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ABSTRACT 
 

Knudby, A., E. Kenchington, A.T. Cogswell, C.G. Lirette, F.J. Murillo. 2013. 
Distribution modeling for sponges and sponge grounds in the northwest Atlantic Ocean. 
Can. Tech. Rep. Fish. Aquat. Sci. 3055: v + 73 p. 
 
 
Species distribution models (SDM), trained using research trawl data and spatial 
information on depth, slope, chlorophyll-a concentration, shear, surface and bottom 
temperature, salinity and current speed, were used to make predictions of the distributions 
of Geodia spp. sponges and sponge grounds in the northwest Atlantic Ocean. We 
compared two model types often used for SDM, random forest (RF), a machine-learning 
method based on presence/absence data, and MaxEnt (ME), a machine-learning method 
based on presence-only data. This comparison included the fits obtained on independent 
data from the area each model was trained for as well as the fits obtained on independent 
data from a different area (extrapolation), the spatial predictions each model produced, 
and the ability of each model to produce sensible partial dependence plots and realistic 
measures of the importance of each predictor variable for model predictions. Of the two 
model types tested, RF generally out-performs ME when tested against independent 
validation data; the difference between the two model types is larger when models trained 
for the Flemish Cap are extrapolated to the full East Coast study area. Comparing the RF 
model with the kernel analyses previously employed, there is a general distribution match 
between the maps. However the RF model predictions have a more refined distribution as 
would be expected given its use of absence data in addition to the presence data. For 
management and conservation purposes, RF can be used to refine kernel models of the 
location of sponge grounds and to predict sponge ground areas where data are either 
sparse or non-existent. 
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RÉSUMÉ 
 

Knudby, A., Kenchington, E., Cogswell, A.T., Lirette, C.G., Murillo, F.J. 2013. 
Modélisation de la répartition des éponges et des lits d'éponges dans le nord-ouest de 
l'Atlantique. Can. Tech. Rep. Fish. Aquat. Sci. 3055: v + 73 p. 
 
 
Les modèles de répartition des espèces, formés à partir de données de recherche de 
chalutage et d'information spatiale sur la profondeur, la pente, les concentrations de 
chlorophylle-a, le cisaillement, la température à la surface et de fond, la salinité et la 
vitesse actuelle, ont été utilisés pour faire des prédictions quant à la répartition des 
éponges Geodia spp. et des lits d'éponges du nord-ouest de l'Atlantique. Nous avons 
comparé deux types de modèles souvent utilisés pour le modèle de répartition des 
espèces, soit le modèle de forêts aléatoires (RF), une méthode d'apprentissage 
automatique basée sur les données relatives à la présence et à l'absence, et le modèle 
MaxEnt (ME), une méthode d'apprentissage automatique basée sur les données relatives à 
la présence uniquement. Cette comparaison incluait les ajustements obtenus à partir de 
données indépendantes de la zone pour laquelle chaque modèle a été formé de même que 
les ajustements obtenus à partir de données indépendantes d'une zone différente 
(extrapolation), les prédictions spatiales produites par chaque modèle ainsi que la 
capacité de chaque modèle à produire des graphiques de dépendance partiels sensibles et 
des mesures réalistes de l'importance de chaque variable prédictive pour les prédictions 
de modèle. Parmi les deux types de modèle essayés, la performance du modèle RF 
dépasse largement d'habitude celle du ME lorsque des données de validation 
indépendantes sont utilisées dans l'évaluation; la différence entre les deux types de 
modèle est plus importante lorsque des modèles formés pour le Bonnet Flamand sont 
extrapolés à la pleine zone d'étude de la côte est. En comparant le modèle RF avec les 
analyses de noyaux utilisées antérieurement, on note une correspondance dans la 
répartition générale des cartes. Cependant, les prédictions du modèle RF présentent une 
répartition plus précise comme on pourrait s'y attendre compte tenu de l'utilisation des 
données d'absence et de présence. Aux fins de gestion et de conservation, le modèle RF 
peut être utilisé pour améliorer les modèles de noyaux de l'emplacement des lits 
d'éponges et pour faire des prédictions sur les zones de lits d'éponges lorsqu'il n'y a pas de 
données ou que les données sont rares. 
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INTRODUCTION 
 
Sponges form an ancient group of sessile filter-feeders that occur as sparsely distributed 
solitary organisms or in dense single- or multi-species aggregations. They are 
characterized by a body plan built around a system of canals through which water is 
pumped, supplying food and oxygen and removing waste (Hooper and van Soest 2002).  
 
Sponges are highly effective filter feeders and play a clear role in benthic-pelagic 
coupling (ICES 2009). They also enhance local nutrient and energy exchange (de Goeij 
and van Duyl 2007) and biodiversity (Klitgaard 1995; Hentschel et al. 2002, Beazley et 
al. 2013). They constitute an important component of benthic ecosystems, especially 
when they occur in dense aggregations known as sponge grounds or “ostur”, which 
provide a structurally complex habitat for fish and invertebrates (Herrnkind et al. 1997; 
Amsler et al. 2009; Kenchington et al. 2013; Beazley et al. 2013). The foundation for 
these sponge grounds are often the large, erect, aggregating sponges. In the North 
Atlantic, these are species of Geodia, Stryphnus, Stelletta, Thenea, Tetilla and Polymastia 
(ICES 2009). 
 
Due to the inaccessibility of their habitats relatively little is known about deep-sea 
sponges, and most research has focused on the anatomy and taxonomy of trawl-caught 
specimens (Hooper and van Soest 2002; Cárdenas et al. 2013), biology and associated 
fauna (Klitgaard 1995; van Soest et al. 2013), broad-scale geographic distribution 
(Klitgaard and Tendal 2004; Kenchington et al. 2010; Murillo et al. 2012), and the 
potential of their secondary metabolites for drug development (Hill 2004; Müller et al. 
2004).  
 
The threat posed by bottom-contact fisheries has sparked conservation concern, 
especially in light of deep-sea sponges being slow-growing and long-lived organisms 
vulnerable to disturbance (Klitgaard 1995, Hogg et al. 2010). The combination of their 
vulnerability and importance for deep-sea benthic ecosystems makes sponge grounds a 
prime candidate for Vulnerable Marine Ecosystem (VME) designation as outlined in 
United Nations General Assembly Resolution 61/105 (UNGA 2007), and hence subject 
to conservation action (Penney et al. 2009). Because deep-sea conservation is largely 
carried out through spatial fisheries management, this has generated a need to map the 
distributions of sponges and sponge grounds at the level of spatial detail needed for such 
management. 
 

Sponge Grounds 

 
The distributions of individual sponge species and genera can be described or predicted 
through presence/absence or presence-probability maps (Franklin 2009), as can the 
distribution of sponge grounds following a definition of what constitutes a sponge 
ground. Due to the general lack of data on sponge density and the spatial extent of sponge 
aggregations, published definitions are mostly qualitative in nature, including “a 
restricted area where large-sized sponges are strikingly common” (Klitgaard and Tendal 
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2004), and “aggregations of large sponges that develop under certain geological, 
hydrological and biological conditions to form structural habitat” (Hogg et al. 2010). 
Klitgaard et al. (1997) defined ‘ostur’ as areas where 90% of the wet weight of trawl 
catches is comprised of sponges, excluding fish. One quantitative approach to 
distinguishing the presence of sponge grounds from a background area with some sponge 
presence at lower density was developed by Kenchington et al. (2009), who used a kernel 
density approach to delineate areas covered by research trawl catches above a range of 
weight thresholds, and used an abrupt change in the area covered by catches above two 
neighbouring threshold values to indicate the difference between sponge grounds and 
lower density sponge presence for a local area. The application of this approach to 
individual trawl gear types and bioregions (DFO 2009) in the northwest Atlantic Ocean 
(Kenchington et al. 2010), is adopted in this study. 
 

Mapping Sponge Grounds 

 
Knowledge of the spatial distribution of deep-sea sponges and sponge grounds is 
currently limited to compilations of presence observations derived from a variety of 
sources, including research trawls (Fuller 2011; Murillo et al. 2012), the local knowledge 
of fishers (Klitgaard and Tendal 2004), or direct observations using SCUBA, remotely 
operated vehicles (ROVs) or crewed submersibles (Leys et al. 2004). Although such data 
compilations occasionally provide dense sampling coverage of an area (Kenchington et 
al. 2010), they are more often necessarily limited in both spatial extent and sampling 
density.  
 
Sponge grounds in the northwest Atlantic are found along the continental slopes of Grand 
Bank and Flemish Cap and northward along the Labrador Slope (ICES 2009; 
Kenchington et al. 2009; Kenchington et al. 2010; Fuller 2011; Murillo et al. 2012). 
Murillo et al. (2012) described four areas with large aggregations of sponges in the high 
seas east of Newfoundland, Canada: the continental slopes of Grand Bank; the 
southeastern slope of the Flemish Cap; the eastern slope of the Flemish Cap; and the 
northern slope of the Flemish Cap and the Flemish Pass. There the Demosponges Geodia 
barretti, G. phlegraei, G. macandrewii (Geodiidae), Stryphnus ponderosus and Stelletta 
normani (Ancorinidae) are the main structure-forming sponges constituting more than 99 
% of the total invertebrate biomass within the sponge grounds (Murillo et al. 2012). 
 

