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Abstract. Chronic myeloid leukemia (CML) is a clonal multi-step myeloproliferative disease that is initially produced and
ultimately sustained by a rare subpopulation ofBCR-ABL+ cells with multi-lineage stem cell properties. TheseBCR-ABL+ CML
stem cells are phenotypically similar to normal hematopoietic stem cells which are also maintained throughout the course of the
disease at varying levels in different patients. Defining the unique properties of the leukemic stem cells that produce the chronic
phase of CML has therefore had to rely heavily on access to samples from rare patients in which the stem cell compartment
is dominated by leukemic elements. Here we review past and ongoing approaches using such samples to identify biologically
and clinically relevant biomarkers ofBCR-ABL+ stem cells that explain their unusual biology and that may help to design, or at
least predict, improved treatment responses in CML patients. These studies are of particular interest in light of recent evidence
that chronic phase CML stem cells are not only innately resistant to imatinib mesylate and other drugs that target the BCR-ABL
oncoprotein, but are also genetically unstable.
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1. Introduction

Chronic myeloid leukemia (CML) is a myeloprolif-
erative disorder that is usually first identified clinical-
ly by symptoms that are caused by an inappropriately
increased production of granulocytes and monocytes.
Biologically, CML is now recognized to represent a
multi-step, multi-lineage, clonal hematopoietic disor-
der that is initiated and propagated by a rare population
of CML stem cells that have acquired aBCR-ABL fu-
sion gene. During the chronic phase (CP) of the dis-
ease, these CML stem cells possess many properties
typical of normal hematopoietic stem cells (HSCs), in-

∗Corresponding author: Dr. Connie Eaves, Terry Fox Laboratory,
675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada. Tel.: +1
604 675 8122; Fax: +1 604 877 0712; E-mail: ceaves@bccrc.ca.

cluding an ability to differentiate into almost all blood
cell types.

In most CML patients, theBCR-ABL fusion gene
reflects a simple reciprocal translocation between the
long arms of chromosomes 9 and 22, resulting in the
formation of the hallmark Philadelphia (Ph) chromo-
some. TheBCR-ABL fusion gene encodes a chimeric
oncoprotein that displays constitutively activated tyro-
sine kinase activity and is inappropriately localized in
the cytoplasm. These features deregulate cellular pro-
liferation and apoptosis control through effects on mul-
tiple signaling pathways [1,2]. Direct evidence that the
BCR-ABL rearrangement is a key transforming event
in the generation of CML has been provided by gene
transfer experiments [3,4] and the ability of specific in-
hibitors of theBCR-ABL oncoprotein to induce remis-
sions in patients [5–9].
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An understanding of the role of theBCR-ABL onco-
gene in the genesis and maintenance of CML has led
to the development of novel “targeted” therapies that
selectively inhibit the tyrosine kinase activity ofBCR-
ABL-encoded fusion proteins. The first of these tyro-
sine kinase inhibitors was imatinib mesylate (IM), also
known as Gleevec (Novartis Pharmaceuticals). Clini-
cal trials have shown “complete” cytogenetic response
rates of 87% in CP CML patients treated with IM for
60 months with 93% progression-free survival [10].
Nevertheless, despite these remarkable initial respons-
es to IM therapy, molecular remissions are rare and
the emergence of IM-resistant subclones continues to
pose a significant clinical problem [11,12]. Indeed, ap-
proximately 10–15% of patients with early CP CML
will either present with or later show the appearance
of IM-resistant cells. Some of these patients respond
to higher doses of IM [13] or to second generation ty-
rosine kinase inhibitors like dasatinib (Sprycel, Bristol
Myers Squibb) or nilotinib (Tasigna, Novartis). How-
ever, a proportion does not and the disease in this lat-
ter group might be better managed by treatment with
an intensive conditioning regimen and an appropriately
matched transplant of normal HSCs.

In most patients, loss of responsiveness to IM ap-
pears gradually - as indicated by a slow increase in the
proportion ofBCR-ABL+/Ph+ cells detectable in the
marrow (and/or blood) over a period of several months.
However, in a small group (1% to 2%) of IM-treated CP
patients, blast phase disease appears within 3 months
of a previously documented complete cytogenetic re-
mission [14,15] and the salvage rate for this impor-
tant subgroup, even with myeloablative treatments sup-
ported by an allogeneic transplant, is low [16]. Thus,
there is an urgent need to develop prognostic tests to
identify those patients who will not respond to IM and
for whom alternative treatments would be important to
initiate before disease progression occurs.

In the pre-IM era, several clinical and laboratory fea-
tures allowed responses to existing therapies to be pre-
dicted. The Sokal score, initially developed to predict
response to busulfan [17], still retains some predictive
value for IM therapy. Patients with high-risk Sokal
scores have a 69% chance of achievinga complete cyto-
genetic remission within 12 months, compared to 82%
and 89% for intermediate and low-risk scores, respec-
tively. However, once a complete cytogenetic remis-
sion has been obtained, the Sokal score loses its prog-
nostic importance and the progression-free survival for
all 3 groups remains equal. Therefore, even a high-risk
Sokal score at diagnosis does not, on its own, justify

the adoption of an alternative front-line therapy until
after an initial trial of IM.

