Parameter name	Notation	Numerical value
Gliding velocity	v_0	7µm/min
Diffusion coefficient	D	14 μm ² /min*
Diffusion coefficient in jammed state	Ds	$0.35 \ \mu m^2/min$
Rate constant for a cell to become sensitive	Ka	0.56 min^{-1}
Rate constant for jamming (stop state)	k _s	0 (Fig. 5),
		0.42 min ⁻¹ (Figs. 4 and 6)
Rate to resume motion	k _m	0.042 min ⁻¹
Internal reversal frequency (low-density limit)	K_0	0.14 min^{-1}
Increase of reversal frequency by C-signaling (relative)	$\Delta K_{\rm c}/K_0$	2 (Figs. 4 and 5),
		0.5 (Fig. 6)
Decrease of reversal frequency in streams (relative)	$\Delta K_{\rm str}/K_0$	0.95
Initial density	<i>n</i> ₀	1 [†]
Cooperativity exponent for C-signaling	<i>q</i>	4 [‡]
Critical density for C-signaling	n _c	1.05
Cooperativity exponent for streaming signaling	р	2
Critical density for streaming	n _{str}	2
Cooperativity exponent for stopping	$q_{\rm S}$	6
Critical density for stopping	n _S	1.9 (Fig. 4),
		5 (Fig. 6)
Alignment coefficient	α	98 μm ² /min
Turning coefficient	β_0	0.028 min ⁻¹
Cooperativity exponent for turning	$q_{ m T}$	4
Critical density for turning	n _T	2.5

Table 1. Parameter	[,] values used	in the	calculation
--------------------	--------------------------	--------	-------------

*Diffusion coefficient corresponds to ~20% fluctuations in velocity.

[†]Initial density is scaled to be equal to 1. The rest of the densities are dimensionless (in units of initial density). Numerically, we scaled v_0 and K_0 to be equal to one and performed the calculation in these dimensionless units.

[‡]It is essential for C-signaling to be cooperative for rippling. Remaining density dependencies are chosen to be of generic Hill's form. The results of the simulation are not sensitive to exact values of the other cooperativity exponents.