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Simulation Studies

Control of the Type-I error rate

In order to compare assess the control of the Type-I error rate among different methods we have chosen the way
in which the results are presented in Anders and Huber (2010) . We plot the empirical cumulative distribution
function (ECDF) of the P value for each method. By doing so, we can perform direct comparisons between
our method and previous approaches. The purpose of these simulation studies is to verify that tweeDEseq
controls the type-I error at the nominal significance level. Therefore, the proportion of P values below a
threshold a must be < «, that is, the ECDF curve should not lie above the diagonal.

RNA-seq count data were simulated as suggested in Robinson and Smyth (2008)2. The library sizes are
sampled from a uniform distribution between 30,000 and 90,000. These library sizes are considerably smaller
than those available from the current sequencing technologies and can be even more different from those used
in the near future. However, increasing the library size to better reflect actual data does not alter the conclusions
obtained, because the library size acts, in fact, as a scaling factor. We simulated 20,000 genes, each of them
from a PT distribution varying the a parameter to mimic real situations as the ones illustrated in Figure 3 of

the main manuscript. In particular, we simulated RNA-seq counts following a PT distribution according to four



scenarios that cover a range of PT models with different parameters a as indicated in Table S2. We simulated

data sets for 25 and 50 individuals per group. Results of these simulations can be found in Figures S3 to S7.

Required sample size to control the Type-I error rate

We also performed a simulation study to estimate the number of samples required by our approach. We simu-
lated data under the four scenarios described in Table S2. For each of them we simulated 200 replicates varying
the sample size per group in {3, 6,9, 12,15, 18, 20, 25, 30, 35,40}. Results of these simulations can be found
in Figure S7. We can observe that as the sample size increases the empirical Type-I error attains its nominal
level in each of the four scenarios. From this simulation, it follows that with a minimum sample size of n = 15

a significance level o« = 0.05 is properly controlled.



Supplementary Tables

Supplementary Table S1: Enrichment of non-NB genes among housekeeping genes through the data of Pickrell
et al. (2010) processed with different normalization methods.

HKG nNByes nNBno Total OR  Pvalue
UnNorm | Yes 31 546 577
No 187 26355 26542
Total 218 26901 27119 8.0 6.56e-17
HKG nNByes nNBno Total OR  Pvalue
edgeR | Yes 19 558 577
No 36 27637 27673
Total 55 28195 28250 26.1 8.27e-19
HKG nNByes nNBno Total OR  Pvalue
cqn | Yes 32 545 577
No 139 23265 23404
Total 171 23810 23981 9.8 1.49e-19

Supplementary Table S2: Description of four different scenarios for a simulation study assessing the type-I error
rate in two-sample tests involving sample groups from different count data distributions.

Group A Group B Distributions
Scenariol | PT(p=1,¢=30,a =—-140) | PT(nu=1,¢=30,a=0.5) | Neyman Type I vs PIG
Scenario 2 | PT(u = 20,¢ = 100,a =0.5) | PT(u = 20,¢ = 200,a = —1) | PIG vs Polya-Aeppli
Scenario 3 | PT'(u = 200,¢ = 150,a = —1) | PT(pu = 200,¢ = 200,a = 0) | Polya-Aeppli vs NB
Scenario 4 PT(u=3,¢=20,a=0) PT(u=3,¢=20,a=0) NB vs NB

Supplementary Table S3: Differentially expressed genes between female and male Nigerian individuals called

by tweeDEseq at 10% FDR. Genes are ordered by their absolute fold-change in log, scale. The “Gender specific”

column indicates those genes reported in the literature as belonging to the male-specific region of the Y chromosome

(MSY ?) or escaping to the inactivation of the Xi chromosome (XiE*).

transcript

protein coding)

(non-

# Ensembl Gene Gene Chr Description Log, | Gender
Identifier Symbol FC | Specific
1 | ENSG00000229807 XIST X | X (inactive)-specific | 8.39 XiE

