Supporting Information

Duman et al. 10.1073/pnas.1313978110

Fig. S1. Growth of *Baccillus subtilis* SepF mutants in the absence of FtsA. Selection of SepF mutant was based on impaired FtsZ interaction in a yeast twohybrid screen (Fig. 1, main text). Wild-type *sepF* was substituted with mutant *sepF* genes (*sepF**) in a strain containing *ftsA* under control of the xylose-inducible P_{xyl} promoter. If the SepF mutant is inactive, the protein cannot support growth of *B. subtilis* cells in the absence of FtsA (0% xylose). Western blot (*Lower*) shows expression levels of different SepF mutants in *B. subtilis*. We cannot rule out that the mutants D109G and F126S fail to complement wild-type SepF because of low expression levels.

Fig. S2. (A) Sequence alignment of SepF-like proteins from 127 different organisms, using Clustal-W. B. subtilis SepF sequence is shown at the top. (B) Detail of the conserved C-terminal domain sequence containing the conserved glycine (G109) residue responsible for interdimer contacts (marked by a star).

Fig. S3. Crystal lattices and dimer structures of SepF-like proteins from Archaeoglobus fulgidus (Left) and Pyrococcus furiosus (Right). Resolution (in angstroms), space group, and unit cell dimensions (in angstroms) of the crystals are shown at the bottom.

Fig. 54. (A) Stereo image of the SepF C-terminal domain dimer showing glycine G109 responsible for the dimer interface (cyan). (B) Superposition of the wildtype and G109K mutant in α -carbon traces representation. (C) SepF-G109K does not bind FtsZ. Elution fractions of a SepF-FtsZ coelution experiment using MBP-SepF and MBP-SepF-G109K are shown. The MBP-fusion proteins were incubated with (+) or without (-) purified *B. subtilis* FtsZ. Fractions were analyzed by SDS/ PAGE and Coomassie staining.

Fig. S5. SepF-GFP localizes close to the cell membrane. (A and B) Two-dimensional SIM images show SepF-GFP localization in (A) the presence (+ITPG) and (B) absence (-IPTG) of FtsZ in strain LH21 (*PxyI-sepF-gfp Pspac-ftsZ*). Membranes were stained with FM-95 (red). SepF-GFP (green) was induced with xylose. (Scale bars, 3 μm.)

Fig. 57. Liposomes stimulate the formation of FtsZ-SepF tubules. (A) EM images of FtsZ-SepF tubules that are formed when purified FtsZ and SepF are mixed with liposomes. Polymerization of FtsZ is initiated by the addition of GTP. (B) Liposomes without protein. Liposomes were made from *Escherichia coli* polar lipid extract. (Scale bars, 100 nm.)

D V V V

Fig. S8. Transmission EM images of dividing *B. subtilis* cells used for septum width measurements and SepF rings used to measure the inner diameter of the rings. The measured values are ordered in the bar diagram.