Habitat Suitability Modeling 

 
In the context of typically sparse point observations and a desire for complete and 
continuous maps of the distribution of a species or habitat type, species distribution 
modeling (SDM) is often used. We adopt the SDM term (Franklin 2009) for any model 
that predicts the presence, absence or abundance of a phenomenon (henceforth: the 
response), typically a species or habitat type, from environmental variables thought to 
influence it (henceforth: the predictors), when this model is applied to maps of the 
predictors to create spatially explicit and continuous predictions of the distribution of the 
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response. SDM has been extensively used in both terrestrial and marine environments to 
make contemporary distribution maps, to predict species/habitat responses to climate 
change (Knudby et al. 2010; Lawler et al. 2009), to predict the future range of invasive 
species (Peterson and Robins 2003; Peterson 2003) and more. SDM, despite its utility in 
data sparse situations, has rarely been used in the deep-sea. Existing studies include 
several focusing on the cold-water coral Lophelia pertusa, whose local, regional or global 
distributions are modeled on the basis of statistical relationships with variables that 
quantify a range of aspects related to seafloor topography as well as physical and 
chemical oceanography (Dolan et al. 2008; Davies et al. 2008; Guinan et al. 2009; 
Tittensor et al. 2009; Davies and Guinotte 2011; Yesson et al. 2012). The distribution of 
Lophelia reefs, as opposed to the presence of individual corals, has also been modeled on 
the basis of topographic variables derived from multi-beam data (Ross and Howell 2012). 
However, despite the recognized importance of sponges and sponge grounds as deep-sea 
benthic habitats, their distributions are still only known from point observations and 
SDMs have not to our knowledge been applied to sponges in the deep-sea. 
 

Objectives of Study 

 
This study explores the use of SDM-based mapping of sponges and sponge grounds in 
the northwest Atlantic (NWA) Ocean. Specifically, 
 
1) We estimate the fits achieved by SDM models on independent test data from the study 
area, and compare results before and after application of two different approaches to 
elimination of collinear predictor variables; 
 
2) We compare two model types often used for SDM, random forest (RF), a machine-
learning method based on presence/absence data, and MaxEnt (ME), a machine-learning 
method based on presence-only data. This comparison includes the fits obtained on 
independent data from the area each model was trained for as well as the fits obtained on 
independent data from a different area (extrapolation), the spatial predictions each model 
produces, and the ability of each model to produce sensible partial dependence plots and 
realistic measures of the importance of each predictor variable for model predictions; 
 
3) Sponge grounds, as distinct from a low density background presence of sponges, are 
defined using a threshold based on the wet sponge weight caught per tow. We compare 
two approaches to thresholding, a single global threshold and a variable threshold defined 
by gear type and bioregion (Kenchington et al. 2010), to assess the success of each 
approach for SDM-based mapping of sponge grounds; 
 
4) We compare the accuracy of SDM models used to map the presence of individual 
members of the Geodia genus (Geodia spp.) against models used to map the two most 
prevalent species (Geodia barretti and Geodia phlegraei); 
 
5) We produce SDM-based maps of sponges and sponge grounds that constitute the best 
available information on their distribution in the study area. 
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STUDY AREA 
 
Data for this study come from the Canadian continental shelf and slope in the NWA, 
from the area off Cape Breton in the south to southern Ellesmere Island in the north 
(henceforth East Coast, abbreviated EC). This area is bounded in the north by NAFO 
zone 0A and in the south by NAFO zones 4Vs and 3Ps. The area is further bounded at a 
distance of 20 km from the Canadian coast in the west, and by the 2500 m depth contour 
or the eastern boundary of NAFO zones 0A and 0B, whichever is shallower, in the east. 
The area does not extend into Lancaster Sound or the Hudson Strait beyond the limits of 
NAFO zone 0A and NAFO zones 0B/2G respectively. In addition a smaller area, densely 
covered by field data, was defined around the Flemish Cap and Grand Bank (henceforth 
Flemish Cap, abbreviated FC). This area is bounded by the Canadian EEZ in the west and 
by the 2500 m depth contour at the continental slope, and forms a subsection of the EC 
area. The extents of both areas are shown in Figure 1 with the NAFO divisions in the 
area. 
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Figure 1. The East Coast (red) and Flemish Cap (blue) study areas, and NAFO divisions 
in the area (black). 
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DATA AND METHODS 
 
The data used in this study form two major components, biological distribution data and 
environmental data. The biological data are derived from georeferenced samples 
collected from Canadian and European Union-Spanish (EU-Spain) research trawl 
surveys, via box-cores/dredges, or in situ camera/video. The environmental data are 
derived from satellite data and oceanographic model outputs. 
 

Field Data 

Sponge Ground Locations 

 
The data used to identify locations of sponge grounds were collected via research vessel 
trawl surveys by Fisheries and Oceans Canada (DFO) and the Spanish Institute of 
Oceanography (IEO) in collaboration with other European institutions during the period 
of 2007-2011. Research trawl catches were, as a minimum, separated and weighed by 
phylum, to yield a measure of the total wet weight of caught sponges and quantified as 
kg/standard tow. In order to separate sponge grounds from non-sponge ground locations, 
a threshold was applied to this wet weight and locations with catches above the threshold 
were classified as a sponge ground presence, while those with catches below the 
threshold were classified as a sponge ground absence. However, different gear and trawl 
durations were used by the different missions, leading to differences in the area covered 
by each research trawl (swept area) and differences in the proportion of the swept benthic 
fauna that was recovered and available for weighing on deck (catchability). In order to 
use the entire data set in our study, separate thresholds were developed for each gear type 
and biogeographic region using kernel density analyses (Kenchington et al. 2009; 
Kenchington et al. 2010), and applied to the respective data points; these thresholds are 
summarized in Table 1. A global sponge grounds presence/absence threshold of 70 kg 
sponge/tow was also used as a comparison to the local gear-specific thresholds. 
 

Table 1. Local gear-specific thresholds used to define sponge grounds. 

Bioregion Gear type 
Local threshold (kg 

sponge/tow) 

Eastern Arctic 
Cosmos 40 

Alfredo III 70 
Campelen 1800 40 

Newfoundland Labrador Shelves Campelen 1800 200 
Scotian Shelf Western IIA 2 
Flemish Cap  Campelen 1800 70 (DFO data) 

Flemish Cap 
Campelen 1800 

and Lofoten 
75 (DFO and EU-Spanish data) 
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Geodia spp. Locations 

 
The catch from each research trawl was identified to the level of phylum, genus or 
species, depending on the taxonomic expertise available. Sponges can be very difficult to 
identify without examining the spicules microscopically and so most data were only 
recorded as the phylum Porifera. For the FC study area, species-level identification was 
carried out for some of the dredge/box-core collected during the Spanish led NAFO 
PotEntial VulneRable Marine Ecosystems-Impacts of Deep-sea Fisheries (NEREIDA) 
missions aboard the R/V Miguel Oliver (2009/10), which provided 20 data points with 
confirmed Geodia spp. presence records comprising multiple specimens from a single 
trawl set location. An additional 19 records were collected during EU-Spanish fisheries 
surveys in 2007 and identified by one of us (JM) and two additional Geodia spp. presence 
locations were obtained in 2010 during a DFO led NEREIDA mission aboard the CCGS 
Hudson using the ROV ROPOS (Canadian Scientific Submersible Facility, North 
Saanich, B.C.), for a total of 41 presence locations with species-level identification in the 
FC study area. Seven different Geodia species were identified: G. barretti, G. phlegraei, 
G. hentscheli, G. atlantica, G. nodastrella, G. parva and G. macandrewii, following the 
most recent taxonomy (Cárdenas et al. 2013). However G. phlegraei and G. parva are 
very closely related and we could not distinguish them with confidence in our data. As G. 
parva was only recently resurrected as a valid species from a subspecies of G. phlegraei 
we refer to our G. parva specimens as G. phlegraei hereafter. Of these, only G. barretti 
and G. phlegraei were recorded in sufficient numbers to allow species-level distribution 
modeling. Geodia spp. absences were compiled from DFO and IEO fisheries survey data. 
These surveys do not identify sponges beyond phylum level, so only catches with no 
sponges of any kind were used as Geodia spp. absences (Table 2). As noted by 
Kenchington et al. (2012), no sponges in a catch does not necessarily mean that there are 
no sponges on the sea floor, although any sponge presence is likely to be of low density.  
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Table 2. Origins of the FC study area data on Geodia spp. presence/absence. 

 
Data for the EC study area include those listed above for the FC study, as well as 
additional data collected by DFO and detailed in Kenchington et al. (2010). Data on 
Geodia spp. absences from the EC study area were added from all DFO survey locations 
where no sponge of any kind was caught (Table 3). Occasionally the DFO Arctic surveys 
identified the sponge catch to genus level; when Geodia spp. sponges were identified 
these are listed in Table 3 as “Geodia spp. presence”, G. barretti and/or G. phlegraei may 
or may not have been present at these locations. 
 

