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Supplemental Note 1.  
Sin Nombre virus (SNV, Bunyaviridae, Hantavirus) is an enveloped virus first isolated in the 
Southwestern region of the U.S. and carried by the deer mouse Peromyscus maniculatus.  Its 
genome is comprised of three negative-sense RNA segments, and belongs to the Hantavirus 
genus of the family Bunyaviridae of the New World. It is the primary causative agent of 
hantavirus cardiopulmonary syndrome (HCPS) in North America 1-4, where it is transmitted to 
humans by inhalation of virus-contaminated excreta 1-4. HCPS is characterized by pulmonary 
edema due to capillary leak, followed by cardiogenic shock. The case fatality rate of HCPS is 
approximately 40%. No vaccine or specific therapy is widely available at present, except in 
specialized facilities where successful treatment of HCPS in the US relies on the use of 
extracorporeal membrane oxygenation (ECMO)5. Thus, SNV-induced HCPS is a highly fatal, 
relatively untreatable disease. 

Because of BSL-3 limitations, little is known about the mechanism of hantavirus entry and 
disease pathogenesis. UV-killed, purified and well-characterized fluorescently labeled 
hantaviruses constitute an excellent model system to study a BSL-3 pathogen using the 
equipment and resources available to a BSL-2 laboratory.6-9 	
  

Epithelial cells present formidable barriers against pathogens, where the outward facing apical 
membrane of polarized epithelial cells lacks cognate receptors that are necessary for entry. The 
cognate cell entry receptor of pathogenic hantaviruses is αvβ3 integrin commonly expressed at 
basolateral domains of permissive cells.10 Until recently it was not clear how blood-borne 
hantaviruses could access αvβ3	
  integrin in polarized microvascular endothelial cells when lateral 
junctions are still intact. It was recently reported that apically expressed complement-interacting 
proteins11, decay-accelerating factor (DAF/CD55) and gC1qR/p32 are co-receptors for 
hantavirus entry. When localized in lipid rafts,12 DAF forms complexes with Src family tyrosine 
kinases13 that signal upstream of Rap, Rho and Rab GTPases and consequently regulate 
cytoskeletal alterations, and trafficking as needed for supporting the lifecycle of the virus. 



 

Fig S1. G-trap validation assay in Vero E6 cells. Serum starved Vero E6 cells were 
stimulated with: Calpeptin (clpptn) to activate RhoA, EGF to activate Rac1 and RhoA, 
NSC23766 to suppress Rac1 activity. The results mirror the results obtained using Hela cells 
described in the main text. Calpeptin-activated samples were subsequently exposed to 2µg/µl 
P50RhoGAP, which was used to catalyze the hydrolysis of GTP by RhoA. As shown, the level 
of RhoAGTP in p50RhoGAP treated samples decreased to near baseline levels after compared 
to the control untreated samples.   Control samples (rest and non-cognate effector beads) were 
mock-treated with 0.1% DMSO to account for compound solvent. The errors represent standard 
deviation of 3 independent experiments measured in duplicate each time.



Supplemental Note 2. Integrins are allosterically flexible adhesion molecules that operate by 
means of conformational changes.14 Conformational changes are associated with the response 
to cell stimulation through cellular receptors (inside-out signal) or from direct engagement of 
ligands or cations such as Mn2+ (outside in). Activated integrins undergo affinity related 
conformational changes, which expose neo-epitopes known as ligand-induced binding-sites 
(LIBS).15, 16 Certain antibodies preferentially bind to the neo-epitopes. Here we have used AP-5 
antibodies, which recognize the epitopes presented in extended conformation αvβ3 integrins.15  

Fig. S2. To establish quantitative limits on our 
observations on integrin activation we used a plate 
reader to obtain average intensity readings of 20,000 
cells exposed to virus. We used a selective Src-family 
kinase inhibitor (p56Ick and p59fynT) PP1 to connect Src 
kinase activity upstream of integrin activation17, 18, and 
Mn2+ as a positive control for integrin activation. Virus 
exposure resulted in integrin activation 3-fold above that 
seen in resting cells, which was abolished by PP-1 
treatment, demonstrating the specificity of the response. 
At the dose of virus used, integrin activation was 2-fold 
less than maximal activation induced by manganese 
treatment. The inhibition of integrin activation by PP1 

suggests that integrin activation is mediated by a Src family kinase downstream of DAF ligation.  
 

	
  



Supplemental Note 3. To visualize Rab7 dependant endocytic traffic of virus particles by 
microscopy, low temperature incubation (15°C for 30 min) was used to arrest the virus in early 
endosomes. Synchronized trafficking of SNVR18 was then initiated by rapidly raising the 
temperature of the cells to 37°C and the progress of itinerant SNVR18 was monitored by fixing 
and staining cell monolayers with anti Rab 7 antibodies at selected time intervals.  
Colocalization of SNVR18 with immunostained endogenous Rab7 GTPase was qualitatively 
analyzed at each time point. At 15°C, (0’ in Figure S3) a significant fraction of the Rab7 proteins 
was notably distributed at the perinuclear region. After 3 min at 37°C the Rab7 positive 
endosomes redistribute from perinuclear space and move towards the cell periphery and begin 
to colocalize with cargo. 
Increased colocalization 
was accompanied by the 
onset of fusion of viral 
envelope membranes 
with endosomes as 
evident from the 
dequenching of R18 in 
maturing early 
endosomes. 22-24 After 10 
min increasing 
fluorescence intensity co-
localized with Rab7-
positive endosomes. 
After 30 min at 30°C 
Rab7 appeared to 
disengage from R18 
stained organelles, as 
shown by the change in 
color from yellow to red. 

	
  

Fig. S3. Endocytosed SNVR18 (orange) partially colocalizes with Rab7 (green). 
The progress of itinerant SNVR18 (SNVR18 becomes brighter after membrane 
fusion) was monitored by fixing and staining cell monolayers with anti-Rab 7 
antibodies at selected time intervals and confocal imaging. After 3 min the Rab7 
redistributed from random distribution around perinuclear space (0’) to polarized 
morphology. We used Slidebook software to quantify colocalization. 
Colocalization of SNVR18 and Rab7 positive endosomes peaked at 10min and 
declined thereafter. After 10 min SNVR18 was in bright punctate structures that 
co-localized with the distinctly perinuclear Rab7. After 30 min at 30°C, the R18 
stained organelles were largely negative for Rab7. Suggesting the maturing of 
Rab7 positive late endosomes into some other unlabelled organelle (e.g. 
lysosomes). 
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