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Detailed study design and REMARK 

 

Since none of the candidate predictive markers (including HER2 - the target itself - and 

PIK3CA mutation) were predictive of benefit from trastuzumab in B-31 (data not shown), we 

did not have any clue as to which genes might be predictive of trastuzumab benefit or 

resistance when we designed the study. Therefore while nCounter or QRT-PCR would be a 

platform of choice for gene expression profiling of FFPE tumor blocks, we did not have any 

candidate genes to profile with such methods. Therefore while fully aware of the limitations 

of using microarray gene expression profiling using degraded RNA from paraffin blocks, we 

had to use it to identify candidate predictive genes.  

 

Our previous experiences using microarray platforms for FFPE samples informed us that we 

can interrogate molecular subtypes such as ER or HER2 with microarrays in large cohort 

studies (Kim et al, J Clin Oncol 2012). However, due to assay to assay variability, it would be 

impossible to use microarrays as a diagnostic test for individual patients. Hence we simply 

used microarrays to identify potential candidate predictive markers for trastuzumab realizing 

that many of the identified genes would be false positive findings. We did not pursue building 

a predictive model using microarray data since it would be meaningless.  

 

In designing nCounter assay, we took into consideration that microarray measurement might 

not be accurate enough and therefore miss potential predictive genes (false negative findings). 

Therefore we also included genes that have been described as prognostic genes in the 

literature. 

 

One important detail is that since we selected candidate genes from microarray data based on 

data analysis using clinical data at the time of unblinding, and final analysis of nCounter 

assay discovery cohort was based on updated clinical data with median follow up of 7 years, 

gene assignments have changed and no longer make sense (for example many genes from 

nCounter assay would be predictive in microarray analyses with updated clinical data, 

although they were not originally selected by microarray analysis).  Therefore we decided 

not to report microarray data in this manuscript.  

 

From 1734 cases that had tumor tissue with informed consent for future studies available, we 

randomly selected 800 cases for discovery cohort. Among those, 57 cases did not yield good 

RNA amplification product for microarray analyses, and therefore excluded from the 

discovery cohort. They were reassigned to the confirmation cohort.  

 

While 743 cases from the discovery cohort were subjected to microarray analyses, we had 

data from only 588 cases from this cohort due to the reagent batch problem of nCounter assay. 

While nCounter platform allows robust gene expression profiling of degraded or fragmented 

RNA extracted from FFPE tissue samples, we found significant differences between two 

batch of reagents we custom ordered for discovery and confirmation set which could not be 

normalized using mathematical method. Therefore we had to re-assay entire discovery set 

using the second batch of reagents ordered for the confirmation set. During this process we 

had depleted extracted RNA from 155 cases from the original discovery cohort of 743 

profiled with microarray and resultant final data available from 588 cases. Since those 155 

cases had shallow tumor blocks, we did not want to deplete them by cutting more sections.  



 

While this was a serious technical problem for nCounter assay when we performed them for 

discovery effort, it is no longer relevant since we can use synthetic targets of the 8 genes 

included in the model to normalize each case. Therefore we elected not to describe this 

problem in the paper in detail so as not to confuse readers.  

 

We plan to use RNAseq for future studies to avoid the batch problems with nCounter assay 

that we encountered during this study.  
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3‐D Subset Treatment Effect Pattern Plot (STEPP)   

 

STEPP methodology is an exploratory tool for treatment by covariate interaction, which were 

developed by Bonetti and Gelber.
1‐3 Originally, this approach only focused on one covariate, so 

we extended it for exploring two interaction effects simultaneously because we considered the 

treatment effect would be affected by both HER2 associated genes and ER associated genes.  

 For 3‐D STEPP analysis, each subsequent subpopulation of 100 patients was formed by 

removing 50 patients with the lowest Covariate1 (in this study, PC1) values from the current 

sub‐population and replacing them with the next 50 patients in the ordered list, while fixing 

400 sub‐population based on the ordered Covariate2 (in this study, PC2)  values.  Once the 

moving process based on Covariate 1 values were done, the next subpopulation based on 

Covariate 2 values were defined by removing 100 patients with the lowest Covariate 2 values 

from the current subpopulation and replacing them with the next 100 patients in the ordered 

list.  These processes continued until all patients were included in at least one subpopulation.  

