times is ψ(τ)=
R∞
0 ψ(τjt0)

P(t0)dt0. Using Eq. S12 together with S17 and S18 for the
two populations of escape rates, we obtain the a priori PDFs
of binding times,

ψKf
ðτÞ=CKf e−Kf τ

Z∞
0

ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p 2
4 Z∞

t0 + τ

PðlÞdl+Pðl= t0 + τÞ
Kf

3
5dt0;
[S19]

ψKs
ðτÞ=Cα

Z∞
0

ðt0 +BÞα ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p

ðτ+ t0 +BÞ1+α

3

2
4 Z∞

t0 + τ

PðlÞdl+ ðτ+ t0 +BÞ
α

Pðl= t0 + τÞ
3
5dt0;

[S20]

where C is defined in Eq. S12.
At last, we combine the two distributions, Eqs. S19 and S20,

with a weight w, such that ψðτÞ=wψKf
ðτÞ+ ð1−wÞψKs

ðτÞ. As
determined from our escape-time Monte Carlo simulations, the
weight of the fast-escaping population is w = 0.75. Then,

ψðτÞ=wCKf e−Kf τ

Z∞
0

ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p 2
4 Z∞

t0 + τ

PfastðlÞdl+Pðl= t0 + τÞ
Kf

3
5dt0

+ ð1−wÞCα
Z∞
0

ðt0 +BÞα ffiffiffiffiffiffiffiffiffiffiffiffi
t0 +B

p

ðτ+ t0 +BÞ1+α

3

2
4 Z∞

t0 + τ

PslowðlÞdl+ ðτ+ t0 +BÞ
α

Pðl= t0 + τÞ
3
5dt0;

[S21]

where PfastðlÞ=A1P1ðlÞ+A2P2ðlÞ+A3P3ðlÞ is the CCP lifetime
distribution used for the fast-escaping channels and, similarly,
PslowðlÞ=Ap

1P1ðlÞ+Ap
2P2ðlÞ+Ap

3P3ðlÞ for the slow-escaping popula-
tion. P1ðlÞ corresponds to the short-lived CCP lifetimes, found to be
Rayleigh distributed; P2ðlÞ is the second population of exponentially
distributed lifetimes; and P3ðlÞ is the long-lived exponentially dis-
tributed population. A1, A2, and A3 are the weights of the CCP
lifetime populations, as found above in Model Selection for Lifetime
Distribution. Naively, ðAp

1;A
p
2;A

p
3Þ= ðA1;A2;A3Þ, as shown by the

green line in Fig. S2. However, in the last stages of a productive
CCP, the interior of the pit may not accept any more cargo mole-
cules. When the whole distribution of CCPs is used, we observe that
the expected binding times are much longer than what the data
show (Fig. S2). To adjust for this effect, the long-lived population
of CCPs was removed from the contribution to the power law
distribution in Eq. S21. This is simply achieved by setting Ap

3 = 0
(red line in Fig. S2). Alternatively, one may consider the possibility
that the later CCP stages contribute (minimally) to the power law
distribution. Thus, we can adjust Ap

3 to include this small contribu-
tion. We find that the value that best describes the experimental
data is Ap

3 = 5× 10−5. The blue curve in Fig. S2 provides the result
with this final adjustment, i.e., allowing the long-lived CCPs to
contribute only 0.005% to the power law behavior of binding times.

1. Loerke D, et al. (2009) Cargo and dynamin regulate clathrin-coated pit maturation.
PLoS Biol 7(3):e57.

2. Barkard RE, Çela E (1999) Handbook of Combinatorial Optimization, eds Du DZ,
Pardalos PM (Kluwer Academic Publishers, Dordrecht, The Netherlands), pp 75–149.