Table 3. Origins of the EC study area data on Geodia spp. presence/absence. 

Species Sample Origin Year Gear Type 
Number of 

Records 

Geodia barretti 
presence 

EU- Spanish 
surveys 

2007 
Campelen 1800 6 

Lofoten 9 
NEREIDA 

(CCGS Hudson 
029 - ROPOS) 

2010 
Remotely 
Operated 
Vehicle 

1 

DFO Fisheries 
Surveys 
(Arctic) 

2010 
Alfredo 1 
Cosmos 1 

2011 Alfredo 23 

Geodia 
phlegraei 
presence 

EU-Spanish 
surveys 

2007 
Campelen 1800 3 

Lofoten 10 
NEREIDA (RV 
Miguel Oliver) 

2009 Dredge 6 

NEREIDA 
(CCGS Hudson 

2010 
Remotely 
Operated 

1 

Species Sample Origin Year Gear Type Number 
of 

Records
Geodia barretti 

presence 
EU-Spanish 

Surveys 
2007 Campelen 1800 6 

Lofoten 9 
NEREIDA (CCGS 

Hudson 029 - 
ROPOS) 

2010 Remotely 
Operated Vehicle 

1 

Geodia phlegraei 
presence 

EU-Spanish 
Surveys 

2007 Campelen 1800 3 
Lofoten 10 

NEREIDA (R/V 
Miguel Oliver) 

2009 Dredge 6 

NEREIDA (CCGS 
Hudson 029 - 

ROPOS) 

2010 Remotely 
Operated Vehicle 

1 

Geodia spp. 
absence 

EU-Spanish/DFO 
surveys 

2007-2011 Various trawl gear 1632 
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029 - ROPOS) Vehicle 
DFO Fisheries 

Surveys 
(Arctic) 

2010 
Alfredo 11 
Cosmos 6 

2011 Alfredo 15 

Geodia spp. 
presence 

DFO Fisheries 
Surveys 
(Arctic) 

2010 
Alfredo 2 
Cosmos 2 

2011 Alfredo 3 

Geodia spp. 
absence 

EU-
Spanish/DFO 

Surveys 
2007-2010 

Various trawl 
gear 

6819 

 
 
Note that the data in Table 2 and Table 3 are treated as point observations, while in 
reality the research trawls covered an area as determined by the gear type and the 
direction and duration of the trawl. The geographic coordinate associated with each trawl 
was obtained at trawl start; for simplicity this location is used in the analysis to represent 
the entire trawl. 
 
Based on the data outlined above we derived the presence/absence data sets listed in 
Table 4. It is clear from Table 4 that all data sets are unbalanced, with presences being 
relatively rare compared to absences. This may present problems for accurately mapping 
the rarer of the two values (Japkowicz and Stephen 2002; van Hulse and Khoshgoftaar 
2009), in our case the presences. It is also clear that the two sponge species have a small 
number of presences, particularly for the FC study area, which may also be problematic 
in the model development (Stockwell and Peterson 2002). 
 
 
 

Table 4. List of response variables with numbers of presence/absence values by study 
area. 

Response 
Presences / Absences 

East Coast (EC) 
Presences / Absences 

Flemish Cap (FC) 
Sponge ground (local gear-specific 

threshold) 
322 / 11133 150 / 3455 

Sponge ground (global threshold) 364 / 11091 150 / 3455 
Geodia spp. 81 / 6819 41 / 1632 

Geodia barretti 41 / 6819 16 / 1632 
Geodia phlegraei 52 / 6819 20 / 1632 

 
The distribution of these data points are illustrated in Figure 2 and Figure 3. A spatial bias 
towards dense sampling in the southern part of the EC study area is clear, with especially 
dense sampling (not clearly seen in the figure) in the FC study area.  
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Figure 2. Spatial distribution of sponge ground presences as defined using local gear-
specific thresholds (green circles) and absences (red crosses) as known from the field 
data. 
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Figure 3. Spatial distribution of presences and absences for G. phlegraei (red), G. barretti 
(blue), both species (green), other Geodia species (yellow), and Geodia spp. absence (red 
cross). 
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Environmental Data Layers 

 
While the point observations take the form of georeferenced presence/absence 
observations, the predictors in SDM take the form of spatial data sets (maps) that describe 
the spatially continuous distribution of factors thought to influence the spatial distribution 
of the response variable(s), at the appropriate spatial resolution (Franklin 2009). Given 
the limited knowledge of the habitat requirements and ecology of the sponge species in 
question, and the environmental conditions that may enable or limit the formation of 
sponge grounds, environmental data layers were selected on the basis of general notions 
of relevance and, crucially, availability. Data on a total of 50 predictors were compiled 
from different sources (Table 5), and transformed as necessary to geographic (lat/long) 
coordinates using the WGS 1984 datum and a 0.017° cell size; this cell size is 
approximately equal to a 1 km cell size in the southern part of the EC study area. The 
predictor data for the Flemish Cap area form a subset of the data for the East Coast area. 
 

Depth and Slope 

 
Bathymetric data were derived from the 30 arc-second General Bathymetric Chart of the 
Oceans (GEBCO) data (BODC 2009). Slope was derived in degrees from each depth 
layer using ArcGIS’s Spatial Analyst tool. Depth is expected to act as a general proxy for 
unmeasured predictors including light availability and historical trawling intensity 
(negative correlation), in addition to being correlated with variables such as temperature 
and salinity ranges. Slope is expected to act primarily as a proxy for substrate type (e.g. 
rock, sand, silt, mud), which is thought to influence the ability of sponge larvae or 
fragments to settle in an area. 
 

Chlorophyll-a Concentration 

 
Data on surface chlorophyll-a concentration were derived from publicly available Level 3 
SeaWiFS data for the period January 2001 – December 2010. These data are spatially 
composited to a 9 km cell size, and provided as monthly and annual mean values (NASA 
2012). Annual minimum, maximum, mean and range statistics were calculated for each 
cell from the 10 annual data layers. Similarly, winter minimum, maximum, mean and 
range statistics were calculated from the December, January and February monthly data 
layers from each of the 10 years. This procedure was repeated to calculate seasonal 
statistics for spring, summer and fall. Kriging was performed using ArcGIS’s 
Geostatistical Analyst to transform the 9 km cell size of the original data layers to the 
0.017° cell size. Surface chlorophyll-a concentration is expected to be related to the 
export flux of particulate organic carbon (Lutz et al. 2007) and thus nutrient availability 
at the sea floor. Seasonal rather than annual measures of nutrient availability may be 
relevant due to the sponges’ reproductive cycles, shown for Geodia barretti in the 
northeast Atlantic (Spetland et al. 2007). 
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Physical Ocean Variables 

 
Data on shear stress at the seafloor, as well as temperature, salinity and current for the sea 
surface and seafloor were derived from the GLORYS2V1 ocean reanalysis at ¼ ° 
resolution. GLORYS2V1 provides 3-hourly estimates of these and other variables from 
1993 to 2009 (Ferry et al. 2012). Minimum, maximum, mean and range statistics were 
calculated for each cell from these 3-hourly values. Kriging was subsequently performed 
using ArcGIS’s Geostatistical Analyst to transform the ¼° cell size of the original data to 
the 0.017° cell size. Temperature and salinity can be used to identify water masses while 
all three may indicate physical tolerance limits of the sponges.  
 

Table 5. Data layers used to quantify aspects of bathymetry, surface chlorophyll 
concentration, temperature, salinity and current at the sea surface and sea floor, and shear 
near the sea floor. 

All variables Unit Quantifications Data 
source 

Native 
resolution 

Depth m N/A GEBCO 30” 
Slope degrees N/A GEBCO 30” 
Annual chlorophyll mg m-3 Range, Min, Mean, Max OceanColor 9 km 
Winter chlorophyll mg m-3 Range, Min, Mean, Max OceanColor 9 km 
Spring chlorophyll mg m-3 Range, Min, Mean, Max OceanColor 9 km 
Summer chlorophyll mg m-3 Range, Min, Mean, Max OceanColor 9 km 
Fall chlorophyll mg m-3 Range, Min, Mean, Max OceanColor 9 km 
Surface temperature °C Range, Min, Mean, Max GLORYS ¼° 
Bottom temperature °C Range, Min, Mean, Max GLORYS ¼° 
Surface salinity PSU Range, Min, Mean, Max GLORYS ¼° 
Bottom salinity PSU Range, Min, Mean, Max GLORYS ¼° 
Surface current m/s Range, Min, Mean, Max GLORYS ¼° 
Bottom current m/s Range, Min, Mean, Max GLORYS ¼° 
Shear Pa Range, Min, Mean, Max GLORYS ¼° 

 

This list of variables is by no means an exhaustive list of predictors that may influence 
the distribution of Geodia spp. sponges or sponge grounds in the study area, and other 
variables (e.g., sea ice, wind, chemistry) are available from online data bases (EU 2013; 
NODC 2013). SDM studies of Lophelia pertusa and their reefs include a wider range of 
topographic variables including aspect, curvature and a bathymetric position index 
(Guinan et al. 2009; Ross and Howell 2012), as well as data on alkalinity, aragonite 
saturation state, salinity and concentrations of dissolved inorganic carbon, dissolved 
oxygen, nitrate, phosphate and silicate (Dolan et al. 2008; Davies et al. 2008; Tittensor et 
al. 2009), all derived with different accuracies and at different spatial resolutions. It is 
important to note that not all these predictors proved important to predict Lophelia 
pertusa distributions, and it is at least conceivable that some variables would have gained 
or lost importance for prediction had they been quantified differently and/or measured at 
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a different spatial resolution. Other potentially important predictors that we did not have 
data for include the substrate type and historical trawling intensity. 

