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Statistical methods for evaluating DNA
methylation as a marker for early detection or
prognosis
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Abstract. We summarize standard and novel statistical methods for evaluating the classification accuracy of DNA methylation
markers. The choice of method will depend on the type of marker studied (qualitative/quantitative), the number of markers, and
the type of outcome (time-invariant/time-varying). A minimum of two error rates are needed for assessing marker accuracy: the
true-positive fraction and the false-positive fraction. Measures of association that are computed from the combination of these
error rates, such as the odds ratio or relative risk, are not informative about classification accuracy. We provide an example of
a DNA methylation marker that is strongly associated with time to death (logrank p = 0.0003) that is not a good classifier as
evaluated by the true-positive and false-positive fractions. Finally, we would like to emphasize the importance of study design.
Markers can behave differently in different groups of individuals. It is important to know what factors may affect the accuracy
of a marker and in which subpopulations the marker may be more accurate. Such an understanding is extremely important when
comparing marker accuracy in two groups of subjects.
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1. Introduction

Novel technologies for measuring DNA methylation
provide the opportunity to hunt for new markers for
early cancer detection and prognosis. Evidence show-
ing DNA methylation occurs early in carcinogenesis
has made it a popular target for studies of early detec-
tion [17,37]. At the same time, studies showing DNA
methylation predicts treatment response have suggested
its potential as a marker for prognosis [21,38]. Since
DNA methylation patterns change with age [31], con-
trolling for age effects can be important when evaluat-
ing a marker’s potential.

Various technologies characterize DNA methylation
in the human genome differently [7,18,35]. Measure-
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ments can be obtained for a single CpG site or for a
series of linked CpGs. Depending upon the technology
the measurements can be either binary or quantitative.
A collection of DNA methylation measurements at a
number of different locations across the genome pro-
vides a DNA methylation profile or footprint. The sta-
tistical method used for marker evaluation will depend
on the type of measurement obtained as well as the
number of markers studied.

Most studies of DNA methylation for early detec-
tion are either preclinical exploratory studies or stud-
ies focusing on the development and validation of clin-
ical assays. These have been labeled Phase 1 and
Phase 2 studies in the proposed five-phase protocol of
biomarker development for early cancer detection [25].
Many of the studies are small, with at most 150 individ-
uals. However, the number of markers studied is grow-
ing. Genome scanning techniques can now measure
> 5,000 CpG islands simultaneously from a single tis-
sue sample. Therefore, statistical methods that can sift
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through a large number of markers in early preclinical
exploratory studies are needed.

DNA methylation has been studied as a prognostic
factor in cohorts of patients. In general, studies iden-
tifying DNA methylation markers for prognosis have
based their conclusions on logrank tests of associa-
tion [5,11,37,38,41]. Several authors have noted that
markers that show strong associations with outcome
are not necessarily good classifiers [2,10,29]. Pepe et
al. [29] illustrate the limitations of the odds ratio in
gauging the performance of a marker for screening or
prognosis. Similar examples suggest limitations of the
logrank test or hazard ratio for evaluating classifica-
tion accuracy. This suggests predictors of treatment
response are potentially poor classifiers and need to be
re-evaluated for their classification accuracy. The last
five years has seen the development of novel statistical
methods for evaluating classification accuracy for treat-
ment response. We will survey these methods along
with the classical methods for evaluating biomarkers
for early detection.

2. Study design

Studies to assess the accuracy of markers can be per-
formed prospectively or retrospectively. Retrospective
studies involve selecting subjects on the basis of their
true disease status as determined by the gold standard
and assessing the markers on them. These retrospec-
tive studies are often called case-control studies where
cases are those individuals with disease and controls
are those without disease. Prospective studies involve
determining marker values for a random sample from
the population of interest and determining true disease
status for all study subjects. True disease status can
be determined concurrently for a cross-sectional co-
hort study or over a follow-up period for a prospective
cohort study.

3. Statistical methods

The statistical methods for evaluating markers of
early detection or prognosis are similar. The primary
difference is that the tolerance for false-positive results
varies in the two settings. In studies of early detection,
a very small false-positive rate is necessary to avoid
costly follow-up and undue stress to non-diseased in-
dividuals receiving a positive test. In studies of prog-
nosis, a higher false-positive rate may be acceptable.

