SUPPORTING INFORMATION

Structure Activity Relationships and Molecular Modeling of Sphingosine Kinase Inhibitors

Dong Jae Baek,^{†,a} Neil MacRitchie,^{‡,a} Nahoun G. Anthony[‡], Simon P. Mackay[‡], Susan Pyne,[‡] Nigel J. Pyne,[‡] and Robert Bittman^{*}

[†]Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, New York 11367-1597, United States

[‡]Cell Biology and Drug Discovery & Design Groups, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom

^aThese authors contributed equally.

Table of Contents

	Page
Sphingosine kinase activity assays	S2-S3
Inhibitor RB-035 docked into the SK1 active site	S4

Sphingosine kinase activity assays.

For SK2 activity assays, sphingosine (Sph) was complexed with fatty acid free bovine serum albumin (final concentration, 0.2 mg/mL) in reaction buffer 1 containing 20 mM Tris (pH 7.4), 1 mM EDTA, 1 mM Na₃VO₄, 40 mM β –glycerophosphate, 1 mM NaF, 0.007% (v/v) β -mercaptoethanol, 20% (v/v) glycerol, 10 µg/mL aprotinin, 10 µg/mL soybean trypsin inhibitor, 1 mM PMSF, 0.5 mM 4-deoxypyridoxine, and 400 mM KCl. Inhibition of SK2 activity was determined by incubating 37 ng of purified SK2 for 30 min at 30 °C in the presence of 10 µM Sph, 250 µM of [γ -³²P]ATP (specific activity, 4.4×10⁴ cpm/nmol) in 10 mM MgCl₂, and varying concentrations of the inhibitors dissolved in DMSO or control (5% v/v DMSO). For SK1 activity assays, Sph was solubilized in Triton X-100 (final concentration, 0.063% w/v) and combined with buffer 1 without KCl. SK1 activity was determined by incubating 30 µg of recombinant SK1 in lysates from HEK 293 cells for 30 min at 30 °C, in the presence of 3 µM Sph, 250 µM of [γ -³²P]ATP in 10 mM MgCl₂ with or without inhibitor dissolved in DMSO or control (5% v/v DMSO). SK1 and SK2 reactions were terminated by the addition of 500 µL of 1-butanol and were then mixed with 1 mL of 2 M KCl. The organic phase containing [³²P]-S1P was extracted by washing twice with 1 mL of 2 M KCl before quantification by Cerenkov counting.

Compounds bearing hydroxyl groups were assessed for their ability to act as substrates for SK1 and SK2. Of these compounds, only **RB-037**, **RB-041**, and **RB-043** were weak substrates for SK2 (Fig. S1).

Fig. S1. Evaluation of compounds as putative substrates of SK1 and SK2. SK1 and SK2 activity was measured using 50 μ M compound and 250 μ M ATP in the absence of Sph (n = 3 for each compound). The results are expressed as % of control ± S.D. Control = activity using Sph alone (3 μ M for SK1 and 10 μ M for SK2) and is represented as 100%, against which each compound alone is compared.

As shown in Fig. S2, **RB-035** is predicted to utilize its carbonyl group to form hydrogen bonds with the hydroxyl group of S168 and water. Therefore, **RB-035** exhibits a different binding mode than **RB-005** to explain its inhibitory activity.

Fig. S2. Docking of RB-035 into the active site of SK1.