DNAS V

Table S1. Crystallographic data

PNAS PNAS

Statistics	Archaeoglobus fulgidus	Pyrococcus furiosus	Bacillus subtilis	B. subtilis
Protein	ll05M, SeMet	SeMet	BsSepF-C NATI	BsSepF-C G109K
UniProt IDs	NP_069616	YP_006493105	SEPF_BACSU	SEPF_BACSU
Data collection				
Beamline	ESRF ID23eh1	ESRF ID23eh1	ESRF ID29	ESRF ID23eh1
Wavelengths, Å	0.9793; 0.9798	0.9793; 0.9798	0.9762	0.9000
Method crystal	SeMet MAD	SeMet MAD	MR with <i>Pf</i>	MR with BsSepF-C
Space group	P2 ₁ 2 ₁ 2 ₁	P6₅22	P3 ₂ 21	C222 ₁
Cell, Å	107.0, 64.1, 82.6	59.3, 59.3, 177.5	40.6, 40.6, 170.3	42.0, 80.1, 51.8
Scaling				
Resolution, Å	2.0	2.5	1.9	2.2
Completeness, %*	99.9 (99.9)	99.9 (99.9)	99.9 (99.9)	100 (100)
Multiplicity*	14.0 (14.5)	26.2 (25.8)	9.6 (8.6)	6.8 (7.0)
(I)/σ(I)*	28.7 (21.6)	31.1 (14.6)	14.5 (4.5)	8.8 (4.5)
R _{merge} *	0.072 (0.110)	0.077 (0.230)	0.092 (0.415)	0.14 (0.40)
R _{pim} *	0.029 (0.043)	0.020 (0.063)	0.032 (0.148)	0.062 (0.164)
Refinement				
R/R _{free} [†]	0.188 (0.244)	0.219 (0.289)	0.184 (0.246)	0.194 (0.245)
Model	3 dimers: 37–121; 372 H ₂ O	2 monomers packing as	1 dimer: 61–139; 61–140;	1 monomer: 61–142;
		dimer: 49–130; 46–129;	59 H ₂ O	30 H ₂ O
		29 H ₂ O		
Bond length rmsd, Å	0.025	0.008	0.024	0.007
Bond angle rmsd, °	2.055	0.973	1.815	0.947
Most favored, % [‡]	97.3	91.6	93.6	100
Disallowed, % [‡]	0.0	0.0	0.0	0.0
PDB ID	3ZIE	3ZIG	3ZIH	3ZII

ESRF, European Synchrotron Radiation Facility; MAD, multi-wavelength anomalous dispersion; PDB, Protein Data Bank. *Values in parentheses refer to the highest recorded resolution shell.

[†]Five percent of reflections were randomly selected before refinement.

[‡]Percentage of residues in the Ramachandran plot (PROCHECK).