After the overlapping subpopulations were identified, the treatment effect was estimated within 

each subpopulation using the COX regression models adjusting for nodal status.  Furthermore, 

this calculation was done again exchanging subpopulation setting Covariate1 for Covariate2 

(thus, 400 patients were fixed based on Covariate2 values for consecutive 100 patients 

subpopulations based on Covariate2 values).  3‐D STEPP analysis results are then shown 

graphically.  All computational processes are provided as an SAS macro program.  
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Description 

 

%TDSTEPPplot is a SAS macro that visually examines the interaction effect of two 

continuous variables and treatment on failure time with 3D plots, applying COX 

proportional hazard model.  This method is an extension of STEPP analysis which was 

originally proposed by Bonetti and Gelber (2000).1 

 

Invocation and details 
 
 In order to run this macro, you may need to include the following in your SAS 

program where you save the file 3dstepp.sas such as: 

%include  “c: \program file\mysasfiles\tdsteppmacro.sas” ; 
 
Then execute the macro TDSTEPPplot. 

An example macro call is: 

 
options nonotes; 

 
%TDSTEPPplot(ds=data1, var1=var1, var2=var2, 

outds=outsm, rr1=300, rr2=400, r1=50, r2=100, cov=age, 

trt=treatment, time=surv, 

cens=censor, cind=1, maxhr=1.5); 
 

quit; 

options notes; 

 
  



Definition of macro variables: 

 

<Parameters for the dataset> 
 

DSN: name of the SAS data set containing survival times, status, and covariates 
 
<Parameters for the variables> 

 
Var1: continuous variable name of interest 

 
Var2: another continuous variable name of interest 

time: survival time 

cens:  event status indicator variable 
 
icens: censoring status indicator variable value (ex. 1 ) 

 
COVS: list of covariates, separated by blanks. Covariates must be continuous or 

dummy variables. 

<Parameters for STEPP analysis> 
 
Rr1: the largest number of subjects in common among consecutive subpopulations for 

variable 1. 

Rr2: the number of subjects in each subpopulation for variable 1. (rr2>rr1) 
 
R1: the largest number of subjects in common among consecutive subpopulations for 

variable 2. 

R2: the number of subjects in each subpopulation for variable 2. (r2>r1) 
 
<Parameters for the outputs> 

 
Outds: name of the SAS dataset to create a new output dataset for 3D plot. 

Maxhr: maximum value of Hazard ratio (Z axis) for the 3-D plot. 
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Macro Program 
 
%macro stepp(r1=, r2=, ds=, var=, cov=, trt=, time=, cens=, cind= ); 

 
%let window=%eval(&r2-&r1); 

proc means data=&ds; 

var &var; 

output out=outds n=n; 

 

run; 

 
data outds;set outds; 

k=int(n/&window); 

call symput("k",trim(put(k,best.))); 

call symput("obsn",trim(put(n,best.))); 

 

run; 

 
proc rank data=&ds out=&ds; 

var &var; 

ranks rank; 

 

run; 

 
%do i=1 %to &k; 

 
%let f=%eval(1+&window*(&i.-1)); 

%let l=%eval(&f+&r2); 

 
%if &i<&k %then %do; 

data data&i; set &ds; 

if &f=< rank<=&l; 

 

%end; 

 

run; 
 

%if &i=&k %then %do; 



data data&i; set &ds; 

if &f=< rank; 

 

%end; 

 

run; 

 

proc means data=data&i; 

var &var; 

output out=out&i median=med; 
 

run; 

 

data out&i; set out&i; 

call symput("median",trim(put(med,best.))); 

 

run; 

 
proc phreg data=data&i; 

model &time*&cens(&cind)=&TRT &cov /rl; 

Hazardratio &TRT; 

ods output HazardRatios =hr&i; 

 

run; 

 
data hr&i; set 

hr&i; i=&i; 

median=&median; 
 

run; 

 

%end; 

 
data hr&var; set %do s=1 %to &k; hr&s %end;; run; 

 
%mend; 

 

