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This supplement contains two sections. The first section presents
a comparison of Bayes factors obtained using uniformly most
powerful Bayesian tests (UMPBTs) to Bayes factors obtained
using standard Cauchy priors (1–3), intrinsic priors (4), and
Bayesian information criterion (BIC)-based approximations to
Bayes factors (5–7), all in the context of z tests. In the second,
several lemmas are presented that describe the UMPBT(γ) in
common testing scenarios. Finally, a table summarizing the re-
sults of these lemmas is provided.

Comparison of Bayes Factors
In this section, Bayes factors generated fromUMPBT alternatives
are compared with Bayes factors obtained from other default
Bayesian testing procedures. Each Bayesian testing procedure
was used to test whether the mean μ of a random sample of n
normal observations with known variance σ2 = 1 was equal to 0.
Several default procedures were tested. The first, due to Jeffreys
(1), is based on the assumption that the prior density for μ under
the alternative hypothesis is a standard Cauchy distribution. The
extension of this test for unknown σ2 leads to the Zellner–Siow
prior for linear models (2) and testing procedures advocated for
psychological tests in ref. 3. The second default method was
obtained by assuming an intrinsic prior for μ under the alter-
native hypothesis (4). The third default method was based on
converting the BIC criterion (5) into an approximate Bayes
factor, as suggested in refs. 6 and 7.
The prior densities that define the alternative hypothesis in the

comparison group are based on the specification of local alter-
native prior densities, which means that the order at which they
accumulate evidence in favor of a true null hypothesis is only
Opðn1=2Þ (8). This slow rate of convergence occurs because local
alternative prior densities are not zero at the parameter value
the defines a point null hypothesis. Data that support the null
hypothesis thereby also provide some support to the alternative,
making it difficult to distinguish between the two hypotheses
when the null is true. In contrast, the evidence achieved by the
UMPBTs in favor of true null hypotheses is bounded by a func-
tion of the evidence threshold γ. This means that only a finite
amount of evidence can be obtained in favor of a true null hy-
pothesis if γ is held constant as the sample size grows.
All tests were considered to be two-sided. The prior densities

for μ under the alternative hypotheses in the approximate
UMPBT(γ) two-sided tests were defined by placing one-half of
the prior mass corresponding to each of the one-sided UMPBT
(2γ)s on μ.
The Bayes factors in favor of the alternative hypotheses under

each testing procedure can be expressed as follows.
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To study the behavior of the Bayes factors obtained under each
of the four procedures, the sample mean of the observed data was
assumed to take one of the four values (0, 0.2, 0.4, 0.6). Note that
the first value of 0 provides as much evidence in favor of the null
hypothesis as can be obtained from the data. The remaining
values represent standardized effect sizes of 0.2, 0.4, and 0.6,
respectively, because the observational variance is 1. For each
assumed value of the sample mean, the sample size was in-
creased from 1 until either a sample size of 5,000 was reached or
until the maximum of the Bayes factors exceeded 5,000. These
maximum values were imposed to retain detail in the plots for
values of the Bayes factors that are of practical interest. Finally,
the evidence threshold γ for the UMPBT was determined by
equating the rejection region for this test to the rejection region
of a two-sided classical test of size 0.005. That is, γ was equal to
exp(2.8072/2)/2 = 25.7.
The value of the Bayes factors obtained under these combi-

nations of sample means and sample sizes is displayed in Fig. S1.
This figure reveals a number of interesting features. Among
these, this plot illustrates the consistency of the Bayes factors
corresponding to the Cauchy, intrinsic, and BIC procedures.
These procedures all produce Bayes factors that tend to 0 when
x= 0 and the sample size grows, even though this convergence is
slow. In contrast, the UMPBT-based Bayes factor—based on
a fixed evidence threshold γ—is constant and approximately
equal to 1=2γ when x= 0, independently of the sample size. In
this respect, UMPBT tests with fixed evidence thresholds are
similar to classical hypothesis tests: both maintain a constant
“type I error” as the sample size is increased. Preliminary rec-
ommendations for increasing γ with sample size to achieve con-
sistency are provided in ref. 9. Similarly, UMPBT-based Bayes
factors eventually become smaller than the other three Bayes
factors as n grows when γ is held constant, even though the
UMPBT is consistent under a true alternative.
For sample sizes typically achieved in practice, the UMPBT-

