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Supporting Methods
Construction of the mathematical model
In formulating the equations governing the evolution of the local cell density we take the
following view. Cells tend to align with one another and with the underlying slime field. That is,
cells extrude slime as they move, and prefer to glide on preexisting slime. The cell densities at
each location, x, are specified by the density functions 
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r n  (see Figure
3). The slime field is specified by a unit vector field, T(t, x) that specifies the local cell velocity:
v = v0T, where the cell speed, v0, is assumed constant. The cell density and orientation fields are
coupled: cells orient to the local slime direction, and can remodel the slime so as to reorient it.
The evolution of density vector   
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r n  is governed by Equation 1 where the diffusion and gliding
fluxes are defined as:
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(A.1)

States with subscript (+) are gliding in the direction of +T, states with subscript (-) glide in the
opposite direction (-T). In the jammed state the convective gliding velocity v0= 0. Transitions
between states are given by the rate matrix
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(A.2)

Underlined rate constants are assumed to be functions of total cell density,
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ntot = n+
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r + n−
s + n−

r + n0. The reversal frequency (rate of reversal in the sensitive state) is a
sigmoid function of the density of opposite moving cells (29). Cells in the stop state also signal,
so that
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where 
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s  and 
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s . The first term refers to the low density limit of reversals,
the second term refers to the high density signaling during rippling, and the third term refers to
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the decrease in reversal frequency during streaming. The stopping rate, 
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Ks , is a function of total
density, ntot, according to:
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(A.4)

Numerical calculations were carried out in Matlab™.

Relationship with previous models
Note that our treatment of the reversal cycle differs from our previous model (29) where we
modeled the reversal cycle by a continuous phase variable, φ, defined on the circle. To compare
two descriptions consider the situation where cells are not dense enough to jam (no-stop state).
We discretize the phase circle into 4 Markov states corresponding to four phase domains: +T
(refractory, sensitive), and −T (refractory, sensitive). Markov jump transitions replace the
convective flow around the circle. Since the residence time in each Markov state is exponential,
the refractory state is necessary to ensure that no cells reverse again immediately upon reversing.
Figure 5a shows that the model results that look nearly identical to the experiments, so the 4-
Markov state model reproduces the rippling patterns modeled in (29). The reason this
discretization works can be seen as follows. Starting with Master Equation for the continuous
model (Equation 3 of  29) with no phase dispersion, Dϕ = 0:
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Integrate (A.5) over the four domains of phase and define the phase average densities
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The evolution of the average densities differs from Equation 1 since the flux from one phase
domain to the other is determined by the density values at the phase boundary rather than an
average over the phase domain. However, assuming a homogeneous phase distribution of density
in each domain (i.e. n is not a function of ϕ within each interval) one can obtain Equation 1 with
the rates related to phase velocity (29)
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Equation (A.2) describes evolution of the local average cell orientation, which is the same as the
orientation of the slime field (This is analogous to the method used in 33).

Orientation dynamics
Equation 2 describes the evolution of the slime orientation field, T(x, t). The coefficient, 
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α
describes the tendency of neighboring cells to align. We chose this coefficient to increase
linearly with the total density of cells:
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α = α 0ntot (A.6)

At sufficiently high densities the torque, τ, rotates cells perpendicular to the direction of the local
density gradient. This results in circulation of cells around aggregates that are too dense to
penetrate. We chose the following form (the justification is below)
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where 
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β(ntot )  is an increasing function of density, e.g.
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It is clear that the right hand side of Equation 2 is not perpendicular to 
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T  and so does not
conserve the magnitude of 
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T . To maintain the normalization, one can either renormalize the
orientation vector each time step, or add an additional term to maintain its magnitude close to 1.
The specific form of these terms corresponds to different ways of deriving and interpreting
Equation 2. Below we present two alternative approaches that lead to similar results.
First, we introduce an energy functional describing the evolution of the orientation field:
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Taking the functional derivative of this energy with respect to 
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T  results in
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The first two terms in Equation (A.10) correspond the two first two terms of Equation 2; the last
term maintains the normalization 
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|T |=1  in the limit 
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C→ ∞. Numerically, it is sufficient to
renormalize 
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T  at each time step.
Alternatively, one can introduce a velocity field
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V+ = voT , and adopt Vicsek’s approach to
describe its evolution (34). Thus
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The first term represents a self-generated propulsive force which is countered by the viscous
resistance force in the second term. The timescale, 
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τ1, can be estimated as τ1 ~ ζ/m, which is very
small. So the purpose of the first two terms of Equation (A.10) is to insure 
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| V+ |= v0 ; therefore,
one can take the limit 
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τ1 → 0  and renormalize 
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V+  at each time step. The third term in Equation
(A.10) is responsible for alignment; and is obtained by taking the lowest order gradient
expansion of the local aggregation rule specifying that each cell adapts the average local
orientation. The last term represents turning due to cell-cell interactions at high densities.
There are several important differences between our approach and the one developed in (34).
First, since the slime is stationary, there is no (V+⋅∇)V+ term corresponding to convection of
orientation. That is, cells readjust their orientation to the local slime field orientation rather than
carrying their orientation with them. Second, the ‘turning force’, Ft, need not be conservative
(i.e. of the form ∇p) since this force involves interactions between cells and between cells and
substrate. Dividing this equation by v0 and introducing orientation vector T = V+/v0 one obtains
Equation 2 in the limit τ1 → 0, with renormalization of 
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T  at each time step.

Movie captions
Movie 1: Edge of the submerged culture showing a single row of counter-propagating waves
leading to aggregations at the colony edge.
Movie 2: Simulation of tilted waves and aggregations near the edge of the submerged culture.
Movie 3: Two-dimensional planar ripple field (experiment).
Movie 4: Two-dimensional planar ripple field (simulation).
Movie 5: Simulation of a two-dimensional rippling field. The initial orientation field is random
and leads to coexisting and interpenetrating spiral and concentric waves.
Movie 6: Simulation of streaming without aggregation. The jamming and turning probabilities
are set to zero to avoid formation of permanent aggregation centers
Movie 7: Simulation of streaming and aggregation.




