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Extrinsic Factors Reported concentrations in the literature

AA2P, AA (M) 10, 25, 50, 119.19, 200, 238.38, 250, 300, 476.76, >500

VD3 (nM) 0.1, 1, 10, 100, 1000

BMP-2 (ng/mL)
1, 3, 5, 6.25, 10, 12.5, 25, 30, 40, 50, 100,
150, 200, 250, 300, 400, 500, 800, 1000

Hep (g/mL)
0.1, 0.2, 0.3, 0.5, 0.625, 1, 1.25, 1.5, 2, 2.5,
3, 4, 5, 6, 10, 15, 20, 30, 50, 100, 200, 2000

RA (nM) < 1, 1, 2.5, 5, 10, 20, 100, 1000, 2500

Dex (nM) < 1, 1, 10, 100, 1000

beta-GP (mM) < 1, 5, 8, 10, 50

Supplementary Table S1: Concentrations of extrinsic factors reported in osteogenic media.
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Figure S1| Double-objective FSC iterations using ALP expression as a biological fitness 
assay. (a) The representative iteration course change of the extrinsic factor concentrations. RA 
concentration increased in each iteration, whereas other factors showed a tendency of gradual 
decrease. Hep showed a sudden increase after the 7th iteration. (b) Contribution of RA for ALP 
activity. Removal of RA from an original cocktail completely abolished early ALP expression of D1 
cells and L929 cells. D1 cells and L929 cells were seeded at 3125/cm2. ALP activity was measured 
at day 3. Data show mean ± s.d. (n=3 per group). **: p<0.01 and *: p<0.05 compared to the 
original cocktail (ANOVA with a Dunnett’s test). 
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Figure S2| Classification of drug cocktails. (a) Classification of drug cocktails used in FSC-DE 
with mineralization assay in accordance with those mineralization indexes. Italic numbers: 
mineralization index. After 9 iterations, 14 cocktails (boxed) were found to induce the equivalent of 
or at least one half of Ca2+ deposition as compared to TB containing high dose of BMP-2 (100 ng/ml). 
(b) Classification of the above 14 drug cocktails (boxed) in accordance with BMP-2 concentration. 
Italic numbers: BMP-2 concentration. Eight drug cocktails containing less than 25 ng/ml BMP-2 
were used in the further experiment. 
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Figure S3| Effect of candidate cocktails on in vitro mineralization of L929 fibroblasts. 
None of the tested cocktails induced in vitro mineralization. Cells were seeded at 45,000/cm2; once 
the cells became confluent, the media were changed to the basal media and then to the media with 
each drug cocktail. Ca2+ content in the well was measured at day 7. Data represent mean ± s.d. (n 
= 3 per group). 
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