based Bayes factors appear to provide more useful summaries of
the evidence in favor of either a true null or true alternative
hypothesis than do the other Bayes factors. When x= 0 for ex-
ample, the Bayes factor in favor of the null hypothesis is ∼50 for
all values of n, whereas the other Bayes factors do not achieve
this level of support for the null hypothesis until n is greater than
∼1,250 (intrinsic), 1,700 (Cauchy), or 2,500 (BIC). For a stan-
dardized effect size of 0.2, none of the Bayes factors becomes
much larger than 1 until sample sizes of about 50 are obtained,
and then the UMPBT-based Bayes factors are larger than the
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other Bayes factors for all sample sizes for which the Bayes
factors are all less than 5,000. Similar comments apply to ob-
served effect sizes of 0.4 and 0.6, except that smaller sample sizes
are needed for all of the Bayes factors to exceed 1. As stated in
the main article, these observations demonstrate that UMPBT-
based Bayes factors produce more extreme Bayes factors than
other default Bayesian procedures for sample sizes and effect
sizes of practical interest. This means that the false-positive rates
that would be estimated from the other procedures for margin-
ally significant P values would be higher than 17–25%, the range
suggested by the use of UMPBTs.
The relative performance of the various Bayes factors for small

values of n is also interesting. For all values of x considered, the
UMPBT-based Bayes factors obtained for n< 5 suggest more
support for the null hypotheses than do the other hypothesis
tests. This fact can be attributed to the fact that the UMPBTs are
obtained using nonlocal alternative priors on μ, whereas the
other tests are based on local priors. As demonstrated in ref. 8,
this means that UMPBTs are able to more quickly obtain evi-
dence in support of the null hypothesis. For instance, when
x= 0:2 and n= 1, the UMPBT-based Bayes factor suggests strong
support for the null hypothesis, whereas the other Bayes factors
assume noncommittal values near 1.0.
When viewed from a scientific perspective, the evidence pro-

vided by UMPBTs in favor of the null hypothesis for small values
of n and values of jxj≤ 0:6 seems quite reasonable. Clearly, most
scientists would not design an experiment to test whether a nor-
mal mean was equal to 0 with fewer than five observations. Unless,
of course, μ was assumed to be large relative to σ under the al-
ternative hypothesis. Under such an assumption, the observation
of a sample mean less than 0.6σ provides strong evidence in favor
of the null hypothesis.
Along similar lines, most classical statisticians regard the

sample size n as fixed and ancillary when they conduct hypothesis
tests. Under this assumption, UMPBTs violate the likelihood
principle because the alternative hypothesis depends on n. In
actual practice, however, the sample size selected by a researcher
to test an effect size is generally highly informative about the
magnitude of that effect size. For instance, few researchers
would collect 100,000 observations to detect a standardized ef-
fect size of 0.4. A scientist who collects this many observations
obviously hopes to detect a much subtler departure from the
standard theory. It is also worth noting that sample size calcu-
lations themselves require the specification of an alternative
hypothesis.
Because the value of the sample size selected for an experiment

often reflects prior information regarding the magnitude of an
effect size, it is the author’s opinion that it is appropriate (and
often desirable) to use the sample size chosen by an investigator
to specify an alternative hypothesis.

Lemmas
The following lemmas describe the UMPBTðγÞ for several
common tests.

Lemma 1. Suppose X1; . . . ;Xn are independent and identically dis-
tributed (iid) according to a normal distribution with mean μ and
variance σ2 (i.e., Nðμ; σ2Þ). Then the one-sided UMPBT(γ) for testing
H0 : μ= μ0 against any alternative hypothesis that requires μ> μ0
is obtained by taking H1 : μ= μ1, where

μ1 = μ0 + σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞ

n

r
: [S1]

Similarly, the UMPBT(γ) one-sided test for testing μ< μ0 is ob-
tained by taking

μ1 = μ0 − σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n

r
:

Proof: Provided in ref. 9.

Lemma 2. Suppose X1;1; . . . ;X1;n1 are iid N
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�
, and

X2;1; . . . ;X2;n2 are iid N
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�
, where σ2 is known and

the prior distribution for μ is assumed to be uniform on the real line.
The one-sided UMPBT(γ) for testing H0 : δ= 0 against alternatives
that require δ> 0 is obtained by taking

H1 : δ= σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Proof.Consider first simple alternative hypotheses on δ> 0. Up
to a constant factor that arises from the uniform distribution on
μ, the marginal distribution of the data under the null hypothesis
can be obtained by integrating out μ to obtain
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Similarly, the marginal distribution of the data under the al-
ternative that μ2 − μ1 = δ can be obtained by integrating out μ to
obtain
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It follows that
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Regardless of the distribution of ðx2 − x1Þ, this probability can be
maximized by minimizing the right-hand side of the last inequal-
ity with respect to δ. The UMPBT value for δ is thus