We present statistical methods for evaluating qual-
itative and quantitative markers as classifiers of dis-
ease. Typically, disease status is qualitative, subjects
are either diseased or not at the time of study. Such
outcomes are called time invariant, meaning that the
disease status of the individual does not change over
time. Death within a certain follow-up time or disease
status at some future time point might also be treated
as a time-invariant (qualitative) outcome. However, for
these outcomes it might be more natural to allow dis-
ease status to change over time. Then the outcome of
interest could be time to death or time to disease re-
currence. This type of outcome is called time varying
and can accommodate different lengths of follow-up
for subjects in the study. First we describe statistical
methods for the evaluation of single markers depending
on the type of marker (qualitative/quantitative) and the
type of disease outcome (time invariant/time varying).
Later we describe methods for combining markers and
methods for comparing different marker panels.

3.1. Evaluating a classifier – Single Marker Models

The accuracy of a qualitative marker is measured by
two error rates: the true-positive fraction (TPF) and
the false-positive fraction (FPF). The TPF, also known
as sensitivity, is the probability of a positive marker in
subjects who have disease (i.e., Pr [positive marker |
disease]). The FPF, also known as 1-specificity, is the
probability of a positive marker in subjects who do not
have disease (i.e., Pr [positive marker | no disease]).
A perfect marker will have a TPF of 1 and FPF of
0. In practice markers are imperfect and their value
depends on the context. Investigators may be willing to
withstand a higher FPF in order to obtain a higher TPF
for prognostic markers used for classifying diseased
individuals to treatment groups. On the other hand
an extremely low FPF is desirable for markers used to
screen a healthy population because of the follow up
costs of a positive result.

The receiver operating characteristic (ROC) curve
evaluates the accuracy of quantitative markers. It de-
scribes the (TPF, FPF) for every possible cut point of
the marker (Fig. 1). ROC curves measure the amount
of separation between the distribution of marker val-
ues in the diseased population from that in the non-
diseased population. When the distributions of marker
values for the diseased and non-diseased populations
completely overlap, then the ROC curve is the forty-
five degree line from (0,0) to (1,1) indicating a non-
informative test. The more separated the distributions,
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Fig. 1. Hypothetical marker distributions in diseased (d) and non-diseased (c) subjects with corresponding ROC curve below them. pAUC
corresponding to the area under the ROC curve from FPF 0 to 0.1 are provided.

the closer the ROC curve is to the upper left-hand cor-
ner. The units of measurement have no impact on the
ROC curve so that ROC curves can be used to compare
the accuracy of different markers even when they are
measured either in different units or on different scales.

The typical summary measure of an ROC curve is
the area under the curve (AUC) which is equal to the
Wilcoxon ranksum statistic. The AUC takes on a value
between 0 and 1, where AUC is equal to 1 for a per-
fect marker and is equal to 0.5 for an uninformative
marker. AUC is interpreted as the probability that the
marker value for a randomly chosen diseased subject
is greater than the marker value for a randomly chosen
non-diseased subject. AUC can also be interpreted as
the average TPF over the whole range of possible FPF.

When markers are compared, it is often by their
AUC. Some argue that it makes more sense to compare
ROC curves only for the FPF region of interest [23].
For a maximum acceptable FPF (= f0) one might com-
pute two statistics: (1) the TPF when FPF = f0 and
(2) the area under the ROC curve from 0 to f0. This
latter statistic is referred to as the partial AUC (pAUC)
and corresponds to the average ROC for all FPF < f0.
Using simulations, Pepe et al. [27] show that focus-
ing on the area of the FPF region of interest is most
important for detecting genes where the distribution of
the marker in cases differs from the distribution in con-
trols by more than a simple shift of the mean value.
One such example is a larger marker variation in cases
compared to controls (Fig. 1i). In Fig. 1, the partial
AUC is higher in scenario (i) where the variation of
the marker in cases is greater than in controls as com-

pared to scenario (ii) where the variation of the marker
is the same in cases and controls and only the mean is
slightly higher in the case group. For markers that are
highly predictive (Fig. 1iii), the markers are likely to
be identified regardless of the method chosen, AUC or
pAUC.