The appearance of karyotypic abnormalities in ad-
dition to the Ph chromosome has also been associat-
ed with an adverse prognosis and is usually accompa-
nied by other manifestations of more advanced disease.
However, with the higher doses of IM now in use, evi-
dence of clonal evolution alone has not been associat-
ed with an inferior outcome [18,19]. Similarly, dele-
tions involving the derivative 9 chromosome that were
predictive of a poor outcome to interferon [20] have
not been found to have similar significance for patients
receiving IM and preliminary reports suggest little or
no relationship of this parameter to the achievement or
durability of an IM response [21,22].

The failure of these historical clinical and laboratory
parameters to identify patients who are likely to be un-
responsive toBCR-ABL-targeted therapies has focused
attention on a need for new biomarkers that can serve
this purpose. A logical starting point is the leukemic
stem cell compartment of these patients, since it is the
number and properties of these cells that ultimately de-
termine the growth characteristics and evolution of the
leukemic clone, as well as the size of the residual nor-
mal HSC population upon which autologous regenera-
tion of the hematopoietic system depends.

2. Biologic definition of CML stem cells

Much evidence indicates that the leukemic clone in
patients with CML originates in a multi-potent HSC
whose ability to generate normal blood cell progeny is
not detectably perturbed by the acquisition of aBCR-
ABL fusion gene, although the number of differentiat-
ing cells produced from the small pool ofBCR-ABL+

stem cells is markedly altered. As a result, during
the CP of the disease, the same hierarchy of primi-
tive and mature compartments of cells that characterize
normal hematopoiesis can be readily discerned within
the expanding leukemic clone and these differentiat-
ing “leukemic” cells are functionally, morphologically,
and phenotypically almost indistinguishable from their
normal counterparts [23,24] (see also Fig. 1). Accu-
mulating evidence indicates that this hierarchy is es-
tablished in normal hematopoietic cells by mechanisms
that progressively restrict hematopoietic differentiation
and proliferative potential in a highly co-ordinated fash-
ion that spans many cell generations [25–28]. Se-
quential stages within this hierarchy can thus be dis-
tinguished both by the maximum number and types of
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Fig. 1. Schema showing the relative sizes of different subpopulations of normal and leukemic cells present in CP patients. The shared phenotypes
and functional endpoints that identify similar types of normal and leukemic elements are listed on the left side. The boxes in the central part of
the figure illustrate diagrammatically the relative numbers of each of these that are normal (white) and leukemic (grey). As shown, dominance
of the system by CML cells is typically achieved only in the later stages of differentiation. The very slow rate at which the CML stem cells
accumulate in spite of their competitive advantage at later stages of differentiation may be explained, at least in part, by the activation in the most
primitive CML cells of an autocrine IL-3/G-CSF mechanism that reduces their growth factor dependence [67]. This, in turn, allows the leukemic
cells at intermediate stages of differentiation to amplify but, at the stem cell level, this effect may be offset by a decreased self-renewal ability
caused by same autocrine growth factors (as summarized on the right hand side of the schema). Diff’n.= differentiation; GF depend.= growth
factor dependence.

mature progeny produced when the cells are optimally
stimulated eitherin vitro or in vivo and by their corre-
sponding phenotypic profiles [23,29].

Normal human HSCs are identified by their abil-
ity to repopulate sublethally irradiated immunodefi-
cient (e.g., nonobese diabetic severe combined im-
munodeficiency,NOD/SCID) mice with both lymphoid
and myeloid progeny – indicative of their multipo-
tent status as well as theirin vivo regenerative activi-
ty. Limiting dilution approaches can then be applied
to quantify their numbers using endpoints that incor-
porate all of these features [30,31]. Accordingly, such
cells are often described operationally as NOD/SCID-
repopulating cells. At least some of these cells can
also generate multipotent progeny with similar sec-
ondary NOD/SCID mouse repopulating activity – in-
dicative of their possession of some self-renewal po-
tential. Mice with even greater immunodeficiencies
(e.g., resulting from the additional inactivation of either
theβ2-microglobulin gene or the gene for theγ chain
of the interleukin-2 [IL-2] receptor, or by injection of
anti-asialo GM1 or anti-CD122 antibodies that also the
residual target NK cells present in NOD/SCID mice)
show selectively enhanced efficiency of engraftment
by downstream multipotent human hematopoietic cells
with short term repopulating activity [32–34]. Howev-
er, these latter cells lack sustained repopulating activity
and are also unable to generate progeny that can repop-
ulate secondary NOD/SCID recipients. These features

suggest that many of the cells able to repopulate more
permissive strains of immunodeficient mice for peri-
ods of 4–20 weeks are not equivalent to murine cells
identified as HSCs on the basis of their sustained self-
renewal potential (Fig. 2 – sequential RC’s detected in
mice) [35].

At the other end of the spectrum are the various lin-
eages of terminally differentiating blood cells. These
cells already display some recognizable features of the
particular lineage they belong to and typically under-
go a small number of amplifying divisions before their
maturation is complete. Intermediate between the ter-
minally differentiating cells and the HSC compartment
are so-called “progenitor” cells that lack overt morpho-
logical features of a particular lineage but are readi-
ly detected and quantified by their ability to generate
colonies of from 8 to∼ 105 mature blood cells when
plated in a semi-solid medium containing an appropri-
ate cocktail of growth factors. Cells that can generate
colony-forming cells (CFCs) in the presence of stro-
mal feeder layersin vitro for at least 5 weeks repre-
sent a more primitive compartment than most CFCs
and, based on their mode of assay, are referred to as
longterm culture-initiating cells (LTC-ICs) [23]. Some
LTC-ICs are clearly not HSCs, but the extent to which
these 2 operationally defined cell types may overlap is
not yet clear [29].

