Parameter	Symbol	Minimum value	Maximum value	Reference
Relative rate of reduction in bacterial ingestion rate by promoting Hand-hygiene and clean water supply.	$\theta(t)$	0 week ⁻¹	0.8 week^{-1}	[1]
Rate of Vaccination	p(t)	0 week^{-1}	$0.35~\mathrm{week}^{-1}$	[2]
Vaccine efficiency	σ	0.67	0.67	[3, 4, 5]
Rate of waning, vaccine induced immunity	ϵ	$0.5 \mathrm{year}^{-1}$	$0.5 \mathrm{year}^{-1}$	[3, 4, 5]
Proportion of infected individuals receiving antibiotics/oral- rehydration therapy	$\alpha(t)$	0 week^{-1}	0.7 week^{-1}	[2]
Relative rate of recovery, receiving antibiotics/oral-rehydration therapy	λ	2.3	2.3	[6, 7, 3]
Relative rate of shedding, receiving antibiotics/oral-rehydration therapy	ψ	0.52	0.52	[6, 7, 3]
Relative rate of reduction in shedding by promoting sanitation	s(t)	0 week^{-1}	$0.4~{\rm week^{-1}}$	[1]

References

- [1] World Health Organization (2009), Global Task Force on Cholera Control, Cholera country profile: Zimbabwe. Available: http://www.who.int/cholera/countries/en/Zimbabwe/. Accessed October 6, 2012.
- [2] Neilan RLM, Schaefer E, Gaff H, Fister KR, (2010) Modeling Optimal Intervention Strategies for Cholera. Bull Math Biol 72(8): 2004 2018.
- [3] Andrews JR, Basu S, (2011) Transmission Dynamics and Control of Cholera in Haiti: An Epidemic Model. Lancet 377(9773): 1248 1255.
- [4] Sur D, Lopez AL, Kanungo S (2009) Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomized, double-blind, placebo-controlled trial. Lancet 374(9702): 1694 1702.
- [5] Thiem VD, Deen JL, von Seidlein L (2006) Long-term effectiveness against cholera of oral killed whole-cell vaccine produced in Vietnam. Vaccine 24(20): 4297-4303.
- [6] Rahaman MM, Majid MA, Alam AKMJ, Islam MR (1976) Effects of doxycycline in actively purging cholera patients: a double-blind clinical trial. Antimicrob Agent Chem 10(4): 610 612.
- [7] Saha D, Karim MM, Khan WA (2006) Single-Dose Azithromycin for the Threatment of Cholera in Adults. N Engl J Med 354(23): 2452 2462.