For the methods described above, all subjects are
classified a priori as diseased or non-diseased. How-
ever in prospective cohort studies, the disease status
of an individual can change over time. When the out-
come status changes over time, e.g. non-diseased indi-
viduals become diseased, several approaches to marker
evaluation are available. The traditional approach is
to define a fixed follow-up time for all subjects, clas-
sify them as diseased or non-diseased at the end of
that time, and then apply the methods previously de-
scribed. As an alternative, recent approaches propose
to estimate sensitivity and specificity as a function of
time [15,16]. This allows the sensitivity and specificity
of a marker to change over time. For example, there
can be markers associated with an acute event that are
both sensitive and specific immediately following data
collection but not for long-term predictions. Alterna-
tively there can be markers associated with events hav-
ing a latency period that appear informative for long-
term outcomes but are not predictive in the short term.
Two approaches for estimating sensitivity and speci-
ficity have been proposed. Sensitivity can be estimated
using all new cases at time t (incident sensitivity) or
using all cases identified up to time t (cumulative sen-
sitivity). The choice of which sensitivity measure to
report depends on whether one is interested in disease
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incidence or prevalence, respectively. Specificity can
be estimated using all individuals who are not cases at
time t (dynamic specificity) or using only those individ-
uals who do not become cases after long-term follow
up (static specificity). Most recent work has applied
the definition of dynamic specificity. Cumulative sen-
sitivity and dynamic specificity are estimated using the
Kaplan-Meier estimator [15] and incident sensitivity
and dynamic specificity using the Cox model [16].

To evaluate the accuracy of quantitative markers for
time-varying outcome, the time-dependent ROC curve
has been proposed [15]. ROC curves can be drawn for
different follow-up times and the different curves sum-
marized in a plot of the AUC over time. The ROC curve
computed using the cumulative sensitivity measure is
called the cumulative ROC and the ROC curve com-
puted using the incident sensitivity, the incident ROC.
One nice feature of the incident ROC curve is that it
permits a global test over all time points of whether a
marker is predictive of disease. This is achieved by
averaging the AUC over time in a manner that cannot
be applied to the analysis of the cumulative ROC [16].

We apply these new concepts of incident/cumulative
sensitivity and dynamic specificity to a study of DNA
methylation in a cohort of breast cancer patients.
MethyLight was used to measure DNA methylation in
primary tumor of 54 breast cancer patients who did not
receive tamoxifen therapy. The measurements, percent
of methylated reference sample (PMR) [9], are quan-
titative and the outcome is time until death or end of
study. Nineteen of the patients (35%) died during fol-
low up. Eight deaths occurred in the first two years
(15%) and 16 in the first five years (30%). The PMR
value for one gene, dichotomized at its median, pre-
dicted overall survival using a Kaplan-Meier analysis
(logrank p = 0.0003) (Fig. 2). The hazard ratio esti-
mate from a Cox model was 7.2 (95% confidence in-
terval (CI) = 2.1–24.6). Figure 3 shows the cumulative
and incident ROC curves 2 and 5 years after diagnosis.
Cumulative ROC curves 2 and 5 years after diagnosis
show that the AUC increases slightly with time follow-
ing diagnosis (Fig. 3i & 3ii). Interestingly, the incident
ROC curves at 2 and 5 years show AUCs that are simi-
lar at the two time points and higher than the AUCs for
the cumulative ROC curves (Fig. 3iv & 3v). Plots of
the AUC over time are shown in Fig. 3iii and 3vi for
the cumulative and incident ROC curves, respectively.
Pointwise 95% confidence intervals are computed us-
ing 1,000 bootstrap samples. The confidence intervals
cover 0.5 (uninformative marker) up to 6 years follow-
ing diagnosis for the cumulative ROC curve. For the

Fig. 2. Kaplan-Meier curves of the breast cancer patients that do not
receive tamoxifen therapy (N=54) after dichotomizing the marker at
its median value.

incident ROC analysis, the confidence interval does not
contain 0.5 suggesting that the marker is somewhat pre-
dictive. The average AUC from time of diagnosis until
5 years after follow up is 0.65 (95% CI = 0.52–0.76).
The conflicting conclusions from the cumulative and
incident ROC analyses suggests that the impressive lo-
grank p-value may not be a good indicator of the mark-
ers’ accuracy for classification and stresses the impor-
tance of evaluating the sensitivity and specificity of a
marker when making decisions on accuracy.