Supplementary Table S3 — Continued on next page



Supplementary Table S3 — continued from previous page

2 | ENSG00000131002 CYorf15B Y | chromosome Y open | -4.44 | MSY
reading frame 15B

3 | ENSG00000165246 NLGN4Y Y | neuroligin 4, Y- |-390 | MSY
linked

4 | ENSG00000099749 CYorfl15A Y | chromosome Y open | -3.87 MSY
reading frame 15A

5 | ENSG00000213318 | RP11-331F4.1 16 -3.60

6 | ENSG00000233864 TTTY15 Y | testis-specific tran- | -3.54
script, Y-linked 15
(non-protein coding)

7 | ENSG00000157828 RPS4Y2 Y | ribosomal protein S4, | -3.18 | MSY
Y-linked 2

8 | ENSG00000230986 | RP13-204A15.1 X -3.05

9 | ENSG00000146938 NLGN4X X | neuroligin 4, X- | -3.04 XiE
linked

10 | ENSG00000129824 RPS4Y1 Y | ribosomal protein S4, | -2.55 | MSY
Y-linked 1

11 | ENSG00000243209 AC010889.1 Y -2.43

12 | ENSG00000198692 EIF1AY Y | eukaryotic transla- | -2.21 MSY
tion initiation factor
1A, Y-linked

13 | ENSG00000011201 KAL1 X | Kallmann syndrome | -1.81
1 sequence

14 | ENSG00000183878 UTY Y | ubiquitously  tran- | -1.75 MSY
scribed tetratricopep-
tide repeat gene,
Y-linked

15 | ENSG00000241859 KALP Y | Kallmann syndrome | -1.64

sequence  pseudo-

gene

Supplementary Table S3 — Continued on next page
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16 | ENSG00000067048 DDX3Y Y | DEAD  (Asp-Glu- | -1.59 | MSY
Ala-Asp) box
polypeptide 3,
Y-linked

17 | ENSG00000232928 | RP13-204A15.4 X -1.42

18 | ENSG00000231535 | NCRNA00278 Y | non-protein coding | -1.38
RNA 278

19 | ENSG00000012817 KDMS5D Y | lysine (K)-specific | -1.37
demethylase 5D

20 | ENSG00000006757 PNPLA4 X | patatin-like phospho- | 1.01 XiE
lipase domain con-
taining 4

21 | ENSG00000005302 MSL3 X | male-specific 0.91
lethal 3 homolog
(Drosophila)

22 | ENSG00000101846 STS X | steroid sulfatase (mi- | 0.89 XiE
crosomal), isozyme S

23 | ENSG00000215520 | RP11-401M16.3 1 0.83

24 | ENSG00000239254 | RP11-365F18.3 7 0.83

25 | ENSG00000130021 HDHDI1 X | haloacid 0.82 XiE
dehalogenase-like
hydrolase = domain
containing 1

26 | ENSG00000224287 MSL3P1 2 | male-specific 0.81
lethal 3 homolog
(Drosophila) pseudo-
gene 1

27 | ENSG00000198034 RPS4X X | ribosomal protein S4, | 0.80 XiE
X-linked

28 | ENSG00000239490 | RP11-863N1.1 18 0.80

29 | ENSG00000229920 AC016734.3 2 0.80

Supplementary Table S3 — Continued on next page
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30 | ENSG00000214541 AL137162.1 20 0.80

31 | ENSG00000242058 | RP11-143J12.1 18 0.77

32 | ENSG00000186008 RPS4XP21 19 | ribosomal  protein | 0.76
S4X pseudogene 21

33 | ENSG00000162639 HENMT1 1 HENI1 methyltrans- | -0.76
ferase homolog 1
(Arabidopsis)