Distribution Modeling 

Model Types 

 
Two machine learning techniques were used to model the distribution of each response 
variable: random forest (RF) (Breiman 2001) and MaxEnt (ME) (Phillips et al. 2006). RF 
is a non-parametric ensemble classifier that predicts the value (here: probability of 
presence) of a single response variable from the values of multiple predictors. It is an 
effective modeling method in situations where the number of predictors is larger than the 
number of samples, and is widely used for distribution modeling (e.g., Lawler et al. 2009; 
Knudby et al. 2010). An RF model is composed of multiple regression trees (Breiman et 
al. 1984), where splits at each node in each tree are based on a random subset of the 
available predictors. For each response variable and study site, we trained a model using 
the presence/absence field data and the values of the predictors at the corresponding 
locations. RF model development was done in R (R Core Development Team 2012) 
using the “randomForest” package (Liaw and Wiener 2002). Default values were used for 
RF parameters. ME is a distribution modeling technique that determines the maximum 
entropy probability distribution given a set of presence locations and, instead of absence 
data, a set of randomly selected background locations, as well as the values of the 
predictors at those locations (Phillips et al. 2006). ME has been shown to perform well in 
comparison to other methods (Elith et al. 2006). ME model development was done in R 
using the “dismo” package (Hijmans et al. 2011). Default values were used for ME 
parameters. 
 

Variable Elimination 

 
To reduce problems arising from a large number of collinear predictors (Graham 2003), 
two approaches were used to reduce the number of predictors in the models. The first 
approach was to remove predictors highly correlated with others (Legendre and Legendre 
2012), and the second was to remove predictors that did not contribute to reduce a 
model’s prediction error. Variable elimination was important in our study because of the 
high number of collinear variables that had initially been included (e.g., the various 
chlorophyll-a concentration data layers) and the desire to produce interpretable models 
from which ecological hypotheses could be generated. 
 

Removal of Highly Correlated Variables 

 
For each study area, the Pearson correlation coefficients between all predictors were 
calculated from a complete sample of all raster cells. The two predictors with the highest 
correlation were then considered, and one of them eliminated. This process was repeated 
until no remaining variables were highly correlated, here defined as R>0.7. 
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In most cases high correlations were found between obviously related variables (i.e., the 
annual range of chlorophyll-a concentrations and the annual maximum chlorophyll-a 
concentration). When the highly correlated variables represented two metrics (mean, 
maximum, minimum and range) for the same variable, we preferentially eliminated the 
mean, then the minimum or the maximum, and then the range. Elimination of the 
minimum or maximum metric when these two were correlated depended on the variable 
in question. This preferential elimination of some metrics over others was based on the 
reasoning that the range (max-min), while not as refined or specific as mean, maximum 
and minimum, represents the variability of conditions likely to be encountered by an 
organism, while the maximum and minimum represent tolerance limits.  For different 
variables, regardless of metric, we preferentially eliminated annual chlorophyll-a 
concentrations over seasonal ones, and preferentially kept spring chlorophyll-a 
concentrations over those of other seasons, based on the seasonal reproduction of Geodia 
barretti in Scandinavia (Spetland et al. 2007). We preferentially kept variables describing 
conditions at the seafloor over those describing conditions at the sea surface. We 
acknowledge that our preferences are subjective, but given the limited data on the 
ecology of deep-sea sponges in general, and Geodia spp. in particular, no objective 
alternative was available. The predictors remaining after the elimination of highly 
correlated variables are shown in Table 6. For both the FC and EC study areas, 23 
variables of the original 50 remained after highly correlated variables had been 
eliminated. 
 

Table 6. Subset of environmental predictor variables used in the SDMs. Elimination of 
variables was determined by their correlation coefficients. 

FC study area EC study area 
Only R < 0.7 Quantification Only R < 0.7 Quantification 
Depth N/A Depth N/A 
Slope N/A Slope N/A 
Annual chlorophyll Min Annual chlorophyll Range 
Winter chlorophyll Range, Min, Mean Winter chlorophyll Range, Min 
Spring chlorophyll Range Spring chlorophyll Range, Min, Mean 
Summer chlorophyll Range, Min Summer chlorophyll Range, Min 
Fall chlorophyll Range, Min Fall chlorophyll Range, Min 
Surface temperature Range, Min Surface temperature Range, Min 
Surface salinity Range, Max Surface salinity Max 
Bottom temperature Min, Max Bottom temperature Max 
Bottom salinity Max Bottom salinity Range, Max 
Surface current Range, Min, Mean Surface current Range, Min 
Shear Range, Min Shear Range, Min, Max 

 

Removal of Variables That Did Not Contribute to Model Performance 
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For each study area, response variable, and model type (RF and ME), the area under the 
receiver operating characteristic curve (AUC) was calculated using 10-fold cross-
validation repeated 10 times for models developed using the 23 predictors (Table 6). The 
AUC value is a measure of model fit calculated from the combination of true-positive and 
false-positive rates. Its value ranges from 0 to 1 and equals the probability that the model 
will produce a higher presence-probability for a randomly chosen observed presence than 
for a randomly chosen observed absence (Fawcett 2006). AUC is a commonly used 
measure of model performance in SDM. Each individual variable was then temporarily 
removed from the model development and testing process, and AUC values were 
calculated again for the 23 resulting models, each model based on all but the removed 
variable. If the removal of any variable caused the AUC value to increase (indicating 
improved fit) or at least not decrease, the variable that, when temporarily removed, 
produced the highest AUC value, was eliminated. This process was repeated, starting 
with the 22 remaining variables, and so on until no variable could be removed without 
decreasing the resulting AUC value. Because the AUC value fluctuates between model 
runs as a consequence of the random splits used to define the cross-validation groups, 
AUC values were considered to “not decrease” if a reduction in AUC value was less than 
0.005. The resulting variable combinations for each combination of study area, response 
variable and model type are shown in Table 7 and Table 8 for the FC and EC study areas, 
respectively. 
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Table 7. Predictor variable combinations remaining after the AUC-based variable 
elimination, for the FC study area under the two SDMs for each Response variable.  

Response variable \ 
Model 

Random Forest MaxEnt 

Sponge ground (local 
gear-specific thresholds) 

Depth 
Slope 
Surface temperature, range 
Surface salinity, range 
Shear, range 

Depth 
Surface salinity, range 
Bottom temperature, 
minimum 
Shear, range 

Sponge ground (global 
threshold) 

As above 

Geodia spp. Depth 
Surface current, range 
Surface current, minimum 
Shear, minimum 

Depth 
Surface salinity, range 
Bottom temperature, 
minimum 
Surface current, range 
Shear, minimum 

Geodia barretti Depth 
Winter chlorophyll, range 
Spring chlorophyll, range 
Surface temperature, 
minimum 
Surface salinity, range 
Surface salinity, minimum 
Shear, minimum 

Depth 
Surface salinity, range 
Bottom temperature, 
minimum 
Surface current, range 
Shear, minimum 

Geodia phlegraei Spring chlorophyll, range 
Summer chlorophyll, range 
Summer chlorophyll, 
minimum 
Surface temperature, range 
Surface temperature, 
minimum 
Bottom temperature, 
maximum 
Bottom salinity, maximum 
Shear, range 

Sea surface salinity, range 
Bottom temperature, 
minimum 
Surface current, range 
Shear, minimum 

 



18 

 

Table 8. Predictor variable combinations remaining after the AUC-based variable 
elimination, for the EC study area for each of the Response variables and SDMs. 

