Supplemental Material to:

Mohamed Hafez, Gertraud Burger, Sergey V. Chteinberg, Franz B. Lang

A second eukaryotic group with mitochondrion-encoded tmRNA: In silico identification and experimental confirmation

2012; 10(8) http://dx.doi.org/10.4161/rna.25376

www.landesbioscience.com/journals/rnabiology/article/25376/

SUPPLEMENTAL DATA

Supplement to the manuscript :

A second eukaryotic group with mitochondrion-encoded tmRNA: In silico identification and experimental confirmation

Mohamed Hafez, Gertraud Burger, Sergey V. Steinberg and B. Franz Lang

AUTHORS' CONTRIBUTIONS

BFL conceived the study, developed the mt-tmRNA covariance model, identified corresponding genes in complete oomycete mtDNAs, and evaluated RNA-Seq data for mapping of the P. sojae RNA termini. MH identified additional tmRNA genes in GenBank, wrote the first manuscript draft, and designed figures. SVS established RNA tertiary models. All authors participated in the discussion of results, and production of the final manuscript version.

SUPPLEMENTAL TABLES

Table S1. Search results with a covariance mt-tmRNA model (based on jakobid sequences) in nine complete oomycete mitochondrial genome sequences. Note a high statistic support despite the short length of the gene sequence, which is due to conservation of both primary sequence and RNA structure. S. ferax has the shortest sequence and the most derived features, with no apparent sequence conservation in the T-loop, and a reduced-size T-loop and D-loop.

Species name	E-value	StartStop	Strand	Structu	ire/S	equend	ce							
				111111		11111		11111	1111111			1111111		111111
Phytophthora.sojae	8.6e-12	41704246	+	UAAAUG	GAC	CCAAA	GGCAGUA	UUUGG	UAUUUCC	А	aauaaauu. aaauuauaa	GGGAAUA	AAAUUAGAAUUG	CAUUUA
Phytophthora.ipomoeae	9.9e-12	41764248	+	UAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	A	uuaaauuuaauaa	GGGAAUA	AUAAAA GAAUUG	A CAUUUA
Phytophthora.andina	9.9e-12	41764248	+	UAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	A	uuaaauuuaauaa	GGGAAUA	AUAAAA GAAUUG	A CAUUUA
Phytophthora.infestans	9.9e-12	41764248	+	UAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	А	uuaaauuuaauaa	GGGAAUA	AUAAAAGAAUUG	CAUUUA
Phytophthora.mirabilis	9.9e-12	41744246	+	UAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	А	uuaaauuuaauaa	GGGAAUA	AUAAAA GAAUUG	CAUUUA
Phytophthora.phaseoli	9.9e-12	41764248	+	UAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	A	uuaaauuuaauaa	GGGAAUA	AUAAAA GAAUUG	CAUUUA
Phytophthora.ramorum	7e-11	41204197	+	UAAAUG	AAC	CCAAA	GGCAGUA	UUUGG	UAUUUCC	А	uuuauuuauauuaaaaua	GGGGAUA	AUAUUA GAAUUG	CAUUUA
Pythium.ultimum	8.6e-11	2003620115	5 +	GAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	A	uauaaacu.aauuaauac	GGGAAUA	AUUAUAuaAGAAUUG	CAUUUU
1	8.6e-11	4236542286	5 -	GAAAUG	GAC	CCAAA	GGCGGUA	UUUGG	UAUUUCC	А	uauaaacu. aauuaauac	GGGAAUA	AUUAUAuaAGAAUUG	CAUUUU
Saprolegnia.ferax	2e-08	1155611498	3 -	AUAAUG	UAC	CCAAU	UU-AAAA	AUUGG	UAUUUCC	А	aaaa	GGGAAUA	AAUAUUCG	CAUUAU
1	2e-08	3749137549	+ +	AUAAUG	UAC	CCAAU	UU-AAAA	AUUGG	UAUUUCC	A	<u>aa</u> aa	GGGAAUA	AAUAUUCG	CAUUAU
				P2		P3	T-loop	P3/	P1		intervening loop	P1 /	D-like loop	P2/

P3 T-loop P3'

intervening loop

D-like loop

Table S2. Complete list of currently known mt-tmRNAs in jakobids and oomycetes. Sequences identified by covariance search in complete mtDNAs are marked gray.

