Description of the algorithns:
N is the total number of genes (or interchangeably probes) on the microarray platform used.

An index fromO to N1 uniquely specifies one of the N genes.
Ris a reference gene expression profile

It is represented by a 1D integer array of length N

The array index specifies the gene, while the integer value gives the signed rank of the gene
Tis arefset, ie, a set of nindividual reference profiles; nis also referred to as setSize
s is a query gene signature of length m

where mis the nunmber of genes included in the gene signature
A gene signature is represented by two integer arrays of length m

One array contains integers fromO to N1, indicating which genes are included in this gene signature
The other array contains +1 or -1, indicating the up- or down- regulation status of the correspondi ng genes.

N rdnsigs is the total nunber of random signatures for each p value estimation, which is usually set as 10, 000
or 100, 000.

The followi ng pseudo code describes the key process in sschMap

For (each refset T) {
For (each query signature s){

observed_score = connection score between T and s according to Eq(6) in Zhang&Gant 2008

/1 allocate a real-valued array to hold N rdnsigs random scores
fl oat randomscores[N_rdnsi gs]

FELETEEEEEEE i rrrri
For(i in 1:N_rdmnsigs){

generate a random gene signature si, represented by two integer arrays of length m
One array contains randomindexes fromO to N1, to indicate
whi ch genes have been selected into this random gene signature.
The other array contain +1 or -1, randomy selected to indicate the up- or
down- status of the correspondi ng gene.

randonscores[i]= the connection score between T and si according to Eq(6)Zhang&Gant 2008

}
(EEEEErrrr bbb rrrrrirrr
conmpare observed_score agai nst randonscores to get the p val ue

}// end of For (each query signature s) |oop
}// end of For (each refset T)

As can be seen fromthe pseudo code above, the generation of N rdnsigs random gene signatures and the
cal cul ation of the connection score between each random signature and the refset are carried out sequentially

in sscMap. As N rdmsigs is a very large nunber (100K normally), this is the nobst tinme consuming part of the
sschMap program

In cudaMap, this part of the task (highlighted in red fonts above) is parallelised using a GPU devi ce.

In cudaMap we create one random gene signature with mrandomreal nunbers UO0,1) (uniformy distributed
between 0 and 1) using an algorithmessentially the same as the foll ow ng.

X[mM is an array of randomreal nunbers uniformy distributed UO,1)
Status[m is an array of integers +1 or -1, indicating the up- or down- regul ation status of m genes
I ndexes[m is an array of integers specifying the indexes from0O to N1

For(k in 1:m{
If(X[k]<0.5) Status[k]=1 // this gene is up-regul ated
El se Status[k]=-1 /[l otherwise it is down-regul ated
/1 X k] is also used to select a gene fromN
X[k]=X[k]*2.0
If(X[k]>=1.0) X[k]=X[k]-1.0
I ndexes[k] = i nteger (N*X K])

To generate N_rdnsigs random gene signatures of length m a total nmt*N_rdnsigs uniformy distributed real
nunbers are required.

The followi ng pseudo code describes the algorithmfor the key task
/] allocate nenory space on cuda device to hold a total n¥*N_rdnsigs random nunber U0, 1)
/1 allocate nmenory space on cuda device to hold N rdmsigs random connecti on scores
fl oat *devi ce_randonVal ues, *devi ce_randontcores;

CUDA CHECK RETURN(cudaMal | oc((void **) &devi ce_randonVal ues, sizeof (float) * m*N rdnsigs));
CUDA_CHECK _RETURN(cudaMal | oc((void **) &devi ce_randonfScores, sizeof (float) * N_rdnsigs));

/[l Create an array of uniformly distributed random nunbers between 0 and 1,
/1 curandGenerator_t gen;

/1 gen is a cuda random nunber generator, which had been defined and initialized

CUDA_CHECK_STATUS(cur andGener at eUni f or m{ gen, devi ce_randonVal ues, nt¥*N_rdmnsigs));
/1 now devi ce_randonVal ues holds an array of nt*N rdnsigs random U 0, 1) real nunbers.

FEPTTETETE bbb bbb rrririrrn

/1 Conpute the connection scores of the N rdnsigs random gene signatures with the Refset T
/1 The array device_refRanks stores the (sumed) Ranks for the Refset T, which

/! had been copied to the CUDA device

int blocksPerGid = (int)ceil ((float)N/ (float)threadsPerBl ock);
/] const int threadsPerBl ock = 128 had been defi ned el sewhere

comput eRandonConnect i onScores <<< bl ocksPerGri d, threadsPerBl ock >>>(devi ce_randonval ues,
devi ce_ref Ranks , device_randonfcores);

/'l see the pseudo codes below for nore detailed steps within the function above
FEETEETEE b r e bbb bbb brrrrrrrr

CUDA _CHECK_RETURN(cudaThr eadSynchroni ze());
/1 the N rdmsigs random scores are now stored in the array devi ce_randonscores

/1l copy these random scores from device nmenory to main nenory

fl oat randontcor es[N_rdnsi gs];

CUDA CHECK RETURN(cudaMentpy(randontScores, devi ce randonScores,
N rdnsigs * sizeof(float), cudaMentpyDevi ceToHost));

/1 Then Conpute the p-val ue
pVal ue = conpare observed _score agai nst the distribution of randontcores

The followi ng pseudo code gives nore details on the conputing of random scores on the GPU

float tenp = 0.0;
int idx = blockldx.x * blockDi mx + threadldx. x;
if (idx < N_rdmsigs) {
i nt Ment N_rdnsigs;
for(int col =idx; col <M col += Nrdnsigs) {
fl oat random = devi ce_r andonVal ues| col];
float regulationStatus = 1.0;
if (random >= 0.5) {
regul ati onStatus = -regul ati onSt at us;
random = random - 0. 5;
}
/1 now randomis a real nunber in [0,0.5)
/] Scale up randomto beconme an integer index < N
int rangelnArray = float2int_rd(random* N * 2);

/1 Add the contribution to the connection strength
tenp += devi ce_ref Ranks[rangel nArray] * regul ati onSt at us;

}
/1 Normalizing by appropriate factors UCrax and setSize

/1 UCrax is defined by Eq.(3) in Zhang&Gant 2008; setSize refers to the n in Eq.(6).

devi ce_randonScores[idx] = tenp / UChax /set S ze;

} //end of if (idx < N_rdnsigs)