In patients with CP CML,BCR-ABL+/Ph+ CFCs,
LTC-ICs and NOD/SCID repopulating cells are detect-
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Fig. 2. Different patterns of regenerated human hematopoiet-
ic cells in mice with variable immunodeficiencies reflect differ-
ent engraftment efficiencies of human cells with short and long
term repopulating activities. As shown in the upper panel, trans-
plants of bulk CD34+ human cells produce more progeny and
faster in NOD/SCID-β2-microglobulin null mice (solid line) as com-
pared to standard NOD/SCID hosts (dotted line). Experiments
with more purified cell transplants have demonstrated that the in-
creased output of human cells obtained in the more NK-deficient
NOD/SCID-β2-microglobulin null mice reflects the additional ac-
tivity of 2 types of short term repopulating cells (STRCs) that
do not engraft NOD/SCID mice. One of these STRC subsets is
made up of cells that are myeloid-restricted (STRC-Ms). These
cells produce a rapid but very short-livedwave of predominantly
myeloid cells (up to 4 weeks post-transplant). The second subset
of STRCs are cells that have dual lymphoid and myeloid poten-
tial (STRC-MLs) but do not self-renew. As a result, their output
of mature cells is also transient, albeit for a slightly longer period
(up to 13 weeks post-transplant). In contrast, LTRCs repopulate
NOD/SCID mice as efficiently as NOD/SCID-β2-microglobulin null
mice and have extensive self-renewal activity. However, LTRCs are
much rarer than STRCs and hence their output of mature progeny in
NOD/SCID-β2-microglobulin null recipients of unseparated CD34+

cell suspensions is initially obscured by the output of cells from the
co-transplanted STRC-Ms and STRC-MLs [32,33]. The lower panel
shows a diagrammatic breakdown of the output patterns expected
from each of 3 types of repopulating cells expected to be present in
the CD34+ cells transplanted in the upper panel. When all 3 subsets
engraft (as occurs in the NOD/SCID-β2-microglobulin null mice),
they produce a combined pattern that is the same as shown by the
solid line in the upper panel. In contrast, the dotted line in both
panels indicates an exclusive contribution of cells from the LTRCs
which is the same in both types of host.

ed using the same procedures and endpoints as have
been devised for normal hematopoietic cells. However,
whereas the leukemic clone dominates all later myeloid
compartments in most patients, including the uncom-

mitted cells that produce colonies of erythroid, granu-
lopoietic and megakaryocytic cells, the most primitive
compartments are typically still dominated by normal
cells (Fig. 1) [23,36].

3. Phenotypic biomarkers of CML stem cells

Flow cytometry has been used extensively to charac-
terize functionally defined subsets of primitive normal
and CML cells. These studies have shown that both
share the same low forward and side light scattering
characteristics indicative of a small size and agranular
cytoplasm and a cell surface phenotype that includes the
expression of CD34, Thy1/CD90 and AC133/CD133,
and a lack of expression of CD38, CD45RA and CD71
as well as several lineage (lin) markers that character-
ize different types of mature blood cells. The latter
include the T-cell markers: CD3, CD4 and CD8, the
NK cell marker: CD56, the B-cell markers: CD19, CD
20 and CD45RA, the monocyte and granulocyte mark-
ers: CD13, CD14 and CD66b, the megakaryocyte and
platelet marker: CD61, and the erythroid cell mark-
ers: CD36 and Glycophorin A [37–43]. Notably, the
lin−CD34+CD38− fraction of BCR-ABL+/Ph+ cells
in CP CML patients contains the majority of trans-
plantable leukemic stem cells, as defined functionally
by their activityin vitro as LTC-ICs and by their sus-
tained repopulating cell activityin vivo in immunode-
ficient mice. These findings mirror results accumulat-
ed for normal adult human cells with these function-
ally defined activities. Similarly, the phenotypically
more differentiated CD34+CD38+ CML cells contain
the majority of transplantable progenitors detectablein
vivo as short term repopulating cells (STRCs) andin
vitro as CFCs [24,34,44].

Other phenotypicmarkers used to distinguish murine
HSCs from closely related cells include an ability to
efflux Rhodamine-123 (Rho) and Hoechst 33342 [45,
46]. In primitive hematopoietic cells, these 2 prop-
erties appear to be mediated by different members
of the ATP-binding cassette (ABC) family of trans-
porters: P-glycoprotein [47] and Abcg2/Bcrp1 [48],
respectively. Detection of verapamil-inhibited fluores-
cence is typically used to relate lack of Rho reten-
tion to P-glycoprotein activity in primitive hematopoi-
etic cells. Similarly, Abcg2 activity in these cells has
been related to their verapamil-sensitive ability to ef-
flux Hoechst 33342 – often visualized as the genera-
tion of a verapamil-sensitive side population (SP) in
FACS profiles that depict fluorescence emissions in 2
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wave lengths [49]. However, in the mouse, it is now
clear that both Rho and Hoechst 33342 efflux activi-
ties in HSCs vary with their cycling status [50], a phe-
nomenon that extends to many other surface antigens
originally thought to be characteristic of these cells in
the normal adult (e.g., CD34 and CD11b/Mac1) (re-
viewed in [51]). Therefore many markers that are use-
ful indicators of HSCs in normal adult mouse bone
marrow are no longer applicable when these cells are
perturbed. Normal adult human HSCs also show an
ability to efflux Rho [52], consistent with their qui-
escent status, whereas, many primitive CML cells do
not efflux Rho [37]. However, this may simply reflect
the fact that a higher proportion of CML LTC-ICs are
actively cycling [23].