Table S2. Strains and plasmids

Name

PNAS PNAS

Relevant genotype

Strain		
168	trpC2	Laboratory stock
LH21	amy::Pxyl-sepF-gfp Spc, Pspac-ftsZ ble	Same as strain 4182 in ref. 1
YK012	CRK6000, ezrA::spec	(2)
YK204	CRK6000, <i>AsepF::spec</i>	(3)
YK206	CRK6000, ΔftsA:::erm-Pspac-ftsZ (ΔftsA:::erm)	(3)
MD120	ezrA::spec	S. Ishikawa
MD136	ΔftsA:::erm-Pspac-ftsZ (ΔftsA:::erm)	S. Ishikawa
MD172	amyE::Pxyl-ftsA (Pxyl-ftsA)	S. Ishikawa
MD175	AftsA:::erm Pxyl-ftsA	S. Ishikawa
MD194	∆sepF::spec	S. Ishikawa
MD197	ftsA::erm Pxvl-ftsA ΔsepF::spec	S. Ishikawa
SD261	sepF-F16*-cat	This study
SD261	sepF-K60*-cat	This study
50204	sepF-R120*-cat	This study
50205	sept-M20 -cat	This study
50270	sept-vo-t-cat	
50271	sept-1/2C-cat	This study
50272	sept-DioSiv-Cat	This study
30273	sept-Diosd-Cal	This study
SD274	sepF-F106S-Cat	This study
SD275	sepF-GTU9R-cat	
SD276	sepF-Y112H-cat	
SD2//	sepF-G116S-cat	This study
SD278	sepF-1118T-cat	This study
SD279	sepF-F126S-cat	This study
SD283	sepF-wild-cat	This study
SD331	∆ftsA:::erm Pxyl-ftsA sepF-E16*-cat	This study
SD332	∆ftsA::erm Pxyl-ftsA sepF-K60*-cat	This study
SD333	∆ftsA:::erm Pxyl-ftsA sepF-R120*-cat	This study
SD334	∆ftsA:::erm Pxyl-ftsA sepF-V64E-cat	This study
SD335	∆ftsA:::erm Pxyl-ftsA sepF-Y72C-cat	This study
SD336	∆ftsA:::erm Pxyl-ftsA sepF-D105N-cat	This study
SD337	∆ftsA:::erm Pxyl-ftsA sepF-D105G-cat	This study
SD338	∆ftsA:::erm Pxyl-ftsA sepF-F106S-cat	This study
SD339	∆ftsA:::erm Pxyl-ftsA sepF-G109R-cat	This study
SD340	∆ftsA:::erm Pxyl-ftsA sepF-Y112H-cat	This study
SD341	∆ftsA:::erm Pxyl-ftsA sepF-G116S-cat	This study
SD342	∆ftsA:::erm Pxyl-ftsA sepF-I118T-cat	This study
SD343	∆ftsA:::erm Pxyl-ftsA sepF-F126S-cat	This study
SD347	∆ftsA:::erm Pxyl-ftsA sepF-wild-cat	This study
HS206	amvE::spec Pxvl-sepF1-39 (SepF1-13)-gfp	This study
HS207	amvE::spec Pxvl-sepF1-75 (SepF1-25)-gfp	This study
H\$208	amvE::spec PxvI-sepF1-75 (SepF1-25)-junLZ-gfp	This study
H\$223	amvF::spec Pxvl-sepF1-39 (SepF1-13, 17D)-gfp	This study
NC21	sepErrery amyrispec Pxyl-sepE (G109K)-ofp	This study
NC40	sepFinery anymore right sepFinery grp	This study
H\$230	aprE::spc Pxvl-SepE (SepEA2–13)	This study
H\$230	$aprE::spc Pxy/_AH, (scpr Az Ts)$	This study
HS2/2	senE:::po AftsA:::erm anrE::soc Py/LAH::: assenE (MinDate are SenE:: i.i.)	This study
Plasmids		
	Ptar bla ColE1 malE lar7a lar19	Now England Biolabs
pMAL-C2	Ptac, bia, Cole I, Male, Jaczu, Jaci	
pNC12	$P_{\text{tac-indic-sepr}}$	
PINER-Sept A100V	Plac-male-sepr (A100V)	(4)
PIVIEP-SEPF F 1205	P(aC-IIIa) = -sepr(r1203)	(4) This work
	P(aC-IIIa) = -sepr(G109K)	
pHJS106	$Ptac-male-sepr \Delta N 13 (Sepr 14-151)$	
	Ptac-mait-sept (Sept L/D)	Inis work
pNC14	Dia spec amyEs' Pxyl-sepF (G109K)-gtp amyE5'	Inis work
pSG1154	bla spec amyE3' Pxyl-gtp amyE5'	(5)
p1537	cat gtp-junLZ-EcM15256–270	(6)
pHJS108	bla spec amyE3' Pxyl-sepF1-39-gfp amyE5'	This work
pHJS109	bla spec amyE3' Pxyl-sepF1-75-gfp amyE5'	This work
pHJS110	bla spec amyE3' Pxyl-sepF1-75-junLZ-gfp amyE5'	This work
pHJS111	bla spec amyE3' Pxyl-sepF1-39 (L7D)-gfp amyE5'	This work

1. Hamoen LW, Meile JC, de Jong W, Noirot P, Errington J (2006) SepF, a novel FtsZ-interacting protein required for a late step in cell division. *Mol Microbiol* 59(3):989–999. 2. Kawai Y, Ogasawara N (2006) *Bacillus subtilis* EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division. *Microbiology* 152(Pt 4):1129–1141.

3. Ishikawa S, Kawai Y, Hiramatsu K, Kuwano M, Ogasawara N (2006) A new FtsZ-interacting protein, YImF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol Microbiol 60(6):1364-1380.

4. Gündoğdu ME, et al. (2011) Large ring polymers align FtsZ polymers for normal septum formation. EMBO J 30(3):617-626.

PNAS PNAS

5. Lewis PJ, Marston AL (1999) GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227(1):101-110.

6. Szeto TH, Rowland SL, Habrukowich CL, King GF (2003) The MinD membrane targeting sequence is a transplantable lipid-binding helix. J Biol Chem 278(41):40050-40056.