Response variable \ 
Model 

Random Forest MaxEnt 

Sponge ground (local 
gear-specific threshold) 

Depth 
Surface temperature, range 
Bottom salinity, maximum 
Shear, maximum 

Depth 
Summer chlorophyll, 
minimum 
Surface temperature, range 
Bottom salinity, range 
Bottom salinity, maximum 
Shear, range 

Sponge ground (global 
threshold) 

Depth 
Summer chlorophyll, 
minimum 
Surface temperature, range 
Surface salinity, maximum 

Depth 
Surface temperature, range 
Bottom salinity, range 
Bottom salinity, maximum 

Geodia spp. Depth 
Surface temperature, range 
Bottom salinity, range 
Surface current, minimum 

Depth 
Summer chlorophyll, range 
Summer chlorophyll, 
minimum 
Surface temperature, range 
Surface temperature, 
minimum 

Geodia barretti Depth 
Winter chlorophyll, range 
Spring chlorophyll, 
minimum 
Surface temperature, range 
Shear, maximum 

Depth 
Surface temperature, range 
Surface temperature, 
minimum 
Bottom salinity, range 
Surface current, minimum 

Geodia phlegraei Summer chlorophyll, 
minimum 
Surface temperature, 
minimum 
Bottom salinity, range 
Bottom salinity, maximum 

Depth 
Surface temperature, 
minimum 
Bottom salinity, range 
Surface current, minimum 
Shear, minimum 

 

Model Evaluation 

Model Fit for Training Area 

 
RF and ME models were trained to predict each response variable separately for each 
study area, and AUC values were estimated for each combination of model type, response 
variable and study area using 10-fold cross-validation. Cross-validation attempts to 
address the problem of how a model will perform on a future data set by splitting the 
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available data into a number of disjoint groups of equal size, train the model on a 
combination of all but one of them, and test the model performance by comparing 
predictions for the last group with their observed values. This is repeated using each 
group as the test group and calculating the mean of a measure of fit for each group, in our 
case using the AUC value. Because cross-validation estimates of model performance 
depend on the exact split of the full data set into disjoint groups, we repeated the 
calculations 10 times for each combination of model, response variable and study area, 
and calculated the mean of the results. We used the absence data to calculate AUC values 
for both the RF and ME models, making the two values directly comparable. Our ME 
AUC values thus differ from those that would have been calculated using the ME 
software GUI. Model predictions were also applied to the predictors to produce mapped 
predictions for each study area and response variable, and compared between the two 
model types.  
 

Model Extrapolation 

 
For each model type, response variable and set of predictors, AUC values were calculated 
for models trained for the FC study area and applied to the EC study area, and mapped 
predictions of presence probabilities were produced. These AUC values and maps were 
then compared with models both trained for and applied to the EC study areas, to assess 
the effect of extrapolating the models beyond the area they were trained for. 
 

Partial Dependence Plots 

 
Insight into the effect variation in each predictor has on predictions of the response 
variable can be gained from partial dependence plots, which can be created using two 
different but related approaches. Conceptually the simplest is to train a model using only 
a single environmental predictor, and then observe the predictions made by this model 
using the range of input values that exist for the predictor. We call this the single-variable 
approach. Another approach is to train a model using all the available predictors, and then 
observe the predictions made by this model when all predictors but one are kept at their 
mean value, while using the range of input values that exist for the predictor. We call this 
the multi-variable approach. Both these approaches are implemented in the ME GUI 
(Phillips et al. 2006); we have implemented them in R to allow their application to both 
the RF and ME models. 
 

Variable Importance 

 
Given a fitted model, we assess the relative importance for predictions of each predictor 
by permuting test set values of each individual variable. We then quantify the resulting 
reduction in model fit, calculated as the AUC value of the model when tested against 
unpermuted data minus the AUC value of the model when tested against permuted data 
(delta-AUC). The permutation is repeated 10 times for each of the 10 cross-validation 
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partitions in each of the 10 repetitions, to obtain results that are independent of particular 
splits of the data set for cross-validation and particular variable permutations (Knudby et 
al. 2010). The permutation approach to assessment of variable importance is also found 
in the RF implementation in R (Liaw and Wiener 2002); we have implemented it 
independently to allow its application to both the RF and ME models. Although both 
model types consider interactions between predictors, we did not specifically investigate 
such interactions through the partial dependence plots or the variable importance 
measure. 

 

RESULTS AND DISCUSSION 
 
Due to the combinations of two study areas, two model types, five response variables, 
and the two variable elimination approaches that yielded three different sets of predictors, 
the study has created a large set of results. The following section will provide all results 
when feasible and examples, focusing on Geodia spp. presence in the FC study area, 
when providing all results is not feasible. The complete set of results is available in the 
Appendix when not provided in this section. 
 

Variable Elimination 

 
The AUC values produced by all models are shown in Table 9 and Table 10, where the 
top row of each cell corresponds to a model developed using the original 50 variables 
(Table 5), the centre row corresponds to a model developed using the 23 variables 
remaining after elimination of variables that were highly correlated (Table 6), and the 
bottom row corresponds to a model developed using the variables remaining after the 
AUC-based variable elimination. Model performance in all cases was excellent (AUC > 
0.9), showing that the distributions of all the response variables are highly structured by 
their environment as quantified by our predictors, and that the models are able to emulate 
that structure. 
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Table 9. AUC values obtained with models based on the original 50 variables (top row in 
each cell), the 23 variables remaining after elimination of variables that were highly 
correlated (centre row in each cell), and the variables remaining after the AUC-based 
variable elimination, for the FC study area. 

Response variable \ Model Random 
Forest 

MaxEnt 

Sponge ground (local gear-specific thresholds) 0.985 
0.986 
0.986 

0.980 
0.955 
0.954 

Sponge ground (global threshold) As above 
Geodia spp. 0.945 

0.941 
0.976 

0.955 
0.955 
0.976 

Geodia barretti 0.983 
0.947 
0.974 

0.970 
0.972 
0.976 

Geodia phlegraei 0.959 
0.952 
0.980 

0.957 
0.954 
0.975 

 
 

Table 10. AUC values obtained with models based on the original 50 variables (top row 
in each cell), the 23 variables remaining after elimination of variables that were highly 
correlated (centre row in each cell), and the variables remaining after the AUC-based 
variable elimination, for the EC study area. 

Response variable \ Model Random 
Forest 

MaxEnt 

Sponge ground (local gear-specific threshold) 0.966 
0.967 
0.964 

0.960 
0.955 
0.944 

Sponge ground (global threshold) 0.977 
0.978 
0.973 

0.970 
0.971 
0.948 

Geodia spp. 0.982 
0.985 
0.987 

0.980 
0.975 
0.973 

Geodia barretti 0.988 
0.989 
0.988 

0.983 
0.982 
0.974 

Geodia phlegraei 0.971 
0.969 
0.982 

0.966 
0.975 
0.975 
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Models developed using the variable combinations remaining after the AUC-based 
variable elimination have AUC values that are typically similar to those resulting from 
the models based on a larger number of variables, supporting our two-step variable 
elimination approach which retained the most influential predictors. Notable exceptions 
include the ME sponge ground models, where model relative performance deteriorates as 
variables are eliminated. This is possible when several eliminated variables individually 
reduce the AUC value by less than 0.005. Other notable exceptions include models of 
Geodia spp. and G. phlegraei, where models developed with the smallest number of 
variables produce the highest AUC values for both models types in the FC study area, 
and for RF models in the EC study area.  
 

Model Evaluation 

Model Fit for Training Area 

 
The RF models perform similarly to or better than the ME models, with the largest 
differences between the two models seen for the EC study area. We suggest that the 
superior performance of the RF models is a result of the information content in the 
absence data, used to train the RF but not the ME models, the latter being specifically 
developed for use with presence-only data. If false absences in the field data were a 
substantial problem this would decrease the information content in the absence data 
points, and reduce the advantage of the RF models over the ME models. For both study 
areas, the smallest differences in AUC values between the two models are seen for the 
genus- and species-level models. Differences in performance between the two model 
types could also be related to the different algorithm employed by each model type. A 
stricter analysis of the information content in the absences could be done by training RF 
and/or ME models with and without absences, to compare AUC values within each 
model type instead of across the two models. 
 
In addition to differences in AUC values, the two models also differ in their spatial 
predictions. Figure 4, shows Geodia spp. predictions made by ME and RF, respectively, 
along with the observed presence and absence locations used to train the two models. The 
ME model has a generous area of high probability which includes all of the known 
presences on the continental slopes, particularly in the northern part of the study area, but 
it also includes large areas where the sponges are absent in the field data.  The RF model, 
on the other hand, predicts tighter distribution zones with less area of intermediate 
probability. This is supported by in situ video and camera observations which show sharp 
boundary transitions, at least on the Sackville Spur in the north of Flemish Cap. The RF 
model also indicates a high probability of Geodia spp. in the deep waters in this area. 
Eight of the ten deepest field data locations show Geodia spp. presence, including the six 
deepest (depths 1827-2201 m), which provides support to the RF model’s extrapolation at 
depth. Further validation of which model produces the best predictions, especially in 
deeper areas, will require additional field data. Other differences between the two models 
include the predicted presence probability for Geodia spp. in the Flemish Pass between 
Flemish Cap and Grand Bank in the FC area with ME. Beazley et al. (2013) report that 
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Geodia spp. are present but not abundant in this area which is dominated by the glass 
sponge Asconema sp. and the demosponges of the family Axinellidae. Murillo et al. 
(2012) report low sponge biomass in this area. Note that the AUC values for the two 
models are identical for this response variable and study area (Table 9), despite the 
differences seen in the predictions. 
 

 

Figure 4. Geodia spp. locations in the FC study area, observed (coloured circles) and 
predicted probability by ME (left) and RF (right). 

Model Extrapolation 

 
Models trained on data from the FC study area and tested with data from the EC study 
area (Table 11) all have poorer fits than the models trained and tested with data from a 
single area (Table 9 and Table 10), which indicates that the relationships between the 
response variables and the predictors differ between the FC and EC study areas. This is 
not a surprising result given the large geographical extent of the EC study area, which 
includes a range of biogeographic zones, as opposed to the small FC study area (Figure 
1). 
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Table 11. AUC values obtained when models trained for the FC study area were applied 
to the larger EC study area. 