34 | ENSG00000239830 | CTD-3116E22.2 | 19 0.75

35 | ENSG00000243663 | RP11-21K20.1 12 0.74

36 | ENSG00000219146 | RP11-134L4.1 6 0.73

37 | ENSG00000226948 | RP5-1068H6.3 20 0.72

38 | ENSG00000224892 RPS4XP16 13 | ribosomal  protein | 0.72
S4X pseudogene 16

39 | ENSG00000244097 | RP11-411G7.1 17 0.72

40 | ENSG00000240371 | RP11-624G17.1 11 0.71

41 | ENSG00000214203 | RP11-135F9.1 12 0.71

42 | ENSG00000218265 | RP11-501119.4 6 0.71

43 | ENSG00000244073 | CTD-2284010.1 5 0.70

44 | ENSG00000234335 | RP11-241120.3 10 0.69

45 | ENSG00000240721 RPS4XP15 12 | ribosomal  protein | 0.68
S4X pseudogene 15

46 | ENSG00000205664 | RP11-706015.1 X | HCG1981372, iso- | 0.65
form CRA_cNovel
protein

47 | ENSG00000126012 KDM5C X | lysine (K)-specific | 0.62 XiE
demethylase 5C

48 | ENSG00000229305 | RP11-431K24.2 1 0.57

49 | ENSG00000173674 EIF1AX X | eukaryotic transla- | 0.56 XiE

tion initiation factor

1A, X-linked
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50 | ENSG00000114374 USP9Y Y | ubiquitin specific | -0.51 MSY
peptidase 9, Y-linked

51 | ENSG00000005889 ZFX X | zinc finger protein, | 0.49 XiE
X-linked

52 | ENSG00000086712 TXLNG X | taxilin gamma 0.47

53 | ENSG00000215301 DDX3X X | DEAD  (Asp-Glu- | 0.46 XiE
Ala-Asp) box
polypeptide 3,
X-linked

54 | ENSG00000067646 ZFY Y | zinc finger protein, | -0.45 | MSY
Y-linked

55 | ENSG00000147050 KDM6A X | lysine  (K)-specific | 0.43

demethylase 6A




Supplementary Figures
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Supplementary Figure S1: Goodness of fit of negative-binomial simulated data to the negative-binomial
distribution. Quantile-quantile plots of the x? statistic employed to assess the goodness-of-fit to a negative binomial
distribution. The right y-axis indicates the quantile of the observed distribution. (a) Synthetic counts for 23,971
genes and n = 1,000 samples simulated from a negative binomial distribution with mean count 32 and dispersion
parameter 0.2. Red points correspond to 100 genes which in 42% of the samples had mean count 64, thus simulating
them as differentially expressed. (b) Same as (a) but with n = 69 samples, thereby reproducing dimensions similar
to those of the Pickrell® et al. (2010) data.
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Supplementary Figure S2: Control of the Type-I error under scenario 1 in Table S2. Each panel shows
empirical cumulative distribution functions (ECDFs) for p-values when comparing two groups. No genes are truly
differentially expressed. Therefore, ECDF curves should remain below the diagonal (gray). Each panel gives the
results for different method and they illustrate the performance when simulating data from a Poisson-Tweedie distri-
bution with parameter a = —140 and a = 0.5 for each group, respectively. Therefore, counts belonging to Group A
follow a Neyman Type A distribution, while counts for group B can be modeled using a Poisson Inverse Gaussian.
Results for different samples sizes are shown (n=50 green line, n=25 red line). We can observe as tweeDEseq
controls for type-I error (specially for n=50), while the other methods does not. This means that other approaches
can potentially lead to a large number of false positive findings.
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Supplementary Figure S3: Control of the Type-I error under scenario 2 in Table S2. Each panel shows
empirical cumulative distribution functions (ECDFs) for p-values when comparing two groups. No genes are truly
differentially expressed. Therefore, ECDF curves should remain below the diagonal (gray). Each panel gives the
results for different method and they illustrate the performance when simulating data from a Poisson-Tweedie distri-
bution with parameter ¢ = 0.5 and a = —1 for each group, respectively. Therefore, counts belonging to Group A
follow a Poisson Inverse Gaussian distribution, while counts for group B can be modeled using a Polya-Aeppli model.
Results for different samples sizes are shown (n=50 green line, n=25 red line). We can observe as tweeDEseq con-
trols for type-I error (specially for n=50), while the other methods (except edgeR with tagwise dispersion mode)
does not. This means that other approaches can potentially lead to a large number of false positive findings.
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Scenario 3