Table S3. Oligonucleotides				
Name	Information	Sequence		
inc22	∆N(14–151) F	GTTGCCCGGGGAAGATGAAGAATAC		
inc6	∆N(14–151) R	GACTCTAGATTACCACCTCTGATGTTC		
HS492	L7D F	GAGTATGAAAAATAAAGACAAAAACTTTTTCTCAATG		
HS493	L7D R	CATTGAGAAAAAGTTTTTGTCTTTATTTTTCATACTC		
inc40	G109K F	GACTTTTTAAGCAACACCGTTTATG		
inc41	G109K R	CATAAACGGTGTTGCTTAAAAAGTC		
sepFgwR		agaaagctgggtcTTACCACCTCTGATGTTCGT		
sepF-∆N1-gwF		aaaaagcaggctcgCCGGCTTACAACGGGAATAAAC		
sepF-∆N2-gwF		aaaaagcaggctcgAAAGTGGTGTTGAGTGAGCC		
sepF-∆N3-gwF		aaaaagcaggctcgCCTGACAACGTAGATGTATCAGG		
Adapter-attB1		Ggggacaagtttgtacaaaaagcaggctcg		
Adapter-attB2		Ggggaccactttgtacaagaaagctgggtc		
pDONR-F		TCGCGTTAACGCTAGCATGGATCTC		
pDONR-R		GTAACATCAGAGATTTTGAGACAC		
sepF-mutF-f		ACAGGAATTGATGAAAGGGAATCCG		
sepF-mutF-r2		CTTCCATTGAGAAAAAGTTTTTCAG		
sepF-mutIn-f2		CTGAAAAACTTTTTCTCAATGGAAG		
pGBT9-mutIn-r		gctcttctggtggagtctatccGGCTGCAGGTCGACGGAATC		
rPCR-CmF2		ggatagactccaccagaagagcATCATCGGCAATAGTTACCC		
rPCR-CmR(-ter)		ccaggatgtagtatccttccgTTATAAAAGCCAGTCATTAGGCC		
ylmG-rPCR-f		CGGAAGGATACTACATCCTGG-AGAGGTGGTAAAGCGAGATG		
sepF-mutB-r		TCCCGTAACAGCAGAGAGGATGACC		
HS09	pSG1154 R	CATCCTAGGAATCTCCTTTCTAG		
HS479	pSG1154 F	AGCGGCTCAGGATCCATGAGTAAAGGAGAAGAACTTTTCAC		
HS478	SepF F	GAGATTCCTAGGATGAGTATGAAAAATAAACTGAAAAACTTTTTC		
HS480	N13 R	GGATCCTGAGCCGCTTCCTGACATTGAGAAAAAGTTTTTCAGTTTATTTTTC		
HS481	N25 R	GGATCCTGAGCCGCTTCCTGATGTCTCAATATATTCATATTCGTATTC		
HS484	JunLZ F	GCGCGGGATCCGGTGGTCGTATCGCTCGTCTG		
HS485	JunLZ R	CGCGCGGATCCTGAGCCGCTTCCGTTCATAACTTTCTGTTTCAGCTG		
HS495	Pxyl F	AATTCGTCTCCCGGCCTTCAAAGCCTGTCGGAATTG		
HS497	Pxyl(∆2–13) R	AATTCGTCTCCCATCCTAGGAATCTCCTTTCTAGATG		
HS498	Pxyl(AH _{MinD}) R	AATTCGTCTCACCATCCTAGGAATCTCCTTTCTAGATG		
HS501	SepF(∆2–13) F	AATTCGTCTCTATGGAAGATGAAGAATACGAATATGAATATATTG		
HS503	SepF(AH _{MinD}) F	AATTCGTCTCTATGGTGCTTGAAGAGCAAAACAAAGGAA		
		TGATGGCTAAGATTAAGTCATTTTTCGGAGTAAGATCTGA		
		AGATGAAGAATACGAATATG		
HS500	SepF R	AATTCGTCTCCCCAATTACCACCTCTGATGTTCG		

Tag sequence for adapter and recombinant PCR is shown in lowercase.