SUPPLEMENTAL INFORMATION

Gene expression microarrays

RNA isolation

Samples (40-150 mg) were ground in liquid nitrogad homogenized in RLT Buffer (Qiagen) with
beta-mercaptoethanol. RNA was extracted using RN&&di Kit (Qiagen) and re-purified with

RNeasy Mini Kit (Qiagen), including a digestionstgith RNase-free DNase | set (Qiagen).

Microarray experiment

Five micrograms of RNA was used for cDNA synthedtgst, the RNA template was mixed,
incubated with T7-oligo(dT)24 primer at 70 C for frfin and placed on ice. Next, 5x First Strand
Buffer (4 pL), dithiothreitol (2uL; 0.1 M), and dNTPs ({uL; 10 mM) were added and the mixture
was preincubated at 42 C for 2 min. Then, Supgastrreverse transcriptase (L; 200 U/mL) was
added and the mixture was incubated at 42 C for The mixture for second strand synthesis
contained 3QuL of 5x Second Strand Buffer, RNase-free water§L), dNTPs (3pL; 10 mM),
Escherichia coli DNA Polymerase | (4iL; 10 U/mL), E. coli DNA Ligase (0.2uL; 60 U/mL), and
RNase H (luL; 2 U). After incubation at 16 C for 2 h, T4 DNAoRmerase | (2.5uL; 4 U) was
added and the mixture was incubated for 5 min aC1&he reaction was stopped using EDTA (10
pL; 0.5 M) and the double-stranded cDNA was purifieih GeneChip Cleanup Sample Module
(Affymetrix). All reactions were performed using &g&ycle cDNA Synthesis Kit (Affymetrix). For
biotinylated cRNA synthesis, TiL of double-stranded cDNA were used (IVT Labelingt;K
Affymetrix). Labeled cRNA was purified with Gene@hSample Cleanup Module and fragmented.
The quality of cRNA was assessed with Bioanalyz@002 and ambiguous samples were first
hybridized to a control microarray (Test 3), anénthafter sample quality evaluation, to Human

Genome U133 2.0 PLUS array (Affymetrix).



Washing, staining with streptavidin-phycoerythrionjugate, and scanning of the arrays in a
GeneArray 3000 scanner (Affymetrix) were performasd recommended by the Affymetrix Gene

Expression Analysis Technical Manual.

External microarray data
Microarray dataset from the Borugh al. study (dataset A) was downloaded from the Array

Express gene expression repositdrign://www.ebi.ac.uk/arrayexpressiccession number E-MEXP-

2442). The dataset included various types of tlaysaimples analyzed by HG-U133 Plus2 microarray.
Only those relevant to our study were selectedfo2ular adenomas and 18 follicular carcinomas.
The data had already been preprocessed using GCRMA.

Raw microarray data from the Welstral. study (testing dataset E1) was downloaded from the
Array Express (E-MEXP-97). The dataset containiagFTC and 12 FTA was preprocessed using
GCRMA.

Microarray data from the Hinsckt al. study (dataset E2) was downloaded from the Gene
Expression Omnibus repository (http://www.ncbi.mih.gov/geo/query/acc.cgi?acc=GSE15045).

The dataset containing 8 FTC and 4 FTA samplesahraddy been preprocessed.

Quality assessment and pre-processing of microarray data (datasets B and D)
The quality of the microarray data was analyzedngisarrayMvout [1] 1.12.0 library in R
2.14.1/Bioconductor environment. The data werepposessed with the GCRMA method. Tumor

samples were normalized together with normal tldysaimples that were not used in this publication.

Comparison of classifierson themicroarray training set (dataset B)

A variety of algorithms can be used to classify noécray data, but none of them is the best [2]. We
used DLDA in our analysis, as this method is simp#iable, and does not require parameter tuning.
For comparison, we analyzed the accuracies of alasification methods. All the analyses were

performed in the CMA 1.13.2 library in R 2.14.1/Bamductor environment using our training



microarray dataset (set B). Only 99 genes chosan Borup's dataset (set A) were analyzed using
the following classification algorithms:

- KNN (K Nearest Neighbors) with different numbémeighbors k=1, 3, 5;

- DLDA (diagonal linear discriminant analysis);

- SCDA (shrunken centroid discriminant analysispatalled PAM);

- Support Vector Machines (SVM) with linear kernel,

- Support Vector Machines with radial kernel;

- Support Vector Machines with polynomial kernel,

We also used different number of genes (2, 3, 8, 3, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35440

50) to determine the effect of gene number on ifieatdon performance.

For each combination of classifier algorithm andanber of genes, we applied the cross-validation
procedure (10 loops of 10-fold cross-validation). dach iteration, a t-test was applied for gene
selection. Next, the classifier was trained on 98Rthe samples and then tested on the remaining
ones. SVM parameters were tuned in the additiomadriloop of the 5-fold cross-validation. For each
combination of classifier algorithm and number ehgs, we calculated the accuracy of the classifier
and the misclassification rate. The results aravehim Figure A. Four algorithms, namely, DLDA,
SCDA, linear SVM, and radial SVM, provided good @exy. Up to 20 genes, the majority of
classifiers showed a decrease of misclassificatitae Above 20 genes in classifier, for most ofrthe

the increase in number of genes did not resufhprovement of accuracy.

