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SUPPLEMENTAL INFORMATION 

 

Gene expression microarrays 

RNA isolation 

Samples (40–150 mg) were ground in liquid nitrogen and homogenized in RLT Buffer (Qiagen) with 

beta-mercaptoethanol. RNA was extracted using RNeasy Midi Kit (Qiagen) and re-purified with 

RNeasy Mini Kit (Qiagen), including a digestion step with RNase-free DNase I set (Qiagen).  

 

Microarray experiment 

Five micrograms of RNA was used for cDNA synthesis. First, the RNA template was mixed, 

incubated with T7-oligo(dT)24 primer at 70 C for 10 min and placed on ice. Next, 5x First Strand 

Buffer (4 µL), dithiothreitol (2 µL; 0.1 M), and dNTPs (1 µL; 10 mM) were added and the mixture 

was preincubated at 42 C for 2 min. Then, Superscript II reverse transcriptase (1 µL; 200 U/mL) was 

added and the mixture was incubated at 42 C for 1 h. The mixture for second strand synthesis 

contained 30 µL of 5x Second Strand Buffer, RNase-free water (91.8 µL), dNTPs (3 µL; 10 mM), 

Escherichia coli DNA Polymerase I (4 µL; 10 U/mL), E. coli DNA Ligase (0.2 µL; 60 U/mL), and 

RNase H (1 µL; 2 U). After incubation at 16 C for 2 h, T4 DNA Polymerase I (2.5 µL; 4 U) was 

added and the mixture was incubated for 5 min at 16 C. The reaction was stopped using EDTA (10 

µL; 0.5 M) and the double-stranded cDNA was purified with GeneChip Cleanup Sample Module 

(Affymetrix). All reactions were performed using One-Cycle cDNA Synthesis Kit (Affymetrix). For 

biotinylated cRNA synthesis, 7 µL of double-stranded cDNA were used (IVT Labeling Kit; 

Affymetrix). Labeled cRNA was purified with GeneChip Sample Cleanup Module and fragmented. 

The quality of cRNA was assessed with Bioanalyzer 2000, and ambiguous samples were first 

hybridized to a control microarray (Test 3), and then, after sample quality evaluation, to Human 

Genome U133 2.0 PLUS array (Affymetrix).  
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Washing, staining with streptavidin-phycoerythrin conjugate, and scanning of the arrays in a 

GeneArray 3000 scanner (Affymetrix) were performed as recommended by the Affymetrix Gene 

Expression Analysis Technical Manual. 

 

External microarray data 

Microarray dataset from the Borup et al. study (dataset A) was downloaded from the Array 

Express gene expression repository (http://www.ebi.ac.uk/arrayexpress/; accession number E-MEXP-

2442). The dataset included various types of thyroid samples analyzed by HG-U133 Plus2 microarray. 

Only those relevant to our study were selected: 22 follicular adenomas and 18 follicular carcinomas. 

The data had already been preprocessed using GCRMA.  

Raw microarray data from the Weber et al. study (testing dataset E1) was downloaded from the 

Array Express (E-MEXP-97). The dataset containing 12 FTC and 12 FTA was preprocessed using 

GCRMA. 

Microarray data from the Hinsch et al. study (dataset E2) was downloaded from the Gene 

Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15045). 

The dataset containing 8 FTC and 4 FTA samples had already been preprocessed.  

 

Quality assessment and pre-processing of microarray data (datasets B and D)  

The quality of the microarray data was analyzed using arrayMvout [1] 1.12.0 library in R 

2.14.1/Bioconductor environment. The data were pre-processed with the GCRMA method. Tumor 

samples were normalized together with normal thyroid samples that were not used in this publication. 

 

Comparison of classifiers on the microarray training set (dataset B) 

A variety of algorithms can be used to classify microarray data, but none of them is the best [2]. We 

used DLDA in our analysis, as this method is simple, reliable, and does not require parameter tuning. 