0.0 0.5 1.0
| | | | | | | | |
tweeDEseq DESeq edgeR common
1.0 -
0.5 L
LL
&)
O 0.0 -
,S edgeR tagwise non—parametric permutation
= i L
g 1.0
w
. - 0.5
. - 0.0
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
p value

Supplementary Figure S4: Control of the Type-I error under scenario 3 in Table S2. Each panel shows
empirical cumulative distribution functions (ECDFs) for p-values when comparing two groups. No genes are truly
differentially expressed. Therefore, ECDF curves should remain below the diagonal (gray). Each panel gives the
results for different method and they illustrate the performance when simulating data from a Poisson-Tweedie dis-
tribution with parameter a = —1 and a = 0 for each group, respectively. Therefore, counts belonging to Group
A follow a Polya-Aeppli distribution, while counts for group B can be modeled using a NB. Results for different
samples sizes are shown (n=50 green line, n=25 red line). We can observe as tweeDEseq controls for type-I error
(specially for n=50), while the other methods (except edgeR with tagwise dispersion mode) does not. This means
that other approaches can potentially lead to a large number of false positive findings.
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Supplementary Figure S5: Control of the Type-I error under scenario 4 in Table S2. Each panel shows
empirical cumulative distribution functions (ECDFs) for p-values when comparing two groups. No genes are truly
differentially expressed. Therefore, ECDF curves should remain below the diagonal (gray). Each panel gives the
results for different method and they illustrate the performance when simulating data from a Poisson-Tweedie distri-
bution with parameter a = 0 and a = 0 for each group, respectively. Therefore, counts for each groups are simulated
using a Negative Binomial distribution. Results for different samples sizes are shown (n=50 green line, n=25 red
line). In this case, as all methods are based on Negative Binomial distribution, hence, the results are quite almost
identical.

12



0.00 0.05 0.10
| |
NB vs. PIG

|
NB vs. NB

0.10 - -
0.05 - -
LL
[a)
© 0.00 - -
8 Neyman-Type | vs. PIG PIG vs. P-A
=
£
L
- - 0.10
- - 0.05
. - 0.00
| | | | | |
0.00 0.05 0.10

