Additional file 1. Principal studies correlating older ages and prognostic factors.

Authors	Year	N	Age	follow up	Aim of the study	Relevant prognostic factors identified and/or
						conclusions
Ali et al,	2011	14048	>50 (40% >70)	5 and 10 yrs	Survival in different age groups	Age >75, lack of screening, deprivation predict poorer survival.
Barthelemy	2011	192	76,7 (70-98)		Impact of age and CGA on prescription of therapy.	Older age is a risk factor of under-treatment
Botteri	2010	12152	52		Relationship between lymph node (LN) involvement and age.	Delayed diagnosis is predictive of LN*.
Bouchardy	2003	407	>80	5 yrs	Determinants and effect of treatment choice.	Pf: age, under-treatment.
Chagpar	2009	4131	60 (27-100)		Adequacy of AND	Increasing age correlates with less adequate AND (<10

Chagpar	2007	700	76		Develop a clinical rule to predict	T, G, LVI are predictive of node positivity.
			(>70)		node positivity.	
Clough-Gorr	2010	660	>65	5-10 yrs	Survival for Cancer specific CGA in	≥3 cancer specific CGA predict poor prognosis.
					early BC.	
Ejlertsen	2009	15659	All ages	7,7	Significant of LVI	LVI isn't an independent risk factor.
Gajdos	2001	206	>70		Comparing treatment and outcome	Although under-treatment was more frequent in older
					with younger	people, it doesn't affect chance of survival or risk of
						recurrence.
Gennari	2004	2999	>50		Evaluating relationship between	Older women have more favorable biological
					biologic features and treatment	characteristics. Treatment should be chosen on the basis
					choice	of biologic characteristics, comorbidity, social support,
						functional status, and patient preferences.
Hartmann	2011	4056	All ages	5 yrs	Diabetes as prognostic factor	Diabetes doubles risk for distant metastases in ER-;
						diabetes doubles mortality on 5 yrs follow up.

Hieken	2004	104	>65		Utility of SNB in elderly	28% of elderly had ≥1 N+.
Livi	2006	1500	>65 (65-87)	8,7 yrs	Evaluating prognostic factors in elderly	For cancer-specific survival (CSS): local relapse, PN status, the type of surgery, radiotherapy, chemotherapy. For local disease-free survival (LDFS): mastectomy, histotype, PN status, and pt status.
Lyman	2003	20799	All ages		Evaluating risk of under treatment	Older ages.
Martelli	2005	219	65-80	5 yr	Randomized trial; survival and axillary relapse in pts undergone to CBS + TMX vs. BCS + AS + TMX	Axillary dissection may be safety omitted in older patients with early stage breast cancer and no palpable axillary nodes since its omission has no discernible effect on breast cancer mortality or overall survival.
Martelli	2011	671	≥70	15	Retrospective analysis comparing elderly patients with early breast cancer who received conservative surgery with or without axillary	Axillary dissection can be omitted.er negative status is associated with significantly greater rates of distant metastases and breast cancer death

					dissection.	
Melicharovà	2010				Test urinary neopterin as marker of	Significantly higher neopterin levels were noted in>70 yrs
	2012	500 . 454			comorbidity.	patients or with two or more comorbid conditions.
Mittendorf	2012	509 + 464			Incorporation of metastasis size in SN in a nomogram.	Size of node metastasis is useful to predict no SN metastasis.
Moghaddam	2010	108			Comparison of nomograms.	Similar results.
Muss	2005	6487	All ages	9.6 yrs	Usefulness of chemotherapy in	Predictive factors of better survival are smaller t, fewer
					older vs. younger patients.	N+, higher doses CHT and TMX : more (0.5%) therapy related deaths.
Owusu	2008	961			Factors predicting interruption in HT.	Predicting factors are age >75 v < 70 years; increase in Charlson Comorbidity Index at 3 years from diagnosis;
						increase in the number of cardiopulmonary comorbidities at 3 years; indeterminate ER status v ER-positive status; breast-conserving surgery (BCS) without radiotherapy vs.

						mastectomy.
Pal	2008				Validation of nomograms.	
Patnaik	2011	64034	≥66	5 yrs		Comorbidities worsen survival outcomes like or more
						than later stage at diagnosis. Myocardial infarction,
						peripheral vascular disease, stroke, chronic obstructive
						pulmonary disease, and diabetes determine outcome as
						shifting the stage by one from I-II to II-III; dementia,
						chronic renal failure, and liver disease shift the outcome
						by two stages (from I-II to III-IV).
Phua	2010	137	>70	5 yrs	Retrospective study: OS, CSS;	Performance status, T3-4 tumor, M +, G and ER status
					prognostic factors.	were independent prognostic factors for OS. For CSS : T4
						tumor, M+ and ER status.
Poltinnikov	2006	153	≥70	55mo	Cause specific survival (CSS), (OS),	Her-2 neu + predicts development of NDF and lower CSS.
					and combined nodal and distant	
					failure (NDF). Her-2 neu positivity	