The situation in the case of the SP phenotype is
more complex. In the mouse, HSCs can also be seen
to vary in their possession of a SP phenotype accord-
ing to their cycling status, although the precise rela-
tionship between these 2 parameters has not been de-
lineated. Indeed, it is likely that other factors play a
role in controlling the possession of an SP phenotype
since changes in this property may not precisely mirror
changes in cycling activity. Moreover, in humans, all
NOD/SCID repopulating cells in the fetal liver have an
SP phenotype [53], whereas the only SP cells in adult
human tissue that have any repopulating activity appear
to be lymphoid restricted. [54]. Interestingly, SP cells
have recently been identified in several solid tumors,
including samples of neuroblastoma, breast cancer and
lung cancer [55,56]. In the case of AML, expression
of CD123 (the alpha chain of the IL-3 receptor) has
been described as a reliable marker of leukemic stem
cells, including CD34+CD38− CML cells, but not their
normal counterparts [57,58].

4. Deregulated biological properties of CML stem
cells

Thus functionally defined CML stem cells appear
very similar phenotypically to their normal counter-
parts with certain exceptions. These exceptions can
generally be related to the expression of markers that
vary according to the activation or cycling status of
the cells and hence may simply reflect differences in
the proportion of CML stem cells that are proliferat-
ing at any given time. Evidence that primitive CML
cells have a higher proportion of their members in cy-
cle was first provided by studies that measured the
sensitivity of primitive clonogenic cells to a brief ex-

posure to high specific activity3H-thymidine. These
experiments showed that primitive normal CFCs are
predominantly quiescent whereas their CML counter-
parts are predominantly cycling [59,60]. Later, evi-
dence of an increased turnover of CML LTC-ICs was
obtained by examining their distribution in different
phases of the cell cycle defined using Hoechst 33342
and Pyronin Y staining [61]. The more discriminating
power of these latter experiments also revealed that, at
any given moment, a significant fraction of the CD34+

leukemic cells from CP CML patients are quiescent.
This quiescent population includes some members of
the leukemic CD34+CD38+ compartment as well as
many of the leukemic CD34+CD38− cells and many
of the leukemic LTC-ICs [62]. Nevertheless, when
these quiescent CML cells were stimulated by growth
factors in single-cell suspension cultures, they rapidly
entered the cell cycle and produced leukemic progeny.
Entry of these cells into a proliferative mode was also
demonstrated when they were placed in culture with
stromal cells under conditions used to detect LTC-ICs,
or when they were transplanted into sublethally irra-
diated NOD/SCID mice. Together these observations
clearly demonstrate that the quiescent status of primi-
tive CML cells is transient and reversible. The fact that
this reversibility can be demonstratedin vivo, points to
the likely importance of these cells in sustaining and
spreading the disease in patients. Nevertheless, the ex-
istence of such primitive, transiently quiescent CML
cells may explain the inability of chemotherapy to erad-
icate CML, as well as the late relapses occasionally
seen many years after a transplantation procedure has
been performed [63,64]. Indeed, primitive quiescent
CML cells have now been found to also be highly resis-
tant to IM and otherBCR-ABL-targeted therapies [65,
66].

We have also provided evidence that CML stem cells
have an intrinsically determined, reduced self-renewal
ability [23,67] which is recapitulated in the leukemias
that are caused byBCR-ABL-transduction of primitive
murine HSCs [68]. This reduced self-renewal ability
results in an increased rate of differentiation of CML
stem cells as compared to their normal counterparts
under conditions where their proliferation is stimulat-
ed. Thus, under “normal” conditions when the ma-
jority of normal HSCs are quiescent, CML stem cells
depend on their increased rate of turnover to accumu-
late. However, when conditions that are potently mito-
genic to all HSCs are induced, eitherin vitro or in vivo,
the net growth of normal HSCs is initially greater than
that achieved by CML stem cells [23,69]. In contrast,
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at subsequent stages of leukemic progenitor differen-
tiation (primitive CFCs), continuation of a heightened
proliferative activity gives the leukemic cells a marked
advantage thus offering an explanation for the ability
of theBCR-ABL+ cells to acquire clonal dominance in
spite of a prevalence of normal HSCs.

Multiple mechanisms that contribute to a heightened
proliferative activity of primitive CML CFCs involving
both positive and negative regulators of their normal
counterparts have been described. For example, we
have shown that primitive CML cells are unresponsive
to certain chemokines (MIP-1α, MCP-1 and SDF-1)
that inhibit the cycling of primitive normal cells [70–
74]. These findings have been interpreted as indicating
a common pathway used by all of these chemokines
to suppress proliferation in different types of primitive
hematopoietic cells which theBCR-ABL-encoded on-
coprotein can subvert or override. However, regard-
less of the ultimate mechanism identified, it is impor-
tant to note that primitive CML cells are not resistant
to all inhibitors of normal progenitor cycling activity.
The turnover of both is similarly regulated by TGF-
β [75,76], thus providing a possible explanation for the
finding that many of the most primitive CML cells are
quiescent at any given moment.