Species	GenBank	Note
-	accession number	
Andalucia godoyi	KC353352	complete mitochondrial genome
Histiona aroides	KC353353	complete mitochondrial genome
Jakoba libera	KC353355	complete mitochondrial genome
Reclinomonas americana ATCC50633	KC353356	complete mitochondrial genome
R. americana ATCC 50283	KC353357	complete mitochondrial genome
R. americana ATCC 50284	KC353358	complete mitochondrial genome
R. americana ATCC 50394	NC_001823	complete mitochondrial genome
Seculamonas ecuadoriensis	KC353359	complete mitochondrial genome
Albugo candida	CAIV01000124	whole genome shotgun sequence
A. laibachii	FR825415	Illumina short reads
Bremia lactucae	JP948723	Transcriptome Shotgun Assembly
Phytophthora alni	DQ162893	Partial sequence
P. andina	NC_015619	complete mitochondrial genome
P. cactorum	DQ162892	Partial sequence
P. cambivora	DQ162894	Partial sequence
P. capsici	DQ162899	Partial sequence
P. cinnamomi	JF746382	Partial sequence
P. citricola	DQ162900	Partial sequence
P. citrophthora	DQ162901	Partial sequence
P. cryptogea	DQ162908	Partial sequence
P. drechsleri	DQ162910	Partial sequence
P. erythroseptica	DQ162909	Partial sequence
P. europaea	DQ162895	Partial sequence
P. fragariae	DQ162896	Partial sequence
P. infestans	NC_002387	complete mitochondrial genome
P. inundata	DQ162902	Partial sequence
P. ipomoeae	NC_015622	complete mitochondrial genome
P. katsurae	DQ162904	Partial sequence
P. kernoviae	DQ162914	Partial sequence
P. lateralis	DQ162912	Partial sequence
P. medicaginis	DQ162911	Partial sequence
P. mirabilis	NC_015606	complete mitochondrial genome
P. nicotianae	JF706917	Partial sequence
P. palmivora	DQ162906	Partial sequence
P. phaseoli	NC_015616	complete mitochondrial genome
P. pseudosyringae	DQ162907	Partial sequence
P. quercina	DQ162905	Partial sequence
P. ramorum	NC_009384	complete mitochondrial genome
P. sojae	NC_009385	complete mitochondrial genome
Pseudoperonospora cubensis	AHJF01014480	whole genome shotgun sequence
Pythium ultimum	NC_014280	complete mitochondrial genome
Saprolegnia ferax	NC_005984	complete mitochondrial genome

Figure S1. Standard tRNA secondary structure

Figure adapted from (Lang et al. 2011). A, cloverleaf. Each stemloop is shown in a different color. Short lines connect nucleotides forming Watson-Crick base pairs within stems. Black filled circles (base pairs 13-22 and 26-44) indicate that many tRNAs have non-Watson-Crick interactions. Dotted lines connect nucleotides involved in conserved tertiary interactions. **Nucleotides** are numbered in accordance with the standard tRNA nomenclature. based on the yeast Phe-tRNA (Rich and RajBhandary 1976). Note that numerous cytosolic tRNAs do not fit this structure. For instance, nucleotide 47 does not exist in some tRNAs, and position 17 may be either empty or additional nucleotides may be inserted between positions 17 and 18. Further, some tRNAs have one or two additional nucleotides between positions 20 and 21. Finally, the variable region located between the anticodon and T stem-loop, which minimally contains three nucleotides, may be extended by eight or more nucleotides and form an extra arm.

B, L-form. Rectangles represent individual nucleotides. Nucleotides of stem-loops are shown in the same color and with the same numbering as in A. Nucleotides of the anticodon loop and non-stacked nucleotides of the D-loop (16, 17 and 20) are not shown (indicated by dashed lines). The dashed gray line connecting nucleotides 46 and 47 of the variable region indicate that additional non-numbered nucleotides may be inserted and form the extra arm.

Tertiary interactions U8-A14 and 15-48 are found in the D-stem-loop region of all cytosolic tRNAs. The presence of a Watson-Crick or U-G base pair 13-22 and of the tertiary contacts 9-23 and 22-46 constitutes the standard pattern of tertiary interactions. This pattern may also be accompanied by the tertiary contact 10-45. In the DT-region, there are two inter-loop base pairs G18- Ψ 55 and G19-C56 separated by a purine-57. The dinucleotide 59-60 bulges between base pairs 53-61 and 54-58. Nucleotide 59 stacks to the tertiary base pair 15-48, which constitutes the last layer of the D/anticodon helical domain. This interaction stabilizes the perpendicular arrangement of the two helical domains of the tRNA L-shape.

