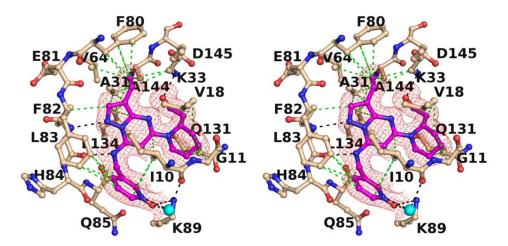
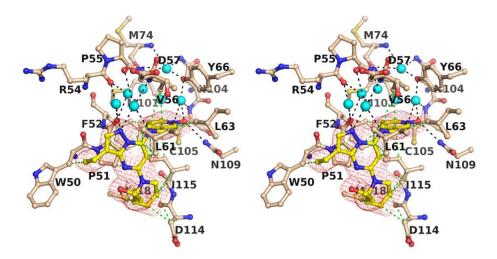
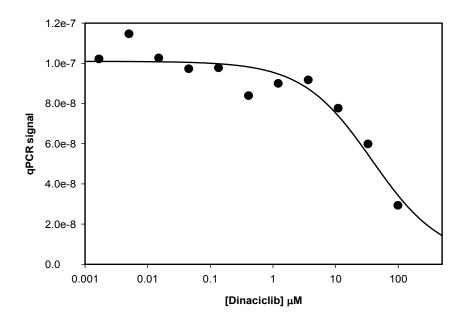
## SUPPORTING INFORMATION


The cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains.

Mathew P. Martin<sup>1</sup>, Sanne H. Olesen<sup>1</sup>, Gunda I. Georg<sup>2</sup>, and Ernst Schönbrunn<sup>1\*</sup>


## Supplementary Table 1. Summary of data collection and structure refinement<sup>a</sup>.

| Structure<br>(PDB ID)                                         | (4KD1)<br>CDK2-Dinaciclib                     | (4KCX)<br>BRDT-Dinaciclib                |
|---------------------------------------------------------------|-----------------------------------------------|------------------------------------------|
| Data Collection                                               |                                               |                                          |
| X-ray                                                         | SER-CAT 22-ID                                 | SER-CAT 22-ID                            |
| Wavelength (Å)                                                | 1.0                                           | 1.0                                      |
| Space group                                                   | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | P2 <sub>1</sub>                          |
| Unit cell dimensions (Å)                                      | a=53.69<br>b=71.89<br>c=72.40                 | a=64.72<br>b=29.95<br>c=71.38<br>β=94.12 |
| Resolution range                                              | 20-1.7<br>(1.8-1.7)                           | 20-2.0<br>(2.1-2.0)                      |
| Unique reflections                                            | 31460<br>(4879)                               | 18535<br>(2488)                          |
| Completeness (%)                                              | 99.9 (100)                                    | 97.8 (98.1)                              |
| Ι/σΙ                                                          | 24.9 (4.8)                                    | 7.7 (3.3)                                |
| R <sub>sym</sub> <sup>a</sup> (%)                             | 4.8 (37.9)                                    | 12.7 (62.4)                              |
| Structure refinement                                          |                                               |                                          |
| Protein atoms Average B-factor (Ų) Ligand atoms               | 2398<br>25<br>29                              | 1780 (dimer)<br>42<br>58                 |
| Average B-factor (Ų)  Solvent molecules  Average B-factor (Ų) | 20<br>216<br>29                               | 28<br>137<br>41                          |
| other atoms<br>Average B-factor (Ų)                           | 4<br>34                                       | 1<br>20                                  |
| r.m.s.d. <sup>b</sup> bonds (Å)                               | 0.016                                         | 0.008                                    |
| r.m.s.d.angles (°)                                            | 1.2                                           | 1.2                                      |
| R <sub>cryst</sub> <sup>c</sup> (%)                           | 19.4                                          | 21.1                                     |
| R <sub>free</sub> <sup>d</sup> (%)                            | 23.2                                          | 25.3                                     |
| R <sub>free</sub> reflection set size                         | 1007 (3.2 %)                                  | 927 (5.0 %)                              |
| Coordinate error (Å) (ML method from PHENIX)                  | 0.23                                          | 0.23                                     |


<sup>(</sup>ML method from PHENIX)  $^a$  R<sub>sym</sub> = SUM ( ABS(I - <|>)) / SUM (I)  $^b$  r.m.s.d. = root mean square deviation from ideal values.  $^c$  R<sub>cryst</sub> = 100 x | F<sub>obs</sub>-F<sub>model</sub> | / F<sub>obs</sub> where F<sub>obs</sub> and F<sub>model</sub> are observed and calculated structure factor amplitudes, respectively.  $^d$  R<sub>free</sub> is R<sub>cryst</sub> calculated for randomly chosen unique reflections, which were excluded from the refinement.



**Supplementary Figure 1.** Crystal structure of dinaciclib bound to CDK2 (Stereo presentations of the binding interactions). The Fo-Fc electron density map of the omitted inhibitor is contoured at  $2.5~\sigma$  and shown as red mesh. Potential hydrogen bonding and van der Waals interactions are indicated as black and green dotted lines, respectively.



**Supplementary Figure 2.** Crystal structure of dinaciclib bound to BRDT (Stereo presentations of the binding interactions). The Fo-Fc electron density map of the omitted inhibitor is contoured at  $2.5 \, \sigma$  and shown as red mesh. Potential hydrogen bonding and van der Waals interactions are indicated as black and green dotted lines, respectively.



Supplementary Figure 3.  $K_d$  determination of dinaciclib interaction with BRDT (performed by DiscoveRx Corp.).