5. Molecular biomarkers based on specific
deregulated gene expression in CML stem cells

As described above, leukemic stem cells from chron-
ic phase CML patients have been difficult to study ow-
ing to their rarity and phenotypic overlap with normal
HSCs. Most research on the effects ofBCR-ABL ex-
pression has therefore focused on identifying the var-
ious signal transduction pathways that are activated in
BCR-ABL+ murine and human cell line model systems
or in clones generated from primitive murine bone mar-
row cells that have been transduced with aBCR-ABL
cDNA and only a few studies have been able to inves-
tigateBCR-ABL-mediated alterations in gene expres-
sion in primary CML stem cells or their closely related
derivatives. Nevertheless, understanding the molecular
mechanisms of deregulated gene expression in these
critical cells may well provide important clues for de-
veloping new diagnostic and therapeutic strategies, in-
cluding strategies for understanding and treating dis-
ease progression. For example, a recent unexpected
finding is the relative lack of responsiveness of highly
enriched populations of primitive CML cells to IM and
other BCR-ABL-targeted drugs as compared to their

more differentiated progeny (Fig. 3) [36,77]. A sec-
ond finding is the evidence of a heightened genomic
instability in primitive CML cells of likely relevance to
their accumulation of IM resistant mutations and oth-
er changes that cause the disease to progress [78–80].
Both of these findings have intensified interest in more
fully delineating the properties (biomarkers) of primi-
tive CML cells that may explain these novel features.

5.1. Deregulated expression of BCR-ABL in CML
stem cells

Three different groups have independently report-
ed thatBCR-ABL expression is highly elevated in the
most primitive subset of lin−CD34+CD38− CML cells
and is then rapidly and progressively reduced as these
cells differentiate [66,77,81]. Interestingly, the levels
of BCR-ABL transcripts present in the most primitive
CML stem cells are much higher than those present
in the G0 fraction of CML CD34+ cells (by a factor
∼ 50) [77]. In addition, the pronounced changes in
BCR-ABL expression seen in different subsets of chron-
ic phase CML stem cells do not mirror the changes
seen in expression ofBCR. Expression ofBCR, like
BCR-ABL, decreases progressively as CML cells dif-
ferentiate, but with a maximum change overall of only
10 to 15-fold (as compared to> 100-fold for BCR-
ABL) [77]. This disparity suggests the operation of a
novel mechanism that leads to a marked increase in the
levels ofBCR-ABL transcripts in very primitive CML
cells. Investigating the basis of this deregulated expres-
sion ofBCR-ABL, the possible role of the primitive cell
context in which it occurs, and its possible generality to
other fusion oncogenes will be of considerable interest
in future studies.

The observed changes inBCR-ABL transcript levels
also result in changes in p210BCR−ABL oncoprotein
expression and activity, although these appear to be
less pronounced [77]. Since CRKL is a major target of
p210BCR−ABL kinase activity [82–84], it would then
be expected that the levels of phosphorylated CRKL in
the most primitive CML cells would also be highest,
as is, in fact observed [77]. Subsequent studies in
BCR-ABL+ cell line models have provided definitive
evidence that the level ofBCR-ABL expression alone
can be a determinant of IM responsiveness [77,85].

5.2. Activated autocrine mechanism in CML stem
cells

One of the earliest findings from studies ofBCR-
ABL-transduced hematopoietic cell lines was the acti-
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Fig. 3. Intrinsically determined lack of responsiveness of CML-stem cell enriched populations to IM. The graphs show a comparison of the
differential recovery of viable cells from suspension cultures initiated with purified CD34+CD38− (solid lines) and CD34+CD38+ (dotted
lines) CML cells and then incubated for 3 weeks in the presence of varying concentrations IM, either in the presence (left panel) or absence (right
panel) of growth factors. Under either condition, the leukemic CD38− subset is more resistant than the CD38+ subset to IM (relative reduction
in viable cells recovered due to IM is less). Moreover, this differential is enhanced when cell survival and proliferation is forced to depend on the
autocrine mechanisms possessed by both sets of primitive leukemic cells used to initiate the cultures. Data is taken from Ref 77. GF= growth
factors.

vation of an autocrine mechanism which could confer
partial or complete growth factor autonomy in cells that
were previously factor-dependent [86,87]. However,
for many years, this finding was considered a cell line
anomaly because a similar abnormality was not evi-
dent in studies of primary CML cells. Then, when it
became feasible to look for alterations in gene expres-
sion in small numbers of cells, we discovered that most
CD34+ CML cells display a constitutively activated
production of IL-3 and granulocyte-colony stimulating
factor (G-CSF) [67]. This gives these cells the expect-
ed factor-independent phenotype and accounts for their
increased levels of phosphorylated STAT5. Consistent
with these latter observations was the finding that the
autocrine production of IL-3 and G-CSF in primitive
CML cells is silenced when they become quiescent,
and is then reversed when they begin to proliferate [62].
Activation of this autocrine mechanism appears to be an
intrinsically determined property ofBCR-ABL+/Ph+

cells, since it reappears in the CD34+ progeny of CML
cells that are regenerated in transplanted sheep [88] and
mice, and is rapidly induced when primitive normal
human [89] or murine [90–93] hematopoietic cells are
transduced withBCR-ABL.