Evaluating the influence of gene pre-selection on classification accuracy (dataset B)

In our analysis, we included a gene pre-selectiep an microarray dataset A. To determine its éffec

on classification accuracy, we made a comparisan owiitted the pre-selection step and performed a
10-fold cross-validation repeated 10 times to as#es accuracy of classification performed on the
entire dataset B. In each iteration, genes thaé¢ weyst significant in t-test were chosen. The aisly

was performed for different number of genes (froto 29). The same analysis was also performed



for dataset B using only the 99 genes that had belected from set A. The results of the comparison
indicate that inclusion of a pre-selection stemiicantly increases the accuracy of classification

(Figure B).

Performance measures of classification

For each of the datasets, we calculated clasgieformance measures, including accuracy (the
proportion of all samples that are correctly clesd), sensitivity (the proportion of FTC samplésit
are correctly classified), specificity (the propant of FTA samples that are correctly classified),
positive predictive value (PPV; the proportion @ingples classified as FTC that are truly FTC),
negative predictive value (NPV; the proportion amples classified as FTA that are truly FTA),
positive likelihood ratio (sensitivity divided byl [- specificity]), and negative likelihood ratiol (F

sensitivity] divided by specificity).

RNA isolation from FFPE samples (dataset C)

RNA was isolated using Qiagen RNeasy FFPE kit @sdispended in 20 pL of RNAse-free water
supplied in the kit. RNA concentration was measuraging the NanoDrop ND-1000
spectrophotometer. Reverse transcription was pagdrusing Qiagen Omniscript RT Kit. The input
RNA material for each sample was 200 ug in a fimdlime of 20 pL. A set of 71 samples (40 FTA

vs. 31 FTC) were transcribed for g°PCR experiment.

Calibration and standard curve preparation (dataset C)

For calibration and standard curve preparatiorigh-guality RNA samples obtained from FF tumors
(3 FTA and 3 FTC) were pooled together and RNA eotration was measured. A dilution series
was prepared as follows: 1000 ng, 500 ng, 200 0@,t, 40 ng, 20 ng, 8 ng, and 2 ng. Additionally,
4 independent samples of 200 ng each of pooledri@iatecre used as calibrators. Serial dilutions,
calibrators, and the 71 test samples were traresttibgether in 1 RT-PCR run on a 96-well Biometra

Uno Il thermocycler. Subsequently all samples wditeted 10 times and distributed into gPCR



plates. Each plate comprised 71 experimental anchlibrator samples; additional plates were

prepared for the standard curves.

Amplicon design for gPCR (dataset C)
gPCR settings were carefully designed to give thgnwl amplification in FFPE-isolated RNA.
General conditions for amplicon selection were:

» Short amplified fragments

* 3-end proximity

* A common amplified sequence for all transcriptsezed by the microarray probe

» Amplicon unique to human genomic and transcriptotaitabase (confirmed by BLAST)

* No known Single nucleotide polymorphisms (SNPs)any of primer or probe sequence

(BLAST SNP flanks)

We used the Roche Universal Probe Library for ogpeeiments. Primers are listed in Table A:

QPCR experiment (set C)

All plates were amplified by 7900HT Fast Real-TiR€R on an Applied Bioscience machine. First, a
standard curve was generated for each amplicoacht & the 8 concentrations (described earlier) in
duplicate. The linear regression slope of the steth@urve indicated amplification efficiency. Two
independent plates were amplified for each gene.@&Norm applet for Microsoft Excel was used to
normalize gPCR data. Based on our experience wttoid samples, we chose the EIF3A, EIF5, and

HADHA genes for gPCR data normalization.

gPCR classifier equation

Based on the whole qPCR dataset C, we created aARld3sifier formula, which can be used to
classify new samples. The expression values arealimed, log-transformed (with base 2) and a
value of 13 is added to all of them to avoid negatialues.

classifier value = 0.587 * elmol + 0.891 * slco2a@.430 * kcnabl + 0.839 * emcn + 0.570 * itih5



If classifier value is above 16.339, it denotes Fif A is below 16.339, it denotes FTC.

Discussion - description of the genes

SL.CO2A1, commonly called prostaglandin transporteG(), is an organic anion transporter
involved in prostaglandin transport [3]. Prostaglas, produced by prostaglandin-endoperoxidase
synthase 2 (PTGS2), have been linked to tumor psesipn, proliferation, and motility [4]. Down-
regulation ofS.CO2A1 was confirmed in colorectal cancer [4]. To our kiexlge, the importance of
S.CO2A1 in thyroid cancer has not been directly analyZeokvever, in some studies, elevated
expression o0PTGS2 in malignant cells was detected, whereas in atheties it was unaffected [5,6].
Prostaglandin regulation surprisingly l[inKBGT to the orphan nuclear receptor peroxisome
proliferator-activated receptogamma (PPARG) [7]. PPARG prostaglandin-related ligands are
transported by SLCO2A1 and therefore the physicklgifunction of this nuclear receptor is
dependent on PGT [7].