For comparison, we analyzed the accuracies of other classification methods. All the analyses were 

performed in the CMA 1.13.2 library in R 2.14.1/Bioconductor environment using our training 
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microarray dataset (set B). Only 99 genes chosen from Borup's dataset (set A) were analyzed using 

the following classification algorithms: 

- KNN (K Nearest Neighbors) with different number of neighbors k = 1, 3, 5; 

- DLDA (diagonal linear discriminant analysis); 

- SCDA (shrunken centroid discriminant analysis, also called PAM); 

- Support Vector Machines (SVM) with linear kernel; 

- Support Vector Machines with radial kernel; 

- Support Vector Machines with polynomial kernel; 

 

We also used different number of genes (2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 

50) to determine the effect of gene number on classification performance.  

 

For each combination of classifier algorithm and number of genes, we applied the cross-validation 

procedure (10 loops of 10-fold cross-validation). In each iteration, a t-test was applied for gene 

selection. Next, the classifier was trained on 90% of the samples and then tested on the remaining 

ones. SVM parameters were tuned in the additional inner loop of the 5-fold cross-validation. For each 

combination of classifier algorithm and number of genes, we calculated the accuracy of the classifier 

and the misclassification rate. The results are shown in Figure A. Four algorithms, namely, DLDA, 

SCDA, linear SVM, and radial SVM, provided good accuracy. Up to 20 genes, the majority of 

classifiers showed a decrease of misclassification rate. Above 20 genes in classifier, for most of them 

the increase in  number of genes did not result in improvement of accuracy. 

 

Evaluating the influence of gene pre-selection on classification accuracy (dataset B) 

In our analysis, we included a gene pre-selection step on microarray dataset A. To determine its effect 

on classification accuracy, we made a comparison. We omitted the pre-selection step and performed a 

10-fold cross-validation repeated 10 times to assess the accuracy of classification performed on the 

entire dataset B. In each iteration, genes that were most significant in t-test were chosen. The analysis 

was performed for different number of genes (from 2 to 99). The same analysis was also performed 
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for dataset B using only the 99 genes that had been selected from set A. The results of the comparison 

indicate that inclusion of a pre-selection step significantly increases the accuracy of classification 

(Figure B). 

 

Performance measures of classification 

For each of the datasets, we calculated classifier performance measures, including accuracy (the 

proportion of all samples that are correctly classified), sensitivity (the proportion of FTC samples that 

are correctly classified), specificity (the proportion of FTA samples that are correctly classified), 

positive predictive value (PPV; the proportion of samples classified as FTC that are truly FTC), 

negative predictive value (NPV; the proportion of samples classified as FTA that are truly FTA), 

positive likelihood ratio (sensitivity divided by [1 - specificity]), and negative likelihood ratio ([1 - 

sensitivity] divided by specificity). 

 

RNA isolation from FFPE samples (dataset C)  

RNA was isolated using Qiagen RNeasy FFPE kit and resuspended in 20 µL of RNAse-free water 

supplied in the kit. RNA concentration was measured using the NanoDrop ND-1000 

spectrophotometer. Reverse transcription was performed using Qiagen Omniscript RT Kit. The input 

RNA material for each sample was 200 µg in a final volume of 20 µL. A set of 71 samples (40 FTA 

vs. 31 FTC) were transcribed for qPCR experiment.  

 

Calibration and standard curve preparation (dataset C) 

For calibration and standard curve preparation, 6 high-quality RNA samples obtained from FF tumors 

(3 FTA and 3 FTC) were pooled together and RNA concentration was measured. A dilution series 

was prepared as follows: 1000 ng, 500 ng, 200 ng, 100 ng, 40 ng, 20 ng, 8 ng, and 2 ng. Additionally, 

4 independent samples of 200 ng each of pooled material were used as calibrators. Serial dilutions, 

calibrators, and the 71 test samples were transcribed together in 1 RT-PCR run on a 96-well Biometra 

Uno II thermocycler. Subsequently all samples were diluted 10 times and distributed into qPCR 
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plates. Each plate comprised 71 experimental and 4 calibrator samples; additional plates were 

prepared for the standard curves. 