δ p = σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn1 + n2ÞlogðγÞ
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Now consider composite alternative hypotheses, and let BF10ðδÞ
denote the value of the Bayes factor when evaluated at a
particular value of δ and fixed x. Define an indicator function s
according to

sðx; δÞ= IndðBF10ðδÞ> γÞ: [S7]

Then it follows from Eq. S5 that

sðx; δÞ≤ sðx; δ p Þ   for all x: [S8]

This implies that

Z∞
0

sðx; δÞπðδÞ≤ sðx; δ p Þ [S9]

for all probability densities πðδÞ. It follows that
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PδtðBF10 > γÞ=
Z
X

sðx; δÞf ðxjδtÞdδt [S10]

is maximized by a prior density that concentrates its mass δp. Here
f ðxjδtÞ is the sampling density of x for δ= δt,

Lemma 3. Suppose that X is distributed according to a χ2 distribution
on 1 degree of freedom and noncentrality parameter λ; that is,
X ∼ χ21ðλÞ. The UMPBT(γ) for testing H0 : λ= 0 is obtained by
taking H1 : λ= λ1, where λ1 is the value of λ that minimizes
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Proof. As in Lemma 2, consider first simple alternative hy-
potheses on λ> 0. By taking the ratio of a noncentral χ2 density
on 1 degree of freedom to the central χ2 density on 1 degree of
freedom, it follows that the Bayes factor in favor of the alter-
native can be expressed as
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it follows that
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The probability that the Bayes factor exceeds the evidence thresh-
old is given by
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Minimizing the right-hand side of the inequality maximizes the
probability, regardless of the value of λt. The extension to com-
posite hypotheses follows along from the same logic used in Eqs.
S7–S10.

Lemma 4. Suppose that X has a binomial distribution with success
probability p and denominator n. The UMPBT(γ) for testing
H0 : p= p0 against alternatives that require p> p0 is obtained by
taking H1 : p= p1, where p1 is the value of p that minimizes

logðγÞ− n½logð1− pÞ− logð1− p0Þ�
log½p=ð1− pÞ�− log½p0=ð1− p0Þ� : [S17]

The UMPBT(γ) for alternatives that require p< p0 is obtained by
taking p1 to be the value of p that maximizes Eq. S17.

Proof. Provided in ref. 9.

Lemma 5. Assume that the conditions of Lemma 1 apply, except that
σ2 is not known. Suppose that the prior distribution for σ2 is an
inverse gamma distribution with parameters α and λ, and define
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Then the value of μ1 that minimizes an in Eq. S4 is
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If a noninformative prior is assumed for σ2 (i.e., α= λ= 0), then
the UMPBT(γ) alternative is obtained by taking

μ1 = μ0 + s
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Proof.As in the previous proofs, consider first the case of simple
alternative hypotheses. By integrating out the variance parameter,
it follows that the Bayes factor in favor of the alternative hypothesis
can be expressed as

BF10ðμ1Þ=
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After some algebra, this expression leads to the following
equation:
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and
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Minimizing an as a function of μ1 leads to the stated result.

Lemma 6.Assume that the conditions of Lemma 2 apply, except that
the variance σ2 is unknown. Suppose the prior distribution for σ2 is
an inverse gamma distribution with parameters α and λ, and define
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Then the value of δ than minimizes an in Eq. S5 is

δ=
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Taking α= λ= 0 and

s2 =
1

n1 + n2 − 2

X2
j=1

Xnj
i=1



xj;i − xj

�2
;

the UMPBT(γ) alternative is defined by taking

δ= s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ p − 1Þνðn1 + n2Þ
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s
:

Proof. Similar to the proofs of Lemmas 2 and 5. Using the
expressions for the marginal distributions obtained in the case of
a known variance in Lemma 2, it can be shown that the Bayes
factor takes the form of the ratio of t densities. Solving for the
difference in means μ2 − μ1 leads to an inequality similar to Eq.
S21, and the result follows.
A summary of the results of Lemmas 1–6 appears in Table S1.

Also provided in this table are expressions for the Bayes factors
(expressed in terms of standard test statistics), rejection regions,
and the relation between evidence threshold γ and the size of the
corresponding classical test.
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Fig. S1. Comparison of default Bayesian procedures for testing a null hypothesis that the mean of n Nðμ,1Þ random variables is 0.
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Table S1. Properties of UMPBTs in common testing situations

Test Variables H1 Bayes factor Reject region γ = fðαÞ
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Note that the Bayes factors listed for the one- and two-sample t tests should only be used for t <
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p
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. Values for quantities in empty cells must

be determined using numerical techniques.
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