%macro TDSTEPP(ds=, var2=, var1=, rr1=, rr2=, r1=, r2=, 

cov=, trt=, time=, cens=, cind= ); 

 
data &ds;set &ds; drop rank:; run; 

 
%let window1=%eval(&rr2-&rr1); 

proc means data=&ds; 

var &var1; 

output out=outds1 n=n; 

 

run; 

 
data outds1;set outds1; 

kk=int(n/&window1); 

call symput("kk",trim(put(kk,best.))); 

call symput("nall",trim(put(n,best.))); 

 

run; 

 
proc rank data=&ds out=&ds; 

var &var1; 

ranks rank1; 
 

run; 

 
%do q=1 %to &kk; 



 
%let f1=%eval(1+&window1.*(&q.-1)); 

%let l1=%eval(&f1+&rr2.); 

 
%if &q<&kk %then %do; 

data d&q; set &ds; if &f1=< rank1<=&l1; run; 
 

%end; 

%if &q=&kk %then %do; 

data d&q; set &ds; if &f1=< rank1; run; 

 

%end; 

 

proc means data=d&q; 

var &var1; 

output out=out1_&q median=med; 

 

run; 

 
data out1_&q; set out1_&q; 

call symput("median1",trim(put(med,best.))); 

 

run; 

 
%stepp(r1=&r1, r2=&r2, ds=d&q, var=&var2, cov=&cov, 

trt=&trt, time=&time, cens=&cens, cind=&cind  ); 

 
data hrr&q; set hr&var2; 

q=&q; 

&var1=&median1; 

rename median=&var2; 

 

run; 

 

%end; 

 
data hrall&var1; set %do t=1 %to &kk; hrr&t %end;; run; 

 
%mend; 

 

%macro TDSTEPPplot(ds=, var1=, var2=, outds=, rr1=, 

rr2=, r1=, r2=, cov=, trt=, time=, cens=, cind= , 

maxhr= ); 

 
ods listing close; 

%TDSTEPP(ds=&ds, var2=&var2, var1=&var1, rr1=&rr1, rr2=&rr2, r1=&r1, r2=&r2, 

cov=&cov, trt=&trt, time=&time, cens=&cens, cind=&cind ); 

 

quit; 

 
%TDSTEPP(ds=&ds, var2=&var1, var1=&var2, rr1=&rr1, rr2=&rr2, 

r1=&r1, r2=&r2, cov=&cov, trt=&trt, time=&time, cens=&cens, 

cind=&cind ); 
 

ods listing; 

 
data hrall; set hrall&var1 hrall&var2;run; 

 
proc means data=hrall; 

var &var1; 

output out=out1 max=max1 min=min1; 
 

run; 



 
data out1; 

set out1; 

call symput("max1",trim(put(max1,best.))); 

call symput("min1",trim(put(min1,best.))); 

 

run; 

 
proc means data=hrall; 

var &var2; 

output out=out2 max=max2 min=min2; 

 

run; 

 
data out2; set out2; 

call symput("max2",trim(put(max2,best.))); 



call symput("min2",trim(put(min2,best.))); 
run; 
proc g3grid data=hrall out=&outds; 

grid &var1*&var2=HazardRatio / spline smooth=.2 
axis1=&min1. to &max1. by 0.5 

axis2=&min2. to &max2. by 0.5; 
 

run; 

goptions reset=all border ; 

axis3 order=(0 to &maxhr by 0.1) label=none; 

proc g3d data=&outds; 

plot &var1*&var2=HazardRatio / rotate=60 grid zaxis=axis3 zticknum=14 

zmin=0 zmax=1.5; 
 

run; 

quit; 

%mend; 
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Model building from the candidate discovery cohort 

 

For prediction model building with the data from the discovery cohort (N=588), we 

attempted two approaches.  

 

In the first approach, we attempted to select candidate genes solely according to treatment-

by-gene expression interaction p values from COX model applying 10-fold Jack-knives 

calculated using discovery cohort(N=588).  

 

Top rank genes are listed below. 



 
 
 

Among the 44 genes with lowest p-values for interaction, 10 were shared by Affymetrix and 

Agilent microarray data when they were analyzed using the updated clinical data. Those 

genes are highlighted in yellow in the above table.  