Quaglia	2011	1081	All ages	5 yrs	Effect of age and socio-economic	≥70 in lower SES had 58% CSS vs. 91% of younger and
					status (SES) on CSS	wealthier.
Ramjeesingh	2009	397	All ages		Prediction of metastases in sentinel	Multifocality and LVI predictive for SN +; MSKCC
					node; validation of nomogram	nomogram overrated the risk of NSN metastases.
Richards	1999	2022	All ages		Influence of delay in diagnosis on OS	Longer delays are associated with worse survival. At 10
					and CSS	years from onset of symptoms a difference in CSS was
						observed between patients with delays of less or more
						than 12 weeks (57% vs. 537%). At 20 years, the difference
						in CSS was 48% vs. 33%.
Satariano and	1994	936	All ages	3 yrs	Effect of comorbidity on survival	3 comorbidity determine a 4-fold higher all-causes
Ragland						mortality.
Schonberg	2010	49616	≥67	5,6	Variations in breast cancer tumor	Age >80 increases risk to die from BC. Mastectomy, BCS
				(2-13) yrs	characteristics, initial treatments	alone, or no surgery are predictive of poorer prognosis
					received, and survival among	respect to BCS+RT. Chemotherapy was associated with a

					women age 80 to 84, 85 to 89, and	significant reduction in mortality for women age 67 to 79
					≥90 years with early-stage (stage I	years (AHR, 0.6; range, 0.5 to 0.8) and an increased risk of
					or II) breast cancer compared with	mortality for women age ≥80 years (AHR, 1.5; range, 0.9
					younger women (age 67 to 79	to 2.3) that did not achieve statistical significance.
					years).	
Schrauder	2011	4056	All age. 3027 post-	1-16 yrs	Influence of diabetes on survival,	Patients with DM were significantly older (mean 67,4) at
			menopausal, mean		distant metastasis-free survival and	diagnosis of BC and presented with a higher tumor stage.
			age 57,6		local recurrence free survival in	Mortality following BC was significantly higher among
					relation to common tumor and	women with DM compared to BC patients without DM
					patient characteristics.	(HR 1.90; 95% CI 1.49–2.48).
Silliman	2009	1859	≥65	10 yrs	Linking variations in treatment and	≥75 years of age, with more comorbidity, low or
					follow-up care to variations in	intermediate risk of recurrence are more frequently
					outcomes.	associated with non-standard primary therapy,
						particularly BCS without rt. BCS without RT was
						associated with : increased rate of recurrence, second
						primary breast cancer and breast cancer mortality.
						Among hr + tumors group, less than one year of
						tamoxifen was associated with a higher rate of

						recurrence, second primary BC and lower CSS than five
						years or more. ≥ 80 years of age and comorbid conditions
						reduce likelihood of yearly mammograms. Each
						additional surveillance mammogram was associated with
						a reduction in the odds of breast cancer mortality.
Smidt	2005	229			Validation of nomogram	The nomogram provides a fairly accurate prediction of
						the probability of non-SLN metastases.
van de Water	2012	9766	All age	5.1 yrs	Association between age at	Higher risk of disease-specific mortality with increasing
					diagnosis and breast cancer	age (reference standard, patients <65 years [hazard ratio
					outcome in postmenopausal women	{HR} for patients aged 65-74 years, 1.12; 95% CI, 0.94-
					with hormone receptor-positive	1.34; hr for patients aged ≥75 years, 1.66; 95% CI, 1.34-
					breast cancer	2.06 ; <i>p</i> <.001]).
van den Hoven	2010	168			Validation of nomogram	Performance of the MSKCC nomogram was insufficient.
Van Zee	2003	702 + 373			Validation of nomogram	Pathological size, tumor type and nuclear grade,
						lymphovascular invasion, multifocality, and estrogen-

					receptor status of the primary tumor; method of
					detection of SLN metastases; number of positive SLNs;
					and number of negative SLNs are criteria useful to
					develop a nomogram to easily and accurately calculate
					the likelihood of having additional, non-SLN metastases
					for an individual patient.
Wagner	2011	818		Effect of time to surgery on tumor	Modest time intervals (mean 21 days, range 1-132) from
				growth by comparing initial imaging	imaging to surgery are not significantly associated with
				and pathologic tumor size	change in tumor size.
Wang	2010	31298	All ages	Pattern of breast cancer surgery	After adjusting for histologic grade, number of cancers,
				after adjusting for other major	tumor size, tumor location, the EIC presence (yes or no),
				prognostic factors in relation to	and LN status (+ or –), compared with the group aged 51–
				patient age.	70 years (the reference group), the group aged >70 years
					had only half the chance of receiving BCS (OR=0.498, 95%
					ci: 0.455–0.545).there was no difference between
					women aged 51–70 years and those aged >70 years in

				tumor histologic grade, prevalence of LN+, and LVI
				although higher t in women aged >70 years.
Williams	2008	4222	≥65	Relationship between wealth and Financial resources determine access to screening screening mammography use in mammography more than the possible benefit. Poorer
				older women according to life older women with favorable prognoses are at risk of not
				expectancy receiving screening mammography when they are likely
				to benefit.
Wyld et al,	2004	378	55-98	Investigate reasons for failure in Stage at presentation of breast cancer is more advanced
				improving outcome in older women in older women and that this difference may be largely
				due to lack of mammographic screening. Thus, their
				treatment more frequently falls outside of agreed
				national and local guidelines.
Yood	2008	1837	≥65	To compare the effect of primary After adjusting for age, race and ethnicity, baseline
				breast cancer therapy (breast- Charlson Comorbidity Index category, tumor size, number
				conserving surgery [BCS] without of positive lymph nodes, receptor status, and histologic
				radiation therapy [RT], BCS plus RT, grade, women receiving BCS without RT were more likely

		and mastectomy) on mortality, and	to die of breast cancer (HR=2.19, 95% Cl, 1.51 to 3.18)
		the additional effect of tamoxifen	than women receiving mastectomy (adjusted rate
		among those with hormone-	difference = 50%). Women receiving BCS+RT had a rate of
		responsive tumors	breast cancer death similar to that of patients receiving
			mastectomy (HR=1.08, 95% CI, 0.79 to 1.48; adjusted rate
			difference=0.4%). Tamoxifen for less than 1 year was
			associated with a higher rate of death compared with 5
			years or more, (HR=6.26, 95% CI, 3.10 to 12.64). The
			survival benefit from tamoxifen increased with increasing
			therapy duration.