p value

Supplementary Figure S6: Type I error control in the tail of the distribution. Each panel shows empirical
cumulative distribution functions (ECDFs) for p-values when comparing two groups using tweeDEseq (blue line)
and permutation testing (pink line) approaches. Results zoom into the range of small p-values. No genes are truly
differentially expressed. Therefore, ECDF curves should remain below the diagonal (gray). Each panel gives the
results for the Scenarios described in Supplementary Table 1. We can observe how permutation testing does not
control the type I error rate, while t weeDEseq does.
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Supplementary Figure S7: Optimal sample size to use t weeDEseq. This figure shows the empirical Type-I
error on the y-axis as function of the sample size and scenario described in Table S2. The nominal Type-I error rate
(o« = 0.05) is indicated by an horizontal dash line. We simulated data under the null hypothesis that no genes are
differentially expressed. Ideally, each boxplot should be centered over the dash line which represents the expected
Type-I error at that level.
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Supplementary Figure S8: Distribution of p-values under the null hypothesis of no differential expression.
Histograms indicating the density (y-axis) of raw p-values (z-axis) obtained by every method and parameter config-
uration indicated on the left edge on 100 data sets bootstrapped separately from male and female samples of the LCL
RNA-seq data®. An horizontal red line at density one indicates the uniform distribution. Each data set contained
40 female (columns 1 and 2) and male (columns 3 and 4) samples, arbitrarily divided into two equally-sized groups
where the two-sample test of each corresponding method was applied. Results in columns 1 and 3 were obtained
from the raw un-normalized counts and in columns 2 and 4 from counts normalized with the cqn package®. No
differential expression is expected and thus p-values should be uniformly distributed. In the first row tweeDEseq
displays the distributions closest to the red line and hence to this criterion.
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Supplementary Figure S9: Estimation of the number of differentially expressed (DE) genes in simulations
with constant library factors. Boxplots of estimated numbers of DE genes obtained from the estimate 7y of
genes that are truly non-DE calculated using the package qvalue’. Each panel corresponds to simulations using a
different number of DE genes (rows) and their fold-change (columns). All simulations draw data from a hierarchical
gamma-Poisson model with constant library factors. Horizontal dash lines indicate the true number of DE genes.
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Supplementary Figure S10: Estimation of the number of differentially expressed (DE) genes in simula-
tions with variable library factors. Boxplots of estimated numbers of DE genes obtained from the estimate 7y of
genes that are truly non-DE calculated using the package qvalue’. Each panel corresponds to simulations using a
different number of DE genes (rows) and their fold-change (columns). All simulations draw data from a hierarchical
gamma-Poisson model with variable library factors. Horizontal dash lines indicate the true number of DE genes.
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Supplementary Figure S11: Precision and recall comparison on the LCL RNA-seq data. Precision (y-axis)
and recall (x-axis) values for genes called DE at 10% FDR by different DE detection methods and configuration
parameters. The right y-axis indicates values of the F-measure shown by dot lines. As the figure shows, on the
normalized data tweeDEseq provides higher ['-measure values than other methods and configuration parameters
indicating a better precision-recall tradeoff. These results were obtained by applying a more stringent filter on lowly

expressed genes than the one shown in Figure 10 of the main article.
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Supplementary Figure S12: Reproducibility of differential expression (DE) between microarray and RNA-
seq. Raw p-values of differential expression in — log;, scale for DE genes called at 10% FDR by either limma
(y-axis), from microarray data, or the other compared DE detection method applied on RNA-seq data (z-axis). A
regression line is depicted in red and blue points denote genes with documented sex-specific expression. On the
bottom-right corner of each panel, p indicates the Pearson correlation whereas R? and P indicate, respectively,
the coefficient of determination and p-value of the test for zero regression coefficient, of the — log;, p-values of
limma as function of those from the compared RNA-seq method. Even though the relationships are significant
in all comparisons, the low R? values indicate a poor level of reproducibility between microarray and RNA-seq
DE analysis, irrespectively of the method employed for detecting DE genes in RNA-seq data. A large fraction of
irreproducible DE is due to genes that are called DE by one technology but not by the other. Blue dots indicate genes
with documented sex-specific expression.

19



References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010,

11(10).

Robinson MD, Smyth GK: Small-sample estimation of negative binomial dispersion, with applications

to SAGE data. Biostatistics 2008, 9(2):321-332.

Skaletsky H, Kuroda-Kawaguchi T, Minx P, Cordum H, Hillier L, Brown L, Repping S, Pyntikova T, Ali
J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou
SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P,
Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston R, Wilson
R, Rozen S, Page D: The male-specific region of the human Y chromosome is a mosic of discrete

sequence classes. Nature 2003, 423:825-837.

Carrel L, HF W: X-inactivation profile reveals extensive variability in X-linked gene expression in

females. Nature 2005, 434:400—404.

Pickrell J, Marioni J, Pai A, Degner J, Engelhardt B, Nkadori E, Veyrieras J, Stephens M, Gilad Y, Pritchard
J: Understanding mechanisms underlying human gene expression variation with RNA sequencing.

Nature 2010, 464:768-772.

Hansen KD, Irizarry RA, Wu Z: Removing technical variability in RNA-seq data using conditional

quantile normalization. Biostatistics 2012, 13(2):204-16.

Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003,
100(16):9440-5.

20