Using cluster analysis using those 10 selected genes, we found three sub-groups in the di

scovery samples with differential benefit from trastuzumab. 

genesymbol cv_support mean p-value max p-value min p-value
FLOT2 100 0.0025 0.0054 0.0002

UNC119 100 0.0049 0.01 0.0008

TUBB2C 100 0.0051 0.0136 0.0008

XYLT1 100 0.0054 0.0131 0.0016

CA12 100 0.0059 0.0269 0.0007

GATA3 100 0.007 0.0154 0.001

GTF3C2 90 0.0078 0.0509 0.0003

SLC39A14 100 0.0088 0.0223 0.0014

FTH1 100 0.0145 0.0347 0.0024

SUPT6H 100 0.0155 0.0385 0.0013

ACVR1B 100 0.0156 0.0349 0.0041

DKFZP434A 90 0.0166 0.0533 0.005

ILF2 90 0.0188 0.0825 0.0012

DNAJC4 90 0.0194 0.0591 0.0056

ABHD2 100 0.02 0.0477 0.002

ZACN 100 0.0214 0.0476 0.0093

TPBG 90 0.0239 0.0976 0.0041

FAM84B 100 0.0242 0.0396 0.0034

SPDEF 90 0.0243 0.0562 0.0042

DAD1 80 0.0277 0.0808 0.0074

CASC3 80 0.0297 0.1148 0.0039

MYADM 90 0.03 0.0535 0.0044

PTTG1 90 0.0316 0.1292 0.0079

UHMK1 80 0.0329 0.0827 0.0059

TMBIM6 60 0.0346 0.0666 0.0059

THOP1 80 0.0348 0.0911 0.006

ANGPTL2 90 0.0364 0.0863 0.0058

ISOC1 80 0.0366 0.139 0.005

TMSB10 90 0.0379 0.086 0.0131

PIK3CA 90 0.0388 0.2252 0.0056

SLC7A2 70 0.0401 0.107 0.0097

ORC6L 60 0.0407 0.1022 0.0088

SPP1 60 0.0408 0.0607 0.0116

CD9 60 0.0411 0.0881 0.0083

PCK2 70 0.0426 0.095 0.009

CEACAM1 70 0.0433 0.097 0.0125

RPL21 60 0.0437 0.0896 0.0159

C17orf37 70 0.0442 0.1008 0.0084

KHSRP 70 0.0458 0.1119 0.016

RASSF7 70 0.0462 0.1588 0.0111

RPL34 70 0.0477 0.1475 0.0127

ERBB2 60 0.0485 0.1114 0.0064

RPL23A 60 0.0489 0.1281 0.0116

NUF2 60 0.0497 0.1363 0.0083

EGFR 50 0.0516 0.0997 0.0122

ENPP1 60 0.0525 0.1375 0.0126

ZNF609 70 0.0528 0.0949 0.0138

NLK 60 0.0542 0.1148 0.007

IGF1R 30 0.0593 0.0954 0.0112

L3MBTL2 80 0.0603 0.2704 0.0089

LOXL3 50 0.0612 0.1314 0.0336

PRR3 60 0.0648 0.1645 0.0038

C9orf58 40 0.0657 0.1155 0.0106

B4GALT1 50 0.0665 0.1483 0.026

TBX21 60 0.0676 0.2062 0.0203

FBXW11 50 0.0682 0.1752 0.014

MTCH2 50 0.0687 0.1844 0.0097

ZNF124 40 0.0701 0.2389 0.0297

KRT7 50 0.0714 0.1418 0.024

IGKV1-5 10 0.0914 0.1663 0.0157

KLHL25 40 0.0949 0.2731 0.0235

 

 



 
KM-plots for each subgroup are shown  below. 

 
 

 

While these genes could be used to identify subsets with differential benefit from 

trastuzumab, even the group with least benefit had a hazard ratio of 0.88 (0.47-1.64) with p 

value of 0.68. Since the control group in the latter subset had high enough recurrence rate, 

we thought that not using trastuzumab based on this model with hazard ratio of 0.88 would 

not be clinically justified. Similar efforts using different combination of genes selected by 



statistical criteria failed to yield clinically meaningful subsets. Therefore, we abandoned this 

approach. 

