Box S1. Equations for morphogen patterning by reaction and transport

While many models are based on one dimension, patterning often occurs in two or three
dimensions. Therefore, we present the equations in a general form starting from the basic
physical processes of molecular flux by diffusion and advection, a process whereby
molecules are swept along by the cytoplasm of a cell or extracellular flow as occurs to some
degree in the syncytial blastoderm embryo for Drosophila melanogaster. For morphogen
patterning mediated by reaction and transport, the continuity equation, combined with a
constitutive equation for molecular flux take following form in Cartesian coordinates:
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Here c; is the concentration of species i, j is the molecular flux defined by a constitutive
equation for diffusion based on Fick’s law and advection, R; is the reaction rate for species
I, X is the vector for the spatial coordinate, v is the velocity of cytoplasm or growing tissue
that contributes to advection, c is the vector of concentrations of all molecular species
i=1...n that interact in the network (receptors, inhibitors, co-factors, etc.), and p is the
vector of parameters and physical rate constants. Bold-face font indicates a vector
quantity. B.C.’s denotes boundary conditions.

If we limit our analysis to one spatial dimension, assume D does not depend explicitly on
position, but does depend on the concentration of molecular species (e.g. modulator
molecules), the above equations can be simplified to the general reaction-transport
equations for morphogen patterning by component i in 1D:
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If molecular diffusion is independent of modulation and there is no advection, then the
equation can be simplified further into the most common form of reaction-transport
equation analyzed in morphogen patterning:
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In Box S3 example solutions to the steady-state form of this equation with different
boundary conditions are shown and in Box S4 we consider the case when diffusion depends
on modulators that may vary in space.
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Box S2. Scale-invariance of reaction-diffusion equations for morphogen patterning

The scaling properties of a system of partial differential equations can be easily investigated by
dimensional analysis. Consider equations S2.1-52.3 for a secreted morphogen with boundary
conditions, and assume an initial spatial distribution of zero morphogen, which gives:
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To understand scaling of the solution, we choose a time scale 7, we define the dimensionless
time variable T and a dimensionless space variable ¢ as T=¢/T and é=x/L and we rewrite the
equations in terms of these variables. The resulting equations are:
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These equations contain dimensionless groups that affect the solution, and the length of the
system appears in some of these groups. The solution m(¢, t) of the rescaled equations will be
scale-invariant only if there is no explicit dependence on L in these equations. There are two
cases that arise, depending on whether or not the input fluxj vanishes.

1. If g=0, then there are two dimensionless groups: k,, T and D, /k,L°. The firstis a
dimensionless reaction time scale, and the second a dimensionless diffusion coefficient. Both
the transient evolution and the steady-state morphogen pattern will be independent of the
system size if these groups are independent of L, which can be achieved as follows:

- Fixk,, select T=k, ' and modulate D,, o L?

- Choose T=k,, !, modulate k,, o L-? and fix D,,

- Any combination of modulating D,, and k,, to make the dimensionless groups
independent of L.

2. If g # 0 then there are three dimensionless groups: &, T, D, /k,.L?, and Q = gL/D,, and each
of these must be modulated so that they are L-independent. This can be achieved by:

- Fixk,, select T=k, ' and modulate D,, a L, g a L

- FixD,, choose T=k, ', modulate k,, a L~ and input flux g o L/

- More generally, any combination of modulation that makes the dimensionless groups
independent of L will lead to scale-invariance. A balanced modulation of transport and
reaction, in which D,, a L and k,, a L~/ may be optimal, in that no scaling of the input
flux is required.




Box S3. Mechanisms of scale-invariance for morphogen-mediated patterning

Starting with the 1D equivalent of continuity equation S1.1 and constitutive equation in
S1.2 with simple linear decay and constant diffusion, the requirements for scale-invariance

of morphogen patterning are readily apparent.
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Here g,, is the input molecular flux, v, is the velocity in the x direction, and k,, is the decay
rate of the morphogen. If we restrict ourselves to identifying conditions at steady-state or
quasi-steady state, (S3.1) through (S3.3) provide easily identifiable conditions for scale
invariance that vary depending on the contributions from boundary conditions and the
type of molecular transport. First, (53.1)-(53.3) are scaled by the length. Defining&=x/L

gives the following:
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A Scaling of models with
advective transport
Advection-dominated
transport leads to the
following equation:
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Note we drop boundary
condition S3.7.
This has the solution:
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B Boundary condition
mediated scaling

In the absence of advection

and decay, with fixed

concentration endpoints,

(53.5)-(S3.7) simplify to:
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This has the solution:
m(é) = (ml - mo)é'i_ iy

which is scale invariant
automatically. Note that
constant concentration
endpoints are unlikely and
haven’t been observed.

C Scaling of diffusion-decay
models of patterning
Reaction and diffusion with flux at
the source and no flux elsewhere

(S3.5)-(S3.7) simplify to:
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This has the solution:

A2-¢) | %
)-8

Or, for large A (large k,,, small D,):
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Box S4. Modulation of morphogen scale.

One can envision many mechanisms of modulator activity that lead to morphogen scale
invariance. Consider the special case of equation 8-9 in the text in which the modulator activity
affects both reaction and diffusion as indicated below:

(s4.1) Dmof(M) = Dm (M) = DI):I and
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where D, is the intrinsic morphogen diffusion rate. Then equation 8 can be re-written as:
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If M is established by a boundary-sink mechanism, then D,‘”: is space dependent and the level of
M grows in proportion to L?, ensuring scale-invariance (see Example 2, below). If M is spatially
uniform and constant, then (S4.2) can be reduced to:
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The system will be scale-invariant if D:ZK'; is proportional to L2. There are many mechanisms
that ensure D"k} o< I’ and the specific molecular actions differ greatly between biological
contexts. The following examples illustrate how M must vary for proper D,‘": and k', scaling.