3.2. Evaluating a classifier – Combining Markers

When a single marker has inadequate ability to de-
tect the presence or absence of disease (e.g., cancer)
it is possible that combining multiple markers could
yield a combination that is more accurate than the sin-
gle marker. Two binary markers can be combined by
classifying a subject as diseased if both markers are
positive and non-diseased otherwise. This is referred to
as the ‘believe the negative’ (BN) rule [22] or the ‘and’
rule. The BN rule is more stringent than either marker
alone. It decreases FPF and TPF relative to the individ-
ual markers, but maintains the TPF of the combination
above the sum of the TPFs minus 1. Therefore, this
combination strategy is used when both markers have
high TPF but also have unacceptably high FPF because
the rule decreases FPF while hopefully not reducing
TPF very much.

Another approach for combining two binary markers
is to consider a subject diseased if either marker is
positive. This is referred to as the ‘believe the positive’
(BP) or the ‘or’ rule. The BP rule increases TPF relative
to the individual markers. It also increases the FPF,
but by no more than the sum of the FPFs for the two
markers. This combination strategy is used when the
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Fig. 3. Cumulative ROC curves (i) 2 years after diagnosis, (ii) 5 years after diagnosis, and (iii) plot of the AUC versus time for cumulative ROC
curves (solid line) with 95% pointwise confidence interval (long dashed lines). Incident ROC curves (iv) 2 years after diagnosis, (v) 5 years after
diagnosis and (vi) plot of AUC versus time for incident ROC curves (solid line) with 95% pointwise confidence interval (long dashed lines).
Confidence intervals are computed using bootstrap resampling.

markers have low FPFs but inadequate TPFs. This
second approach was used to evaluate a group of three
DNA methylation markers for detecting bladder cancer
from urine sediment [13].

Quantitative markers can be combined by creating a
risk score to estimate the probability of disease given
the marker data. The preferred risk score would op-
timize the ROC curve, providing the maximum TPF
for each FPF and the minimum FPF for each TPF.
For a discussion of optimal properties of the risk score
see [26]. In practice, many methods can be applied
to compute a risk score: logistic regression [4], classi-
fication trees [3], logic regression [33], artificial neu-
ral networks [32], support vector machines [39] and
boosting [12]. These methods fall into the subject area
known as supervised learning, where rules are devel-
oped to properly classify the diseased and non-diseased
individuals. For a description and comparison of the
different methods see [14,32].

Supervised learning methods can predict disease sta-
tus given the marker data; however no single method

will be best for all situations. Logistic regression
has the desirable properties of being efficient when
the model is correct and being robust under model-
misspecification [20]. In addition, it can be applied for
case-control designs. Still, a recent article found situ-
ations in which it was far from estimating the optimal
decision rule [30]. In the article, the authors proposed
to select the risk score that maximizes the ROC curve
directly [30].

Statisticians have been slow to adopt new supervised
learning methods for combining markers. This could
be due to early comparisons of new methods with stan-
dard statistical methods. For example, a paper report-
ing a review of the literature for applications of artificial
neural networks (ANNs) published from 1991 to 1995
found that ANNs were being misused and that they did
not perform better than logistic regression for many
problems [34]. A recent evaluation of a wide variety of
classification methods applied to gene expression data
from microarrays found support vector machines to be
the most effective classifiers in performing cancer diag-
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nosis, outperforming several other supervised learning
algorithms [36]. More research is needed to understand
the properties of many of these new methods.

3.3. Factors affecting marker accuracy

There are many factors that can affect the perfor-
mance of a marker. For DNA methylation, age could
be such a factor. Other possibilities include other de-
mographic attributes of the subjects tested (e.g., gen-
der, race), characteristics or severity of their disease
(e.g., histology and stage of cancer), characteristics of
controls (e.g., benign disease or non-diseased), char-
acteristics of testers (e.g., experience, institution), and
conditions under which the markers are studied. It is
important to identify and understand the influence of
these factors because populations and settings where a
marker is more or less accurate can be identified, which
can be useful in determining how best to use a marker.
Assessing the effects of factors on accuracy is also im-
portant because study results may not be relevant to
populations with different conditions or characteristics.
This is referred to as extrapolation bias [26].

Assessing the effects of factors on accuracy can be
accomplished using regression analysis. Specifically,
binary regression methods can be used to assess ef-
fects on the TPF and FPF for binary markers [19].
There are several approaches for quantitative markers
(see Chapter 6 of [26]). Alonzo and Pepe [1] propose
a ROC regression model where the outcome variable
is a binary variable indicating whether or not marker
values for diseased individuals are greater than a spec-
ified quantile of the distribution of marker values for
non-diseased individuals with the same covariate val-
ues. Predictor variables include covariates common to
the diseased and non-diseased individuals and covari-
ates that are specific to the diseased state (e.g., disease
severity). Generalized linear model methods for binary
data can be used to perform parameter estimation. Pepe
and Cai [28] and Cai [6] propose alternative approaches
to parameter estimation.