 

The second approach was based on biological and clinical knowledge. We tried to build a 

prediction model using genes that are associated with ERBB2 (HER2) and ESR1 (estrogen 

receptor) mRNAs. The logic behind this approach was as follows;1) since many significant 

predictive genes were ER or ERBB2 associated genes as listed in the table above, 2) subset 

treatment pattern plots of these two genes showed trends for interesting non-linear 

interaction with trastuzumab, 3) we already knew that ERBB2 is the target for trastuzumab 

and ER status influenced response to neoadjuvant trastuzumab, and 4) IGFR1, which was a 

published candidate trastuzumab resistant marker was associated with ESR1.     

 

We chose not to use ERBB2 and ESR1 alone to build the predictive model since we could 

not use the combination of the two genes to readily identify a subset with hazard ratio over 1.  

 

First, we chose the candidates based on the spearman’s correlation coefficients between each 

genes and ERBB2 or ESR1 expression calculated using the discovery set. 

 

Among the genes correlated with ERBB2 or ESR1 with spearman’s correlation coefficient 

>0.7, we selected 8 genes with interaction p-value (min p-value in the above table) <0.1 as 

highlighted in yellow. 

 

Gene 

Symbol 

Correlation with 

ERBB2 

Minimum 

Interaction 

P Value 

ERBB2 1 0.025 

GRB7 0.912 0.06 

C17orf37 0.833 0.0003 

KRT7 0.498 0.047 

TMEM45B 0.453 0.29 

ORMDL3 0.448 0.076 

C1orf93 0.427 0.1 

SPDEF 0.4 0.013 

VEGFA 0.395 0.24 

FGFR4 0.347 0.35 

 

  



Gene 

Symbol 

Correlation with 

ESR1 

Minimum 

Interaction 

P Value 

ESR1 1 0.064 

TBC1D9 0.757 0.49 

CA12 0.733 0.0024 

IGF1R 0.731 0.042 

GATA3 0.727 0.0036 

THSD4 0.727 0.12 

NAT1 0.701 0.075 

SLC39A6 0.685 0.21 

SCUBE2 0.637 0.47 

SIAH2 0.632 0.19 

 

 

Correlation structure of the 8 selected genes is shown below. 

 

 
 

 

In a principal component analysis, first two principal components of these genes accounted 

for 78.6% of the total variance.  



 
 

 

 

While the interaction between principal components of these 8 genes did not show linear 

interaction with trastuzumab, Three Dimensional Subset Treat Effect Pattern Plot (TDSTEPP) 

showed subset with hazard ratio of over 1 and we decided to pursue building predictive 

model based on these genes. 

 

 

 

 

 

Red; HR>1.0 

Green; HR<0.5 



 

Based on the above bird’s eye view of the TDSTEPP, we developed the algorithm to divide 

three groups (1; non-benefit group, 2; may benefit group, 3; should benefit group) as follows; 

if factor1>0.6 and factor2>0.1 then group=1; 

if -0.12<factor1 and factor2<=0.1 then group=2; 

if factor1<=-0.12 and factor2<=-0.55 then group=2;  

if factor1<=-0.6 and factor2>=0.6 then group=2; 

if -0.12<factor1<=0.6 and 0.1<factor2<=0.6 and factor2<=factor1+0.22 then 

group=2; 

if -0.12<factor1<=0.6 and 0.1<factor2<=0.6 and factor2>factor1+0.22 then group=3; 

if -0.6<factor1<=0.6 and factor2>=0.6 then group=3; 

if factor1<=-0.12 and -0.55<factor2<0.6 then group=3; 

 

The above cut-points description was reduced to what was described in the manuscript by 

eliminating cut point description for group 2 (intermediate benefit group) since they can be 

identified as the remaining cases after identifying high and no benefit group, to make it less 

complex.  

 

 
 

As shown above, Kaplan Meier plots of discovery set generated using the above model 

indicated that we may be able to identify a small subset with no benefit from trastuzumab. 

Furthermore due to their excellent baseline prognosis without tratuzumab, a molecular test to 

identify these patients may have a clinical utility.  

Based on the above findings, we decided to pursue biology based prediction model for further 

confirmation.  
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