The combination of an increased turnover and de-
creased self-renewal ability of primitive CML cells has
been recognized for many years, as noted above [23].
However, a molecular mechanism that might account
for this duality has remained elusive. The simultane-
ous discovery that very primitive normal hematopoietic
cells exposed to excessive concentrations of IL-3 and
G-CSFin vitro show an intense proliferative response
that is coupled to diminished self-renewal activity was
therefore of great interest [94]. Accordingly, we spec-

ulated that the self-stimulation of primitive CML cells
by autocrine IL-3/G-CSF contributes to both of these
abnormal features of their biology. Similarly, at later
stages of normal CD34+ cell differentiation, the same
2 growth factors would be expected to simply promote
cell survival and proliferation. It would thus be an-
ticipated that an autocrine IL-3/G-CSF loop active in
CD34+CD38+ CML cells might, likewise, contribute
to their competitive expansion potential.

Quantification of the levels of IL-3 and G-CSF tran-
scripts in different subsets of CML cells has shown
that these are both highest in CML stem cells and then
progressively decrease together, even before the cells
leave the CD34+CD38+ compartment [77]. Thus dur-
ing the differentiation of primitive CML cells, the lev-
el of expression ofBCR-ABL correlates with the ex-
pression of IL-3 and G-CSF. This observation is of
some practical relevance given the reduced IM sensi-
tivity displayed by lin−CD34+CD38− CML cells, as
compared with the lin−CD34+CD38+ cells in vitro in
the absence of exogenously provided growth factors.
Recently, it was found thatin vitro pulsing of initially
quiescent CML progenitors with G-CSF prior to and
following treatment with IM promotes the re-entry of
these IM-insensitive cells into the cell cycle and their
significantly enhanced elimination as compared to IM
treatment alone [95]. Autocrine production of GM-
CSF in CML cells has also recently been reported to-
gether with evidence suggesting that this mechanism
may contribute to IM and nilotinib-resistance inBCR-
ABL+ progenitors through activation of the JAK/STAT
pathway [96]. Taken together, the autocrine production
of cytokines in primitive CML cells is likely to be a
multifaceted, but important mechanism contributing to
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responses toBCR-ABL-targeted therapies and itself a
potential additional therapeutic target.

5.3. Deregulated expression of ABC transporters in
CML stem cells

Many members of the ABC transporter superfami-
ly promote the uptake or efflux of specific drugs and
can therefore be clinically important determinants of
intracellular drug concentrations achievablein vivo or
in vitro [97]. One particularly intriguing property of
stem cells is that they express high levels of 2 particular
ABC transporters. One of these is ABCB1 (also called
P-glycoprotein) and the other is ABCG2 (also called
breast cancer resistance protein, or BCRP) [48,98,99].
IM is a substrate of ABCB1 and overexpression of the
ABCB1 gene has been implicated as a cause of IM re-
sistance in CML [100–105]. However, this finding has
not been universally supported [106,107]. In cell lines
engineered to overexpressABCG2, IM has been found
to interact with the protein product [108–111] by com-
petitive attachment of IM to the ATP-binding site on
ABCG2. Thus, IM is not a substrate of ABCG2 and
ABCG2 does not efflux IM. Rather, IM is an inhibitor
of ABCG2 activity.

In primitive CML cells isolated directly from chron-
ic phase CML patients,ABCG2, like ABCB1, is over-
expressed relative to the same subsets of primitive nor-
mal cells (Fig. 4) [77,112]. However, mice deficient
in eitherAbcb1 or Abcg2 are viable, fertile and have
normal HSC compartments [113,114]. This indicates
that none of these genes are individually required for
normal HSC growth or maintenance, although mice
lacking these genes do show increased sensitivity to the
lethal effects of drugs such as vinblastine, ivermectin
and mitoxantrone, consistent with a role of these ABC
transporters in protecting cells from toxins.

OCT-1, another transporter, appears to be a major
regulator of IM uptake [115,116]. Interestingly, lower
OCT1 transcript levels have been reported in IM non-
responders by comparison to IM responders in a study
cohort of 30 CML patients [117]. In addition, it has
been found that primary CML cells with lower than av-
erage OCT1 activity display reduced sensitivity to IM
in vitro. The combination of low expression of OCT1
and elevated expression ofABCB1 andABCG2 might
thus be expected to contribute to a poor therapeutic re-
sponse. We have found that this transporter phenotype
is exactly what is seen in the most primitive CP CML
cells by comparison both to their normal counterparts
and to their more differentiated progeny (Fig. 4) [77].

Conversely, transcript levels forABCB1 and ABCG2
are highest in the normal HSC-enriched subset and low-
est in the most mature normal cells and this difference
is further exaggerated in the corresponding subsets of
CML cells. Taken together, these findings indicate a
variety of perturbations that likely contribute to the rel-
ative IM resistance of the most primitive CML cells.

5.4. Deregulated expression of AHI-1 in CML stem
cells

Another gene that may cooperate withBCR-ABL at
the stem cell level is a novel oncogene,AHI-1, (Abel-
son helper integration site-1) [118]. Ahi-1, the murine
gene, was originally discovered by analysis of the site
of proviral insertions in various v-abl and myc-induced
murine leukemias and lymphomas [119–124]. Sub-
sequent demonstration of a high frequency of Ahi-1
mutations in certain virus-induced murine leukemias
provided more direct evidence thatAhi-1 has leuke-
mogenic activity [118]. This gene encodes a modular
protein with a SH3 domain, SH3 binding domains, and
multiple WD-repeat domains, suggesting novel signal-
ing activities. Interestingly, the conserved homologous
human gene (AHI-1) encodes an additional coiled-coil
domain in the N-terminal region of the protein which
is entirely missing from the mouse Ahi-1 protein.