 

Amplicon design for qPCR (dataset C)  

qPCR settings were carefully designed to give the optimal amplification in FFPE-isolated RNA. 

General conditions for amplicon selection were: 

• Short amplified fragments 

• 3′-end proximity 

• A common amplified sequence for all transcripts covered by the microarray probe 

• Amplicon unique to human genomic and transcriptomic database (confirmed by BLAST) 

• No known Single nucleotide polymorphisms (SNPs) in any of primer or probe sequence 

(BLAST SNP flanks) 

We used the Roche Universal Probe Library for our experiments. Primers are listed in Table A: 

 

QPCR experiment (set C) 

All plates were amplified by 7900HT Fast Real-Time PCR on an Applied Bioscience machine. First, a 

standard curve was generated for each amplicon at each of the 8 concentrations (described earlier) in 

duplicate. The linear regression slope of the standard curve indicated amplification efficiency. Two 

independent plates were amplified for each gene. The GeNorm applet for Microsoft Excel was used to 

normalize qPCR data. Based on our experience with thyroid samples, we chose the EIF3A, EIF5, and 

HADHA genes for qPCR data normalization. 

 

qPCR classifier equation 

Based on the whole qPCR dataset C, we created a DLDA classifier formula, which can be used to 

classify new samples. The expression values are normalized, log-transformed (with base 2) and a 

value of 13 is added to all of them to avoid negative values. 

classifier value = 0.587 * elmo1 + 0.891 * slco2a1 + 0.430 * kcnab1 + 0.839 * emcn + 0.570 * itih5 
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If classifier value is above 16.339, it denotes FTA, if it is below 16.339, it denotes FTC. 

 

Discussion - description of the genes 

SLCO2A1, commonly called prostaglandin transporter (PGT), is an organic anion transporter 

involved in prostaglandin transport [3]. Prostaglandins, produced by prostaglandin-endoperoxidase 

synthase 2 (PTGS2), have been linked to tumor progression, proliferation, and motility [4]. Down-

regulation of SLCO2A1 was confirmed in colorectal cancer [4]. To our knowledge, the importance of 

SLCO2A1 in thyroid cancer has not been directly analyzed; however, in some studies, elevated 

expression of PTGS2 in malignant cells was detected, whereas in other studies it was unaffected [5,6]. 

Prostaglandin regulation surprisingly links PGT to the orphan nuclear receptor peroxisome 

proliferator-activated receptor gamma (PPARG) [7]. PPARG prostaglandin-related ligands are 

transported by SLCO2A1 and therefore the physiological function of this nuclear receptor is 

dependent on PGT [7].  

Another membrane transporter in our study is KCNAB1. Loss of its expression is linked with 

neuronal cell loss and neurofibrillary tangles in tauopathy brains [8] and it is a susceptibility gene for 

lateral temporal and focal epilepsy [9,10]. Although down-regulation of this transporter has been 

reported in thyroid cancer, validation results are contradictory [11]. Our study confirmed the down-

regulation of KCNAB1. 

ITIH5 is a member of a protein family that is commonly down-regulated in many types of 

cancers, leading to tumor progression [12]. In a recent study this gene was proposed as a potential 

prognostic marker for poorly differentiated thyroid carcinoma (PDTC) [13]. Our results are consistent 

with this finding [13]. Thus, ITIH5 is a marker of a more aggressive histotype of follicular tumors and 

could therefore be a reliable indicator of malignancy. The ECM stabilization function of ITIH5 may 

explain its importance in the suppression of tumor progression.  