Example 1: Enhancer/Immobilizer
If the modulator’s molecular function is to
hinder diffusion and/or enhance reaction rates,
then scaling can be ensured if M decreases in
proportion to the tissue size by an appropriate
amount. Suppose that the effect of M on the
rates are as shown:
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where the modulr;icor can slow dif‘fuZion,
enhance reactions, or a combination of both.
General requirements to ensure scaling by
modulation ofo and K, and parameters that
provide the requirement in (S4.4) are below:

Example 2: Inhibitor/Mobilizer
If the modulator’s molecular function is to
enhance diffusion and/or hinder reaction rates,
then scaling can be ensured if M increases in
proportion to the tissue size by an appropriate
amount. Consider the action of M on the
morphogen by the following equation:
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where the modulator can speed up diffusion,
hinder reactions, or a combination of both.
General requirements to ensure scaling by
modulation of D and ¥ ,,, and parameters that
provide the requirement in (S4.7) are below:

Table S4.1 Example General Table S4.2 Example General

Description o a DY x, M Description o o DY «x, M
RXN Enhancer | 0 >0 iconst:oc M i< 2 RXN Inhibitor 0 >0 iconst o M 'iec [2
Immobilizer >0 i 0ioc M'iconsticc L7 | Mobilizer >0 | 0 o Miconstio [’
Combination >0 | >0 iocc M 7' oc M ioc [ Combination >0 >0 oc Mioc M i [}

Suppose a population of cells secretes a
modulator M from a source g(x), the
modulator diffuses, decays linearly and no flux

occurs across the boundaries. This gives:
oM
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Then the average concentration of modulator

at steady-state is given by:
(s46) | <L 1D
M =—/|j(x)dQ where@=3 «<I* 2D
g k@;[J( ) where
<[ 3D

Thus a line source in 2D yields M,,, o<L”,
whereas a finite number of secreting cells in
2D yields M,,,,, o< L?2. If diffusion is very rapid,
then M(x)~M,,,, and scaling can be ensured by
the “Combination” mechanism (see Table S4.1)
for a line source of M, or by the RXN Enhancer
or Immobilizer mechanism for a finite size
source of M and isometric tissue expansion.

Suppose that all cells in a system are identical
and produce M at a constant rate j. If the
concentration is zero at the ends due to rapid
leaking of M out of the domain or active
degradation, then this gives:

which has the steady-state solution:
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Thus M(&) < L?f(&), and although the
distribution of modulator is non-uniform in
space, the local level adjusts in proportion to
L?, which would ensure scaling by either the
RXN inhibitor or the Mobilizer mechanisms in
Table S4.2 (Pate and Othmer, 1984).




Box S5. How amplitude modulation can lead to adequate scaling

There are numerous examples of tissue patterning between organisms within a species and
between species where the patterns provide some degree of scale invariance but key
differences arise upon closer inspection. Within populations of Drosophila that were artificially
selected into groups based on their egg size, scaling is predominately mediated by the total flux
of molecules into the system. While the specific mechanisms for Bcd-mediated transport are
still being worked out, the profile has been frequently described by a reaction diffusion model
that produces an exponentially decaying spatial distribution at “quasi” steady-state. This takes
the form of equation (S5.1):

(S5.1) mi(é)z qu exp —\/lk);Lg

Intriguingly, the measured decay constant is roughly constant between the population of large
embryos (~645 microns long) and small embryos (~518 microns long). Instead the principle
difference between profiles is the amount of measured Bcd protein intensity throughout the
Anterior of the embryo. Thus, even though the extent or range of the profiles are very
different, the Bcd distribution is scaled enough by an increase in the total amount of Bcd in the
system. This represents “flux” or “concentration” optimization. If the flux (concentration) is
regulated to reduce error in positional information, approximate scaling can be achieved for a
number of systems. If the interpretation of the pattern takes place at only one spatial position
by a threshold, then (S5.1) can be regulated for exact scaling at that lone position. If multiple
thresholds are interpreted, then this mechanism would lead to error in the placement of those
boundaries. Intriguingly, Bcd patterning within Drosophila seems to scale by flux optimization.
Suppose that there is a critical threshold in the gradient (e.g. the boundary of Hbk gene
expression) that occurs at &;. Then the flux increase required for scaling at &; can be calculated
by equation (S5.2):

k
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Taking the data from Cheung et al. with (D/k)"? = 99 microns, assuming & =0.4 as the critical
threshold in the embryo (near the Hbk boundary), and using L=645 for the large embryo and
L,=518 for the small embryo, the calculated optimal flux g, is 67% greater than the flux in the
small embryo g,. This is remarkably close to the increase in amplitude measured for Bed
scaling of 66.9%. Thus, while the amplitude correlates with embryo volume, it also correlates
with a flux or concentration optimization process. The error at other spatial positions away
from the critical threshold can be calculated by:

(S5.3) Aéfé—€=(1—%J(5T—§)

Depending on the allowable variations in the spatial positions of gene expression A&, equation
S5.3 can be used to estimate the range of lengths where flux optimization provides sufficient
scaling.
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