Ahi-1/AHI-1 is normally expressed in the most prim-
itive murine and human hematopoietic cells and then
shows similar specific patterns of downregulation in
different lineages [125]. Thus downregulation ofAHI-
1 expression appears to be an important conserved step
in the normal regulation of early hematopoietic cell dif-
ferentiation. Interestingly,AHI-1 transcripts levels are
abnormally elevated in K562 cells, a line derived from
a CML patient in blast crisis, and also in primary CML
cells from patients at all stages of their disease, but not
in many types of patients with Ph− leukemias. More-
over, in CML, the highest levels ofAHI-1 transcripts
are found in the leukemic stem cells. Thus, there is
a similar pattern of upregulatedBCR-ABL andAHI-1
expression in primitive CML cells. This may, in fact,
be important to the loss of stem cell self-renewal ca-
pacity and accelerated activation of differentiation pro-
grams that is characteristic of CP CML cells. Accord-
ingly, mechanisms that impede the normal downregu-
lation of expression ofAHI-1 in primitive hematopoiet-
ic cells, or that inappropriately stimulate its expression
in immediate cells, might be predicated to have leuke-
mogenic sequelae. Indeed, we have recently found
that overexpression of Ahi-1 alone in primitive murine



X. Jiang et al. / Stem cell biomarkers in CML 209

Fig. 4. Altered expression of certain transporter genes in primitive CML cells. The reduced expression ofOCT1 and the increased expression of
ABCB1 andABCG2 in primitive normal human bone marrow (NBM) cells is exaggerated in their CML counterparts, as shown by quantitative
real-time PCR measurements of the RNAs present in extracts of the purified cell fractions indicated (lin−CD34+CD38− = stem cell enriched,
lin−CD34+CD38+ = intermediate progenitors, lin+CD34− = terminally differentiating cells). These findings suggest that the most primitive
CML cells express reduced levels of the transporter required to bring IM into the cell, and increased levels of transporters that can export and/or
bind IM. Data is taken from Ref 77.

hematopoietic cells confers on them a proliferative ad-
vantagein vitro and a lethal leukemogenic activityin
vivo. Moreover, both of these effects are enhanced by
co-transduction of the cells withBCR-ABL [126]. Tak-
en together, these findings suggest a potential role of
AHI-1 in mediating or enhancing the transforming ac-
tivity of BCR-ABL in CML cells and possibly in con-
tributing to the subsequent progression of the disease
to a more acute form.

5.5. Global gene expression analyses of chronic
phase CML stem cells

Kronenwett R and co-workers reported the first com-
parison of the total transcriptome of CD34+ CML cells
with their normal counterparts from adult bone mar-
row and mobilized peripheral blood using both cDNA
arrays and oligonucleotide arrays [127,128]. Evidence
of activation of the MAPK, PI3K/AKT, JAK/STAT,
MYC and RAS pathways in the primitive CML cells
were detected as predicted. These studies also demon-
strated that the expression of several genes involved in
DNA repair, includingRAD23A, ERCC1, ERCC3 and
ERCC5, was significantly reduced (2 to 4-fold) in the
CML cells supporting the concept that the DNA repair
machinery in CML cells is abnormal [129,130]. Ab-
normal adhesion and homing are additional reported
features of primitive CML cells [131–134], and it is
therefore interesting thatN-CADHERIN,L-SELECTIN,
CXCR4 and CCR2 transcripts were also found to be
downregulated in CD34+ CML cells as compared to
their normal counterparts. Another gene implicated in
CML and that showed altered (∼ 5-fold lower) expres-
sion in these studies wasIRF8 (ICSBP1). The bio-
logical importance of reducedIRF8 expression in the

pathogenesis of CML has been suggested by studies
showing thatIrf8 deletion in mice causes the develop-
ment of a CML-like myeloproliferative syndrome [135]
and forced expression ofIrf8 inhibits the growth of
BCR-ABL-transformed primary murine bone marrow
cells [136]. Conversely, transcripts for the leptin recep-
tor (LEPR), SKI (a transcriptional co-repressor) and
the adenosine A receptor (a neurobiological receptor
gene also expressed in G-CSF-mobilized normal blood
progenitors [137]) were increased in CML cells. In
this regard, it is interesting that treatment of CML cells
in vitro with DPCPX, an antagonist of the adenosine
A1 receptor, suppressed the formation of erythroid and
granulopoietic colonies by CML progenitors more than
by normal bone marrow progenitors. Finally, evidence
of activation of the proteasome-ubiquitin protein path-
way in primitive CML cells was also evident from the
same gene expression comparisons also consistent with
biological evidence of a selective effect of proteasome
inhibitors on CML progenitors [138,139].

Although theBCR-ABL gene is believed to be both
necessary and sufficient to initiate the development of
CP CML, it is not known whether changes in oth-
er genes not evident at a cytogenetic level may also
commonly contribute to this process. Thus, differ-
entially expressed genes revealed by previous studies
might not necessarily be deregulated as a direct result
of expression p210BCR−ABL, but reflect additionally
acquired mutations or epigenetic abnormalities. To
identify genes whose expression in primitive human
hematopoietic cells are directly upregulated by expres-
sion of BCR-ABL, Verfaillie’s group prepared a cD-
NA library from extracts ofBCR-ABL-transduced cells
from which cDNAs present in control human CD34+

cord blood cells had been subtracted [140]. About half
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of the several dozen clones thus identified were ho-
mologous to known genes. One of these wasNUP98,
which has been implicated in many translocations as-
sociated with the development of AML [141]. Oth-
ers appeared to encode novel proteins. Although some
of these findings were confirmed by gene expression
analysis of primary CML cells, not all of the changes
identified were reversed by IM treatment.