Response variable \ Model Random 
Forest 

MaxEnt 

Sponge ground (local gear-specific threshold) 0.898 
0.915 
0.911 

0.763 
0.816 
0.780 

Sponge ground (global threshold) 0.920 
0.933 
0.832 

0.808 
0.865 
0.832 

Geodia spp. 0.941 
0.917 
0.743 

0.774 
0.789 
0.581 

Geodia barretti 0.944 
0.913 
0.807 

0.921 
0.888 
0.739 

Geodia phlegraei 0.955 
0.927 
0.890 

0.919 
0.894 
0.593 

 
The RF models consistently outperform the ME models when extrapolated beyond the 
area they were trained for (Table 9 and Table 10). This may be related to ME’s sampling 
of pseudo-absences from the background (the study area used for training), which 
changes when the model is extrapolated to a new study area. Based on these results the 
RF model is recommended over ME for extrapolation with our data. 
 
For the RF models of Geodia spp., G. barretti and G. phlegraei, the complete set of (50) 
predictors (top rows in Table 11) obtain better fits when extrapolated than those trained 
with sets of predictor variables reduced through variable elimination, while for the RF 
models of sponge grounds the set of predictors remaining after removal of highly 
collinear predictors (centre rows in Table 11) obtained the best fits. A similar pattern is 
seen for the ME models, with the exception of the Geodia spp. model. Models trained on 
the smallest sets of variables (bottom rows in Table 11) provide the worst fit for most 
models, which suggests that the AUC-based variable elimination approach results in 
models over-fitting to the training data, and consequently to the training area. 
 
The RF models of Geodia spp., G. barretti and G. phlegraei provide better fits than 
models of sponge grounds. This may be attributed to the nature of the response variables; 
the Geodia genus and species are well-defined biological entities whose composition and 
environmental niches can be expected to remain largely spatially constant, while sponge 
grounds as defined using a weight/tow threshold are composed of different species with 
potentially varying environmental niches. Using the complete set of predictors, the fits 
(AUC values) obtained from the extrapolated RF models of Geodia spp., G. barretti and 
G. phlegraei are close to those obtained from the models trained on the EC study area; 
this is less the case for models of sponge grounds (compare Table 10 and Table 11). 
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The difference between using training data from the FC and EC study areas, when 
making predictions for the EC study area, is illustrated by mapped predictions of Geodia 
spp. presence probability. Figure 5 shows mapped predictions of Geodia spp. presence 
probability from the RF model trained with the smallest set of predictors using data from 
the EC study area. Most of the observed presence locations are correctly identified as 
having high presence probability, and most observed absence locations have low 
presence probability. The unsampled Labrador slope shows high Geodia spp. presence 
probability (1 in Figure 5), as does the unsampled deep part of Baffin Bay (2 in Figure 5). 
Figure 6 is comparable to Figure 5 except predictions are made from the RF model 
trained on the FC study area using the complete set of predictors. The observed presence 
locations in the FC study area are correctly predicted as having high presence probability, 
which is not surprising given that the model was trained on data from the FC study area. 
However, the grouping of observed presences near Hudson Strait (3 in Figure 6) is 
predicted as having only intermediate presence probability. This may partly be due to the 
shallower depths at which Geodia spp. are found at these latitudes; the mean depths of 
Geodia spp. presence observations located above and below 60°N are 802 m and 1290 m 
respectively, with the shallowest Geodia spp. below 60°N found at a depth of 868 m. 
However, the partial dependence of Geodia spp. on depth for the two models, shown in 
Figure 7, illustrate that the modeled influence of depth is similar between the two models, 
and that predicted Geodia spp. presence probabilities are low for depths around 1290 m 
for both models. Depth alone can therefore not explain the difference between the 
predictions of the two models. However, the partial dependences of Geodia spp. on 
bottom salinity range and minimum surface current in the model trained on the EC study 
area both show a spike in predicted presence probability when using the single-variable 
approach (red lines in Figure 8) for values around 0.2 PSU bottom salinity range and 
around 0.015 m/s minimum bottom current, which correspond to the environmental 
conditions found in the area of the observed presences near Hudson Strait (3 in Figure 6) 
as well as those found in the northernmost grouping of observed presences (4 in Figure 
6). These specific environmental conditions were incorporated in the model trained on the 
EC study area, and lead to high presence probability predictions as seen in Figure 5. The 
same spikes are not seen in the corresponding dependence plots of the model trained on 
the FC study area (red lines in Figure 9), which did not have the presence observations 
from these areas available for model training. 
 
No predictions are available for the northernmost grouping of observed presences (4 in 
Figure 6) because predictions for Geodia spp. are restricted to the area for which data 
were available for winter chlorophyll concentrations, as this predictor is included in the 
model. The data on chlorophyll concentrations are derived directly from satellite 
observations of reflected sunlight on cloud-free days, and their availability for the 
northern part of the EC study area in the winter months is therefore limited. 
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Figure 5. Geodia spp. locations in the EC study area, observed (coloured circles) and 
predicted probability by the RF model (grayscale). 

1 

2 
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Figure 6. Geodia spp. locations in the EC study area, observed (coloured circles) and 
predicted probability by the RF model extrapolated from the FC study area to the EC 
study area (grayscale). 

3 
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Figure 7. Partial dependence of Geodia spp. on depth, RF model, EC study area (left) 
and FC study area, full set of predictors (right). 

 
 
 
 

 

Figure 8. Partial dependence of Geodia spp. on bottom salinity range (left) and minimum 
surface current (right), RF model, EC study area. 
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Figure 9. Partial dependence of Geodia spp. on bottom salinity range (left) and minimum 
surface current (right), RF model, FC study area, complete set of predictors. 

Partial Dependence Plots 

 
Two examples of the partial dependence plots for the predictors of Geodia spp., FC study 
area, are shown in Figure 10 for the RF model and in Figure 11 for the ME model, both 
based on the set of predictors available after both variable elimination approaches were 
applied. The dependence of Geodia spp. on depth is illustrative of the differences both 
between the two approaches and the two model types. For RF (Figure 10), with the multi-
variable approach we see that Geodia spp. presence probability is 0.0 for depths less than 
approximately 800 m, and then increases to above 0.5 at depths of more than 2000 m 
(note that depths have negative values, 0 being the sea surface). In other words, depth 
alone cannot generate very high presence probabilities when the other predictors are kept 
at their mean value. With the single-variable approach the Geodia spp. presence 
probability is also 0.0 for depths less than 800 m, but reaches almost 1.0 at depths of 
more than approximately 1800 m. The difference between the two approaches illustrate 
that in reality the other predictors do not have their mean values in deep waters, but rather 
they have values that, in the model, contribute to high Geodia spp. presence probability. 
The dependence plots are ‘spiky’ and less interpretable for the three remaining predictors, 
except for a trend of higher Geodia spp. presence probability for higher values of ‘Shear, 
minimum’. 
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Figure 10. Dependence plots including both the single-variable and multi-variable 
approaches for the four predictors of Geodia spp., using the RF model for the FC study 
area. 
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Figure 11. Partial dependence plots including both the single-variable and multi-variable 
approaches for the five predictors of Geodia spp., using the ME model for the FC study 
area. Top left: Depth. Top right: Surface salinity, range. Centre left: Bottom temperature, 
minimum. Centre right: Surface current, range. Bottom left: Shear, minimum. 
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For ME (Figure 11), the dependence of Geodia spp. on depth differs between the two 
approaches as it did for RF. At very shallow depths Geodia spp. presence probabilities 
are 0.0. They then increase until depths of 1200 m, after which they decrease again. As 
for RF, the single-variable approach reaches higher presence probabilities than the multi-
variable approach, although the two curves have the same overall shape. The remaining 
plots are smoother than those from the RF model, and suggest that optimal conditions for 
Geodia spp. presence can be found in areas of intermediate depth (1000-1500 m), areas 
with a low salinity range (1.5-2 PSU), high minimum bottom temperature (2-3 °C), 
surface current range above 0.2 m/s and high minimum shear (>0.005 Pa). However, the 
different variables used in the RF and ME models and the differences in the partial 
dependence plots, which exist despite the very good fit of both models (AUC for both is 
0.976 (Table 9)), make it hard to draw conclusions about ecological relationships. The 
information presented in the partial dependence plots should therefore be interpreted 
cautiously. 
 

Variable Importance 

 
Examples of variable importance results for RF and ME models of Geodia spp. presence, 
FC study area, are shown in Table 12. As is the case for the partial dependence plots, the 
different results for each model type, despite the very good fit of both models, makes it 
hard to draw conclusions about which variables truly have the greatest influence on the 
suitability of an area for Geodia spp. presence. Depth and minimum shear have the 
highest delta-AUC values for the RF model, indicating that, of the four predictors in that 
model, they have the strongest influence on predictions. These two predictors are also 
important in the ME model, as is surface salinity range. Surface current range has low 
importance for both models despite being included in both. 
 