EMCN was identified as an endothelial cell anti-adhesive protein that inhibits cell-ECM 

interactions [14]. Recent data showed that knockdown of EMCN inhibited cell growth and migration 

[15]. The down-regulation of endomucin observed in our study is inconsistent with these data. 
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ELMO1 participates in a Rac-dependent pathway of cell migration and phagocytosis [16]. Our 

results confirmed the down-regulation of ELMO1 gene in FTC. ELMO1 protein has recently been 

shown to modulate PTGS2 activity in mesangial cells [17]. This observation may point to potential 

functional loops with PGT, which will be further investigated in FTC. 
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Table A. qPCR primers 
 
GENE PROBE FORWARD PRIMER REVERSE PRIMER 

CA4 #53 5′-tgtctaatatccccaaacctgag-3′ 5′-ctccttggggagcaggtc-3′ 

ELMO1 #87 5′-gattccttgcaggacaaactg-3′ 5′-agtcctttcccgtcaccac-3′ 

EMCN #29 5′-ccatggaactgcttcaagtg-3′ 5′-gaattattagctgcctctaaaacacc-3′ 

ITIH5 #69 5′-gagcattggggacatcca-3′ 5′-gcacgaataccacattcttgg-3′ 

KCNAB1 #19 5′-tggggagcatcatcaagaa-3′ 5′-tccaccccagtagagtttgg-3′ 

LRP1B #76 5′-caaaagaacttacagagacccaca-3′ 5′-cagcccaatatatgcgttca-3′ 

PLEKHG4B #16 5′-agagccggagtctgtcctc-3′ 5′-gccatgatgtgcctcagtc-3′ 

SLCO2A1 #19 5′-agttcttgttgatgcgcttg-3′ 5′-aggagtggtcaatggtgagg-3′ 
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Table B Clinical characteristics of samples  

Dataset Histology Number of 

samples 

Men (%) Median age 

(years) 

Ref. 

FTC 18 39 65 Borup et al. microarray 

dataset (A) FTA 22 22 54 

[18] 

FTC 13 38.5 67 Training microarray 

dataset (B)  FTA 13 0 41 

FTC 31 32 61 Testing qPCR  

dataset (C) FTA 40 12.5 49 

FTC 14 28.5 71 Testing microarray  

dataset (D) FTA 12 25 50.5 

this study 

  

FTC 12 8 67 Weber et al. testing 

microarray dataset (E1) FTA 12 unknown unknown 

[19] 

FTC 8 37.5 49 Hinsch et al. testing 

microarray dataset (E2) FTA 4 0 39 

[20]  
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Figure  A. Misclassification rates for various classification methods and different number of genes. 

The different colors indicate different classification algorithms. Misclassification rates were 

obtained on the training microarray dataset (B) in the cross-validation procedure. 

Abbreviations: DLDA - Diagonal Linear Discriminant Analysis, SCDA - Shrunken Centroid 

Discriminant Analysis, KNN 1 - K Nearest Neighbors with one neighbor, KNN 3 - K Nearest 

Neighbors with three neighbors, KNN 5 - K Nearest Neighbors with five neighbors, SVM 

linear - Support Vector Machines with linear kernel, SVM radial - Support Vector Machines 

with radial kernel, SVM polynomial - Support Vector Machines with polynomial kernel. 
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Figure B. Comparison of misclassification rates for the DLDA classifier on dataset B, with and 

without gene pre-selection on dataset A 
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Figure C. qPCR amplification plots (set C). FF (fresh-frozen)-FFPE (formalin-fixed paraffin-

embedded) comparison: qPCR amplification plots of CA4 (Left) and SLCO2A1 (Right). The Ct was 

significantly different between the FF (calibrator) and FFPE samples in both graphs. The best 

amplified FFPE samples exhibit a 5-cycle difference compared to frozen samples. CA4 gene 

amplification curves for FFPE material were only obtained for 4/71 samples (all were FTA). Good 

amplification of the calibrator suggested that the designed amplicon was adequate and that the 

transcript levels in paraffin-derived samples were too low to be amplified. 
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Figure D. Next generation sequencing results. Eight transcripts from the classifier, visualized in IGV 

Genome Browser. The 2 upper lanes in each IGV snapshot are FTC samples and the lower 

lane is normal thyroid sample from Illumina Human Body Map 2.0 RNA-seq data. CA4, 

LRP1B, and PLEKHG4B have notably lower coverage than the other 5 genes. 

 