Transcriptome profiling has also been used to try to
identify biomarkers of IM responsiveness. Such studies
have identified genes associated with NFκB activation,
cell adhesion [142], DNA damage repair, oxidative
stress responses [143] and drug metabolism [144]. One
study attempted to generate a risk assessment method
based on the application of a subset of genes select-
ed from initial array data to a test group of 12 IM-
treated patients (10 responders and 2 nonresponders).
The results assigned all of the responders and one of
the nonresponders to the low-risk group, with the other
nonresponder being assigned to the intermediate-risk
group. These data suggested that clinical responses
to IM treatment might be predictable by certain gene
expression parameters.

5.6. Indicators of disease progression

The onset of disease progression from CP to blast
crisis is well known to be highly variable if cytogenet-
ic remissions are not achieved, in spite of the absence
of other mutations detectable by standard cytogenetics.
The classic view has been that the progression of CML
is caused by the acquisition of a rare second event. Such
events have been thought to occur stochastically, but at
a higher rate within the CP clone than in their normal
counterparts due to the greater proliferative activity of
the primitive CML cells in concert with their genom-
ic instability [36]. Predicting such changes is clear-
ly of considerable clinical importance in selecting an
optimal therapeutic option since the presence of even
undetectable levels of blast phase disease is likely to
prevent durable remissions from being achieved unless
myeloablative chemotherapy and a stem cell transplant
is given. An interesting attempt to address this ques-
tion was recently reported by Yong et al. [145]. They
first compared the CD34+ leukemic cells from 3 CP
patients who progressed to blast crisis within 3 years
of diagnosis and 10 whose blastic transformation took
place more than 7 years after diagnosis. This compar-
ison revealed 20 genes whose expression was signifi-
cantly different between the 2 groups and this differ-
ence was confirmed by quantitative reverse transcrip-

tase PCR measurements for 18 of these. Application
of a multivariate Cox regression model to a complete
cohort of 68 patients then showed an association of 2
of these with more prolonged survival; i.e., a low ex-
pression of CD7 in combination with a high expression
of either proteinase 3 or elastase.

6. Future directions

Accumulated knowledge of the unique biological
properties of CP CML stem cells underscores the need
for more comprehensive information about their molec-
ular alterations. This is crucial to allow newer thera-
pies to be devised and deployed with greater predic-
tive power of the risk-benefit for individual patients.
We anticipate that much of this anticipated progress
will come from large scale comparisons of the genome,
transcriptome and proteome of more highly purified
populations of normal and CML stem cell populations.
However, such studies will also need to be accompanied
by technical improvements for performing such stud-
ies with adequate depth and fidelity on the very small
numbers of cells that can realistically be isolated from
an individual sample (< 103). As a first step towards
this goal, we have recently developed a modified Serial
Analysis of Gene Expression (SAGE) protocol based
on the PCR-LongSAGE method [146]. This innovation
allows global transcriptome profiling to be usefully ap-
plied to as few as 103 primary hematopoietic cells. As a
first proof-of-principle experiment, we further showed
how this methodology could be used to identify nov-
el transcripts in a 200,000 tag LongSAGE library pre-
pared from extracts of FACS-purified lin−CD34+ nor-
mal human adult bone marrow cells [146]. More re-
cently, we have constructed and sequenced similar li-
braries from the CD38+ and CD38− subsets of the
CD34+ CML population from several CP patients and
their phenotypic counterparts in normal adult human
hematopoietic tissues. We anticipate that the results of
comparative analyses of these datasets and additional
meta-comparisons with published transcriptome data
will provide important new clues about key molecular
properties of CML stem cells.

7. Conclusion

The discovery of IM has revolutionized the treatment
of CML. While the vast majority of early CP patients
continue to do well with an excellent quality of life,
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there is a smaller cohort of patients that are not well
served by treatment with this agent. It is these patients
along with more advanced phase patients that require
alternative therapeutic options. To date, the most sensi-
tive method for assessing the effectiveness of IM ther-
apy is to monitor peripheral bloodBCR-ABL transcript
levels using real-time PCR. This strategy can usually
forecast the emergent expansion of resistant subclones
but is not able to detect the original presence of the
mutant or progressed CML stem cells from which such
subclones are presumed to arise. Here we describe a
number of properties of CP CML stem cells that dis-
tinguish them from normal HSCs and from the bulk of
the CML clone which is comprised of leukemic cells
that have begun to differentiate into various mature
blood cell types. Some of these features of CML stem
cells can already account for their abnormal growth
characteristics, their innate insensitivity toBCR-ABL-
targeted agents (as well as conventional chemothera-
peutic drugs), and their tendency to generate mutant
derivatives. New approaches for investigating CML
stem cell features and their diversity in individual pa-
tients should greatly facilitate the goal of predicting in-
dividual patient responses and the developmentof more
effective therapies for those not optimally served by
current regimens that rely on singleBCR-ABL-targeted
agents.
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