Table 12. Variable importance results, RF and ME models, Geodia spp. presence, FC 
study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.105 Depth 0.152 
Shear, minimum 0.068 Surface salinity, range 0.091 
Surface current, minimum 0.032 Shear, minimum 0.066 
Surface current, range 0.017 Surface current, range 0.009 

  Bottom temperature, 
minimum 

0.002 

 
Interpretation is further complicated by a comparison with variable importance results 
from the EC study area, shown in Table 13. Here depth is of secondary importance in the 
RF model, while it is 7.5 times more important than any other variable in the ME model. 
In addition, minimum shear is not included in either model as it was eliminated during 
the AUC-based variable elimination. However, the surface temperature range, absent 
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from the models for the FC study area, is now the most importance predictor in the RF 
model, and the second-most important predictor in the ME model. 
 

Table 13. Variable importance results, RF and ME models, Geodia spp. presence, EC 
study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Surface temperature, 
range 

0.104 Depth 0.326 

Depth 0.049 Surface temperature, range 0.043 
Bottom salinity, range 0.045 Summer chlorophyll, 

minimum 
0.030 

Surface current, 
minimum 

0.019 Summer chlorophyll, range 0.028 

  Surface temperature, 
minimum 

0.003 

 

Global vs. Local Gear-Specific Thresholds for Defining Sponge Grounds 

 
Based on a comparison of the AUC values, both models perform marginally better when 
developed with, and applied to, sponge grounds defined using a single global threshold 
than when developed with the local gear-specific thresholds (Table 10). The single global 
threshold enables the models to predict environmental conditions that allow a specific 
density of sponges to develop and persist in a location (in our case the density that 
corresponds to 70 kg/tow), as opposed to predicting environmental conditions that allow 
locally significant sponge densities to develop and persist. The 70 kg/tow threshold will 
underestimate the distribution of sponge ground habitat as defined using the local gear-
specific thresholds in areas of the Eastern Arctic sampled by the Cosmos and Campelen 
gears (Table 1) and on the Scotian Shelf, while overestimating the area on the 
Newfoundland and Labrador shelves and slopes (Table 1). 
 
The difference between the two different approaches to defining sponge grounds is 
illustrated by their respective observed and predicted distributions. Sponge grounds 
defined using the local gear-specific thresholds are shown in Figure 12, while sponge 
grounds defined using the global threshold are shown in Figure 13. Results from using 
the local gear-specific thresholds are generally more consistent with known occurrences 
of the sponge grounds (as defined using these thresholds) but cannot predict the presence 
of sponge grounds on the portion of the Scotian Shelf (1 in Figure 12) which is at the 
southernmost limit of the range of Geodia, which are the major constituents of the 
northern sponge grounds. When the global threshold is applied the northernmost sponge 
grounds have low predicted presence probability (2 and 3 in Figure 13). This is partly 
because several of these observations have values below 70 kg/tow, and also due to the 
shallower depths at which sponge grounds are found in the Arctic bioregion; the mean 
depths of sponge grounds (as defined by the global threshold) located above and below 
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60°N are 616 m and 1179 m respectively. The partial dependence plots for sponge 
grounds (global threshold, RF model, EC study area) are shown in Figure 14, where it is 
clear that areas with depths around the mean value for sponge grounds above 60°N will 
be predicted to have very low presence probabilities. The inability of a single model to 
adequately describe the influence of depth on sponge ground presence probability for the 
whole EC study area may be attributed to depth not being a causal predictor, but rather 
having influence on predictions through collinearity with other predictors that influence 
sponge ground development. If the relationship between depth and these other predictors 
changes substantially through space, a single model for which depth is an important 
predictor will not produce good predictions across the study area. 
 
Variable importance results for the models of sponge ground presence for the EC area are 
shown in Table 14 (local gear-specific thresholds) and Table 15 (global threshold). Both 
RF models have depth as the dominant predictor, with delta-AUC values 2-3 times that of 
the second-most important variable, which in both models is the range of surface 
temperatures. Depth is also not the most important variable for the one ME model (local 
gear-specific thresholds), while the range of bottom salinity is the most important 
variable in the other ME model (global threshold). The range of bottom salinity is largely 
uncorrelated with depth in the EC study area (R=-0.095) so the importance of this 
variable in the ME model is unlikely to be an artifact of variable selection with collinear 
variables. The range of surface temperatures is also included in both ME models. 

Table 14. Variable importance results, sponge grounds (local gear-specific thresholds), 
EC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.152 Depth 0.148 
Surface temperature, 
range 

0.058 Bottom salinity, maximum 0.047 

Bottom salinity, 
maximum 

0.045 Bottom salinity, range 0.045 

Shear, maximum 0.038 Shear, range 0.027 
  Surface temperature, range 0.024 
  Summer chlorophyll, 

minimum 
0.014 

Table 15. Variable importance results, sponge grounds (global threshold), EC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.156 Bottom salinity, range 0.135 
Surface temperature, 
range 

0.079 Surface temperature, range 0.065 

Surface salinity, 
maximum 

0.057 Bottom salinity, maximum 0.060 

Summer chlorophyll, 
minimum 

0.033 Depth 0.046 
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Figure 12. Sponge grounds of the EC study area as defined using local gear-specific 
thresholds, observed (green circles) and predicted probability by the RF model 
(greyscale). 

1 
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Figure 13. Sponge grounds of the EC study area as defined using global thresholds, 
observed (green circles) and predicted probability by the RF model (greyscale). 

2 
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Figure 14. Partial dependence plots including both the single-variable and multi-variable 
approaches for the four predictors of sponge grounds as defined using the global 
threshold, RF model, EC study area. Top left: Depth. Top right: Summer chlorophyll, 
minimum. Bottom left: Surface temperature, range. Bottom right: Surface salinity, 
maximum. 

Species- vs. Genus-Level Response Variables 

 
Models of Geodia spp. presence have very similar AUC values to models of G. barretti 
and G. phlegraei presences, suggesting that the environmental conditions conducive to 
settlement and growth of the five different Geodia spp. are sufficiently similar for their 
distribution to be modeled as a single entity. This is contrary to what would be expected 
in the presence of inter-specific competition and species-specific niche development. One 
potential explanation for this is that there is a correspondence between the spatial 
resolution of the environmental data layers (0.017°) and the “thematic resolution” of 
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niche detail for which they are able to describe a spatial distribution, i.e. the different 
Geodia species may have similar habitat requirements in terms of what can be resolved 
from the spatial data layers used as predictors in our study, and the spatial expression of 
niche differentiation between the species may only show at a higher spatial resolution. If 
so, the similar model fits produced for genus- and species-level response variables 
suggest that we have only managed to resolve their common environmental niche. Given 
the limited knowledge of the biology and ecology of the species in question, this must 
currently remain a hypothesis. Another factor that can influence model fit is the larger 
number of presence observations at the genus-level than at the species-level, which may 
improve the ability of both model types to fit to the training data. 
 
Variable importance results for the models of genus and species level sponge presence for 
the EC study area are presented in Tables 16-18. For the Geodia genus (Table 16), depth 
and the range of surface temperature are the two most important variables for both RF 
and ME models, while the variables of less importance vary between model types. Depth 
is the strongest predictor of G. barretti presence for both model types; the range of 
surface temperature is included in both models but shows low delta-AUC values. Results 
for G. phlegraei are very different. The range of bottom salinity is the most important 
predictor for both model types, with delta-AUC values ~3 times higher than that of the 
second-most important variables. Depth is not included at all as a predictor in the RF 
model, and is only of secondary importance in the ME model. 
 

Table 16. Variable importance results, Geodia spp., EC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Surface temperature, 
range 

0.104 Depth 0.326 

Depth 0.049 Surface temperature, range 0.043 
Bottom salinity, range 0.045 Summer chlorophyll, 

minimum 
0.030 

Surface current, 
minimum 

0.019 Summer chlorophyll, range 0.028 

  Surface temperature, 
minimum 

0.003 
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Table 17. Variable importance results, G. barretti, EC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.068 Depth 0.172 
Shear, maximum 0.040 Bottom salinity, range 0.082 
Surface temperature, 
range 

0.035 Surface temperature, 
minimum 

0.032 

Winter chlorophyll, 
range 

0.029 Surface current, minimum 0.028 

Spring chlorophyll, 
range 

0.016 Surface temperature, range 0.017 

 

Table 18. Variable importance results, G. phlegraei, EC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Bottom salinity, range 0.161 Bottom salinity, range 0.205 
Surface temperature, 
minimum 

0.060 Depth 0.064 

Summer chlorophyll, 
minimum 

0.059 Surface current, minimum 0.009 

Bottom salinity, 
maximum 

0.023 Surface temperature, 
minimum 

0.008 

  Shear, minimum 0.001 
 

SDM-Based Distribution Maps 

 
Distribution maps produced using the RF models trained on the predictor sets remaining 
after variable elimination are considered the best available description of the spatial 
distribution of each response variable for the EC study area. The maps of sponge ground 
distribution are shown in Figure 12 and Figure 13, the map of Geodia spp. distribution is 
shown in Figure 5, and the maps of G. barretti and G. phlegraei distributions are shown 
in Figure 15 and Figure 16 below. 
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Figure 15. G. barretti locations in the EC study area, observed (green circles) and 
predicted probability by the RF model (greyscale). 
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Figure 16. G. phlegraei locations in the EC study area, observed (green circles) and 
predicted probability by the RF model (greyscale). 
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CONCLUSION 
 
Our study has demonstrated that species distribution models, trained using research trawl 
data and spatial information on depth, slope, chlorophyll-a concentration, shear, and 
surface and bottom temperature, salinity and current speed, are able to make excellent 
predictions of the distributions of Geodia spp. sponges and sponge grounds in the 
northwest Atlantic. The mapped predictions can thus be considered a good estimation of 
the actual distribution of sponge grounds, as defined by the global and local gear-specific 
thresholds used in this paper, and Geodia spp. presences in the study area. 
 