Figure S2. Occurrence of mt-tmRNAs across eukaryotes

α-proteobacterial outgroup

The tree (adapted from (Derelle and Lang 2011)) has been inferred with mtDNA- plus nucleus-encoded mitochondrial proteins, and is rooted with α -Proteobacteria (from which mitochondria derive). Species representatives that have mtDNA-encoded tmRNAs are marked in red. Note that tmRNAs are only identified in sub-lineages of two very distant organismal groups, jakobids (Excavata) and oomycetes (Stramenopila).

# STOCKHOLM 1.0	
Recli.amer.94	ACTATGGAACCGAGGGCGGATCTCGGCATCTCCAtaaaaatgtttgataacattttttGGGGATGTTTTTAGTATTCGACATAGT
Recli.amer.83	ACTATGGACCCGAGGGCAGTTCTCGGCATCTCCAtttagatattgtttttaaGGGGATGTTTTTAGGATTCGACATAGT
Recli.amer.33	GCTATGGACCCGAGGGCAGTTCTCGGCATCTCCAtctaaagatattcttttttaaGGGGATGTTTTTAGGATTCGACATAGT
Recli.amer.84	ACTATGGACCCGAGGGCAGTTCTCGGCATCTCCAtctaaaaaaatttttttttaaGGGGATGTTTTTAGAATTCGACATAGT
Histiona.aroides	ACTATGGACCCGTGGGTGGAACACGGCATCTCCAggccctgctattttatgGGGGGGTGTAATAAATTCGACATAGT
Andalucia	AGAAAGGAACCGATCT-CATCTTCGGCATTTCCAattctatctttcGGGAATGAATTGTTTTCGACTTTCT
Seculamonas	${\tt CGAATGGACCCATGGGCAGTTCATGGCATTCCCCAgtaacaacatcagagta-gtttttatattgttttaGGGAATGATATATactaGAGATCGACATTCA}$
Phyt.medicaginis	TAAATGGACCCAAAGGCGGTATTTGGTATTTCCAtttaaaaattaaaaGGGAATAATAATAGAATT-GACATTTA
Phyt.sojae	TAAATGGACCCAAAGGCAGTATTTGGTATTTCCAaataaattaaattataaGGGAATAAAATTAGAATT-GACATTTA
Phyt.infestans	TAAATGGACCCAAAGGCGGTATTTGGTATTTCCAttaaatGAATT-GACATTAA
Phyt.cinnamomi	TAAATGGACCCAGAGGCAGTTTTTGGTATTTCCAtataaattaaatgactGGGGATAATAATAGAATT-GACATTTA
Phyt.citrophthora	AAAATGGACCCAAAGGCAGTATTTGGTATTTCCAtattgtaaattaataGGGAATAATAATAATAGAATT-GACATTTA
Phyt.ramorum	TAAATGAACCCAAAGGCAGTATTTGGTATTTCCAtttatttatattaaaataGGGGATAATATTAGAATT-GACATTTA
Pythium.ultimum	GAAATGGACCCAAAGGCGGTATTTGGTATTTCCAtataaactaattaatacGGGAATAATTATAt-aaGAATT-GACATTTT
Bremia.lactucae	TAAATGGACTCGAGGGCAGTATTTGATATTTCCAttttaattaatagGGGGGATAATAATAGAATT GACATTTA
Saprolegnia.ferax	ATAATGTACCCAATTT-AAAAATTGGTATTTCCAaaATTCGACATTAT
Phyt.katsurae	TAAATGGACTCAAAGGCAGTATTTGATATTTCCAtttatattattattaattaataataataataaGGGAATAAAAATAG-ATT GACATTTA
#=GC SS_cons	<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
#=GC RF	BBBBBBbbbbCCCCCCcccccCCCCDDDDDDDeDDDDDDDDddddddffffffBBBBBB

Dataset 1. Alignment used for building the mt-tmRNA CM model. Sequences that are not aligned with confidence are in lower case, corresponding sequence columns were masked. cmbuild was executed using '—hand'.

SUPPLEMENTAL REFERENCES

- Derelle, R., and B. F. Lang. 2011. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol **29**:1277-1289.
- Lang, B. F., D. Lavrov, N. Beck, and V. Steinberg. 2011. Mitochondrial tRNA structure, identity and evolution of the genetic code. Pp. 431-474 in C. E. Bullerwell, ed. Organelle Genetics. Springer, Berlin, Heidelberg, 2012.