Another membrane transporter in our studiK@NAB1. Loss of its expression is linked with
neuronal cell loss and neurofibrillary tanglesandpathy brains [8] and it is a susceptibility géore
lateral temporal and focal epilepsy [9,10]. Althbudown-regulation of this transporter has been
reported in thyroid cancer, validation results ematradictory [11]. Our study confirmed the down-
regulation ofKCNABL.

ITIH5 is a member of a protein family that is commontwd-regulated in many types of
cancers, leading to tumor progression [12]. In @emé study this gene was proposed as a potential
prognostic marker for poorly differentiated thyradrcinoma (PDTC) [13]. Our results are consistent
with this finding [13]. Thus|TIH5 is a marker of a more aggressive histotype oicidir tumors and
could therefore be a reliable indicator of malignanThe ECM stabilization function of ITIHS may
explain its importance in the suppression of tuprogression.

EMCN was identified as an endothelial cell anti-esltie protein that inhibits cell-ECM
interactions [14]. Recent data showed that knockdoVEMCN inhibited cell growth and migration

[15]. The down-regulation of endomucin observedun study is inconsistent with these data.



ELMO1 participates in a Rac-dependent pathway bfnaigrration and phagocytosis [16]. Our
results confirmed the down-regulation BEMO1 gene in FTC. ELMO1 protein has recently been
shown to modulate PTGS2 activity in mesangial ddll§. This observation may point to potential

functional loops with PGT, which will be furtheniestigated in FTC.
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Table A. gPCR primers

GENE PROBE FORWARD PRIMER REVERSE PRIMER

CA4 #53 B-tgtctaatatccccaaacctgag-3 5'-ctccttggggagcaggtc-3

ELMO1 #87 8-gattccttgcaggacaaactg-3 5'-agtcctttcccgtcaccac-3

EMCN #29 B-ccatggaactgcttcaagtg-3 5-gaattattagctgcctctaaaacacc-3
ITIH5 #69 B-gagcattggggacatcca-3 5'-gcacgaataccacattcttgg-3
KCNAB1 #19 3-tggggagcatcatcaagaa-3 5-tccaccccagtagagtttgd-3
LRP1B #76 B-caaaagaacttacagagacccacta-3 5'-cagcccaatatatgcgttca-3
PLEKHG4B #16 3-agagccggagtctgtcctc-3 5'-gccatgatgtgcctcagtc-3
SLCO2A1 #19 B-agttcttgttgatgcgctig:3 5-aggagtggtcaatggtgagg-3




Table B Clinical characteristics of samples

Dataset Histology Number of Men (%) Median age Ref.
samples (years)
Borupet al. microarray FTC 18 39 65 [18]
dataset (A) FTA 22 22 54
Training microarray FTC 13 38.5 67 this study
dataset (B) FTA 13 0 41
Testing gPCR FTC 31 32 61
dataset (C) FTA 40 12.5 49
Testing microarray FTC 14 28.5 71
dataset (D) FTA 12 25 50.5
Weberet al. testing FTC 12 8 67 [19]
microarray dataset (E1) FTA 12 unknown unknown
Hinschet al. testing FTC 37.5 49 [20]
microarray dataset (E2) FTA 4 0 39
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Figure A. Misclassification rates for various classificatimethods and different number of genes.
The different colors indicate different classificatalgorithms. Misclassification rates were
obtained on the training microarray dataset (Bhecross-validation procedure.
Abbreviations: DLDA - Diagonal Linear DiscriminaAnalysis, SCDA - Shrunken Centroid
Discriminant Analysis, KNN 1 - K Nearest Neighbarih one neighbor, KNN 3 - K Nearest
Neighbors with three neighbors, KNN 5 - K Nearestdiibors with five neighbors, SVM
linear - Support Vector Machines with linear kerr&V/M radial - Support Vector Machines

with radial kernel, SVM polynomial - Support Vectdiachines with polynomial kernel.
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Figure B. Comparison of misclassification rates for the DLDlAssifier on dataset B, with and

without gene pre-selection on dataset A
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Figure C. qPCR amplification plots (set C). FF (fresh-frozen)-FFPE (formalin-fixed paraffin-
embedded) comparison: gPCR amplification plot€af (Left) andSL.CO2A1 (Right). The Ct was
significantly different between the FF (calibratahd FFPE samples in both graphs. The best
amplified FFPE samples exhibit a 5-cycle differermmmpared to frozen sample€A4 gene
amplification curves for FFPE material were onlytadbed for 4/71 samples (all were FTA). Good
amplification of the calibrator suggested that ttesigned amplicon was adequate and that the

transcript levels in paraffin-derived samples wexelow to be amplified.
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Figure D. Next generation sequencing results. Eight transcfipm the classifier, visualized in IGV
Genome Browser. The 2 upper lanes in each IGV siwa@se FTC samples and the lower
lane is normal thyroid sample from lllumina Humandg Map 2.0 RNA-seq dataCA4,

LRP1B, andPLEKHG4B have notably lower coverage than the other 5 genes
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