3.4. Comparing different classifiers

There are different methods for comparing two ROC
curves depending on the approach used to estimate the
ROC curves. Typically summary indices are used, such
as the AUC. Then the hypothesis test is based on the
difference in the AUC for the two classifiers. If the two
ROC curves are estimated from the same study subjects,
then the correlation between the AUC estimates must be

taken into account [8]. If there is particular interest in a
restricted portion of the ROC curve, then comparisons
of the pAUC can be used.

ROC curves can also be compared using ROC regres-
sion models by including a covariate or covariates in
the model indicating the different markers [24]. ROC
regression models have the nice feature that they can
compare the accuracy of markers while simultaneously
adjusting for other factors that could affect accuracy
(see Section 3.3 for examples of factors that can af-
fect accuracy). This reduces the bias for confounding
in observational studies and can increase the precision
in which accuracy is estimated in experimental studies.
Since DNA methylation patterns change with age [31],
it is important to control for age effects when compar-
ing the accuracy of markers.

3.5. Training and test sets, cross-validation

Estimates of sensitivity and specificity from a single
study tend to be optimistic and may not generalize to
future studies. When the main interest is in estimating
sensitivity and specificity in future studies, investiga-
tors might consider splitting the data into training and
test sets. When sample size is not large enough to split a
sample, cross-validation is recommended. To perform
cross-validation the data set is divided randomly into
K subsets of approximately equal size. The model is fit
to (K-1) subsets and evaluated for prediction error on
the omitted subset (test set). This is repeated K times,
each time omitting a different subset. The average er-
ror rate from the K test sets estimates the prediction
error for the model. Common choices for K are 5 or
10. Smaller data sets may require a larger K to reduce
bias in the error estimate. However this comes at the
price of higher variability of the estimate.

For models that require the estimation of a tuning
parameter, (e.g. estimating the number of hidden nodes
in an artificial neural network) cross-validation is typi-
cally used to select the parameter value. In such mod-
els, the cross-validation error will underestimate the
prediction error [34]. Such methods require splitting
the data into three subsets: training, validation, and test
set. When the sample size is not large enough to split
three ways, nested cross-validation can be applied [34,
36].

3.6. Selecting markers for further study

Selecting markers for further study after they have
been ranked on predictive ability is a separate chal-
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lenge. One strategy is to annotate the marker list us-
ing information on gene function or location. A new
approach that outperformed ‘annotation’ in selecting
differentially expressed genes that could be reproduced
in an independent test set, was to select genes that are
highly connected (co-expressed) with other genes [42].
Zhang and Horvath (2005) [42] found that highly con-
nected genes are more likely to be predictive in a follow-
up study than genes that are ranked based on statistical
significance only but are not connected. Gene clus-
ters have been observed studying DNA methylation in
colorectal cancer [40]. This suggests investigating the
application of this approach using DNA methylation
profiles.

4. Conclusions

Recent technologic and scientific advances have led
to the development of new potential markers for early
cancer detection or prognosis. We have reviewed meth-
ods for evaluating the performance of markers with re-
spect to early detection and prognosis. The methods
use two error rates to evaluate classification accuracy:
the true-positive fraction and the false-positive fraction.
Statistical methods that combine these two errors into
a single measure of association, either an odds ratio
or relative risk, can be misleading about the marker’s
classification abilities. Statistical methods have been
recently developed to evaluate markers in prospective
cohort studies where the subject’s disease status can
change over time. These methods will allow the assess-
ment of accuracy where subjects have varying lengths
of follow-up. Once a marker is shown to have adequate
classification ability, the next step is to determine the
practical usefulness of the marker in managing patients.
An accurate marker may not be useful if subjects are
not willing to undergo further work-up and treatment
after screening positive, or if treatment is ineffective
for disease detected by the marker. Finally, there is a
need to develop novel statistical methods to select and
combine markers from high-throughput studies where
> 5,000 CpG islands are being measured on sample
sizes of only 100 individuals. For this we can probably
learn from the recent methods developed for microarray
studies of gene expression data.
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