Fig. S1. Comparison of CCP lifetime models. Shown in blue is a combination of two Rayleigh and one exponential distribution, and in red, a combination of
one Rayleigh and two exponential distributions, as in Eq. S5. In both cases, the shortest population is modeled by a Rayleigh distribution and the longest
population by an exponential distribution.
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Fig. S2. Comparison of different models for the binding-time distribution. The PDF of Kv2.1 binding times with three different contributions of CCP lifetimes.
In the first case (green line), the original lifetime distributions as presented in Eq. S5 were used in Eq. S21. In the second case (red line), the lte stages of CCP do
not contribute to the power law binding-time distribution. This is done by setting A*

3 = 0. Although the long-lived CCPs mostly do not contribute to the longer
cargo binding times, a weight of only 0.005% provides the best results (blue line) as described in the text.

Table S1. Minimization of the BIC

Model No. of parameters (p) BIC

1-Exp 1 −8,089
1-Ray 1 −7,168
2-Exp 3 −9,266
1-Ray + 1-exp 3 −9,516
2-Ray 3 −9,035
3-Exp 5 −9,300
1-Ray + 2-exp 5 −10,507
2-Ray + 1-exp 5 −10,481
3-Ray 5 −10,182
4-Exp 7 −9,275
1-Ray + 3-exp 7 −9,282
2-Ray + 2-exp 7 −8,634
3-Ray + 1-exp 7 −8,828
4-Ray 7 −8,820

The corrected lifetime was fit to different combinations of exponential
and Rayleigh cumulative distributions. The model that minimized the BIC
was the combination of one Rayleigh and two exponentials (Eq. S5) marked
in bold.
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Movie S2. Cargo capture and endocytosis. The left panel is GFP–CLC fluorescence, the middle panel is QD–Kv2.1 fluorescence, and the right panel is their
overlay. The movie depicts the capture of a Kv2.1 cargo molecule into a newly forming endocytic pit. The cargo remains captured within the pit until it is
internalized. The white arrow marks the location of the newly forming pit. The QD–Kv2.1 channel becomes captured into the pit shortly during the initial
stages of the CCP and remains there until it is endocytosed at 28 s. Both the QD-labeled channel and GFP-labeled CCP flicker before complete internalization
due to their random motion into and out of the TIRF illumination field. Also seen in the movie is a freely diffusing QD–Kv2.1 channel. This channel becomes
transiently captured into the pit at 18 s. However, it escapes before the CCP is internalized. (Scale bar: 1 μm.)

Movie S2

Movie S1. Quantum dot (QD)–Kv2.1 and GFP–clathrin light chain (CLC) fluorescence. Fluorescently labeled Kv2.1 and clathrin on the basal surface of a HEK293
cell. The left panel is GFP–CLC fluorescence (green) only, the middle panel is the fluorescence of QD-labeled Kv2.1 (red), and the right panel is the overlay of the
two images. Kv2.1 channels inherently display two types of motion on the cell surface: a majority of Kv2.1 channels are retained within membrane com-
partments, whereas a fraction freely diffuses across the surface (see ref. 1). Consequently, some QD-labeled channels appear to be quite mobile, whereas
others are confined to smaller areas. GFP-labeled endocytic pits appear as distinct, diffraction-limited fluorescent puncta. The more mobile Kv2.1 channels are
seen to alternate between diffusing and stalling modes. The stalls occur on top of clathrin spots. (Scale bar: 10 μm.)

Movie S1

1. Weigel AV, Simon B, Tamkun MM, Krapf D (2011) Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc Natl Acad Sci USA
108(16):6438–6443.

Movie S3. Capture and release of cargo into endocytic pits. Similar to Movies S1 and S2, GFP–CLC fluorescence is shown in the left panel, QD–Kv2.1 fluo-
rescence, in the middle panel, and their overlay, in the right panel. The movie displays the capturing of cargo (Kv2.1) into endocytic pits. Capturing events
lasting longer than 0.5 s are marked with yellow arrows. Also, here, both freely diffusing and confined Kv2.1 channels are seen. (Scale bar: 1 μm.)

Movie S3
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