Of the two model types tested, Random Forest generally out-performs MaxEnt when 
tested against independent validation data; the difference between the two model types is 
larger when models trained for the Flemish Cap are extrapolated to the East Coast study 
area. The two model types not only have different fits, they also make very different 
predictions. In deeper waters, Random Forest generally predicts high probability of 
presence for both sponge grounds and Geodia spp. sponges, while MaxEnt does not. This 
difference is attributable to the background samples used in MaxEnt model training, 
which are not used in the Random Forest model. Knowledge of which model is correct in 
its predictions for these deep areas can only be obtained through additional field sampling 
although studies to date (Murillo et al. 2012; Beazley et al. 2013) support the RF results. 
Unsampled areas predicted to have high presence probabilities can serve as target areas 
for future sampling to further validate the models. Comparing both with the kernel 
analyses previously employed, there is a general distribution match between the RF and 
kernel maps (Figure 38). However the RF model predictions have a more refined 
distribution as would be expected given its use of absence data in addition to the presence 
data. For management and conservation purposes, RF can be used to refine kernel models 
of the location of sponge grounds and to predict sponge ground areas where data are 
either sparse or non-existent.  
 
The two approaches used for variable elimination, based on removal of collinear 
variables and variables not contributing to model fit, respectively, both succeeded in 
reducing the number of predictors from the original 50 and making the fitted models 
more interpretable without substantial reduction in model fit when tested on independent 
validation data from the area for which the models were trained. However, when training 
models for the Flemish Cap and applying them to the East Coast, the models trained on 
reduced sets of predictors had poorer fits for Geodia spp., G. barretti and G. phlegraei, 
while the models trained on the set of predictors remaining after removal of highly 
collinear predictors obtained the best fits for sponge grounds. If models are intended for 
extrapolation, we conclude that AUC-based variable elimination should not be used, 
while the benefit of removal of collinear predictors will depend on the response variable. 
 
Model fits for sponge grounds are marginally better when sponge grounds are defined 
using a global threshold (we used 70 kg/tow) than when they are defined using local gear-
specific thresholds; this also holds true for models extrapolated from the Flemish Cap to 
the East Coast study area. We conclude that the single global threshold enables the 
models to predict environmental conditions that allow a specific density of sponges to 
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develop and persist in a location (in our case the density that corresponds to 70 kg/tow), 
as opposed to predicting environmental conditions that allow locally significant sponge 
densities to develop and persist.  
 
Fits are similar for models of Geodia spp., G. barretti and G. phlegraei. This suggests 
that the environmental requirements of the different Geodia species are similar, at least 
when quantified at the spatial resolution and with the predictors used in our study.  
 
Future research should be directed specifically at establishing best practice guidelines for 
development of distribution models for extrapolation to unsampled areas, as this is one of 
the primary strengths of the models. In addition, investigation of partial dependence plots 
should be used to develop and test hypotheses to determine predictor values (or 
combinations of values for multiple predictors when interactions are significant) that 
represent physiological tolerance limits for each species. These can be validated against 
global data sets to provide improved insight into the biology and ecology of these 
sponges, which are otherwise difficult and costly to study. 
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APPENDIX 
 
This appendix contains all 1) partial dependence plots, 2) variable importance results, and 
3) mapped predictions of distributions for the FC study area. 
 

Partial Dependence Plots 

FC Study Area 

Geodia spp. 

 

 

Figure 17. Partial dependence plots for Geodia spp., RF model, FC study area. 
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Figure 18. Partial dependence plots for Geodia spp., ME model, FC study area. 
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G. barretti 

 

Figure 19. Partial dependence plots for G. barretti, RF model, FC study area. 
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Figure 20. Partial dependence plots for G. barretti, ME model, FC study area. 
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G. phlegraei 

 

Figure 21. Partial dependence plots for G. phlegraei, RF model, FC study area. 
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Figure 22. Partial dependence plots for G. phlegraei, ME model, FC study area. 
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Sponge Grounds 

 

Figure 23. Partial dependence plots for sponge grounds, RF model, FC study area. 
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EC Study Area 

Sponge Grounds 

 

Figure 24. Partial dependence plots for Geodia spp., RF model, EC study area. 
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Figure 25. Partial dependence plots for Geodia spp., ME model, EC study area. 
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G. barretti 

 

Figure 26. Partial dependence plots for G. barretti, RF model, EC study area. 
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Figure 27. Partial dependence plots for G. barretti, ME model, EC study area. 
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G. phlegraei 

 

 

Figure 28. Partial dependence plots for G. phlegraei, RF model, EC study area. 
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Figure 29. Partial dependence plots for G. phlegraei, ME model, EC study area. 
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Sponge Grounds (Local Gear-Specific Thresholds) 

 

Figure 30. Partial dependence plots for sponge grounds (local gear-specific thresholds), 
RF model, EC study area. 
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Figure 31. Partial dependence plots for sponge grounds (local gear-specific thresholds), 
ME model, EC study area. 
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Sponge Grounds (Global Thresholds) 

 

Figure 32. Partial dependence plots for sponge grounds (global threshold), RF model, EC 
study area. 
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Figure 33. Partial dependence plots for sponge grounds (global threshold), ME model, 
EC study area. 
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Variable Importance Results 

FC Study Area 

Geodia spp. 

Table 19. Variable importance results, Geodia spp., FC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.105 Depth 0.152 
Shear, minimum 0.068 Surface salinity, range 0.091 
Surface current, minimum 0.032 Shear, minimum 0.066 
Surface current, range 0.017 Surface current, range 0.009 

  Bottom temperature, minimum 0.002 

Geodia barretti 

Table 20. Variable importance results, G. barretti, FC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.122 Surface salinity, range 0.128 
Surface salinity, minimum 0.038 Depth 0.125 
Surface temperature, 
minimum 

0.037 Bottom temperature, minimum 0.054 

Shear, minimum 0.034 Surface current, range 0.050 
Surface salinity, range 0.023 Shear, minimum 0.045 
Winter chlorophyll, range 0.014   
Spring chlorophyll, range 0.010   

Geodia phlegraei 

Table 21. Variable importance results, G. phlegraei, FC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Summer chlorophyll, range 0.047 Shear, minimum 0.164 
Bottom temperature, 
minimum 

0.047 Bottom temperature, minimum 0.134 

Shear, range 0.039 Surface salinity, range 0.098 
Surface temperature, range 0.034 Surface current, range 0.000 
Summer chlorophyll, 
minimum 

0.033   

Surface temperature, 
minimum 

0.028   

Bottom salinity, maximum 0.028   
Spring chlorophyll, range 0.003   
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Sponge Grounds 

Table 22. Variable importance results, sponge grounds, FC study area. 

Random Forest MaxEnt 
Predictor Delta-AUC Predictor Delta-AUC 

Depth 0.061 Shear, range 0.106 
Shear, range 0.061 Depth 0.083 
Surface salinity, range 0.024 Bottom temperature, minimum 0.053 
Surface temperature, range 0.022 Surface salinity, range 0.024 
Slope 0.020   
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Mapped Predictions, FC Study Area 

Geodia spp. 

 

 

Figure 34. Geodia spp. locations in the FC study area, observed (coloured circles) and 
predicted probability by the RF model (greyscale). 
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G. barretti 

 

 

Figure 35. G. barretti locations in the FC study area, observed (blue circles) and 
predicted probability by the RF model (greyscale). 
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G. phlegraei 

 

Figure 36. G. phlegraei locations in the FC study area, observed (red circles) and 
predicted probability by the RF model (greyscale). 



71 

 

Sponge Grounds 

 

Figure 37. Sponge ground locations in the FC study area, observed (green circles) and 
predicted probability by the RF model (greyscale). 
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Figure 38. Comparison of predicted sponge 
grounds with kernel biomass. Upper left 
panel. Sponge ground locations in the FC 
study area, observed (green circles) and 
predicted probability by the RF model 
(greyscale). Upper right panel. Sponge 
kernel biomass (displayed using a geometric 
distribution in kg/km2) in the FC study area 
estimated from Spanish/EU research vessel 
catches (Kenchington et al. 2012). Lower 
panel. Sponge grounds as identified in the 
FC study area by NAFO based on a kernel 
biomass of 75 kg/km in the FC study area 
estimated from Canadian (DFO) and EU-
Spanish research vessel catches. Areas 
closed by NAFO to protect sponges and 
other vulnerable marine ecosystems are 
indicated in outline in relation to the 
regulatory area. 
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