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Supporting Methods 

Simulation procedure 
 
For all simulations we implemented the following procedure: 

1. Initialize microtubule structure, as well as the starting position and orientation of the 
freely diffusing unit. 

2. Translate and rotate the free unit. 
3. Implement Metropolis Monte Carlo criterion based on the current and projected energetic 

states. 
4. Check ending criteria for the given simulation (binding state or separation).  If satisfied, 

continue to step 5 otherwise return to step 2. 
5. Calculate the rate.  

 
At each time step, subunits experienced a translational-rotational displacement described by 

v = (Δx1 ',Δx2 ',Δx3 ',φ1,φ2,φ3) ,                (S1) 
where Δx1’, Δx2’, and Δx3’ are translational displacements of the centroid position in the subunit 
body frame and φ1 , φ2 , and φ3  are rotations of the body frame axes about the lab frame axes.  
Each translational displacement was sampled from a Gaussian distribution that obeys   

(Δxk ')
2 = 2DΔt

	
  	
         (S2) 
where D is the translational diffusion coefficient parallel (D|| , for k=1) or perpendicular (D⊥ , for 
k=2,3) to the long axis of an ellipsoid (1) and Δt is the current time step.  Similar distributions 
were used to generate rotational displacements with D replaced by the respective rotational 
diffusion coefficient for axial (Da, for k=1) or non-axial rotation (Dr, for k=2,3).  Centroid 
displacements in the body frame were translated to the lab frame as described by (2).  At each 
time point 
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where M(t j ) is a three-dimensional rotation matrix that defines the rotation of the body frame 
axes about each individual axis of the lab frame at the current time step.  The matrix M(t j )  is 
updated after each accepted step using the random rotational displacements according to 

M(t j+1) =M(t j ) ⋅R(φ1,φ2,φ3) =M(t j ) ⋅R3 ⋅R2 ⋅R1 ,                (S4) 
where R1 ,R2 ,	
  andR3are the respective rotation matrices about each lab frame axis, for example  

R1 =
1 0 0
0 cos(φ1) −sin(φ1)
0 sin(φ1) cos(φ1)
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To minimize the number of steps when a free unit was not near the microtubule lattice, 
we used a variable time step that was based on the separation distance between paired binding 
zones.  At each time point, the time step was calculated from 
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such that the root-mean-squared displacement for a given time step was less than the distance 
between interacting zones.  In Eq. S6 above, d is defined as the minimum separation distance 
between corresponding interaction zones (d = min[r1(tj), r2(tj), r3(tj)]) unless d < rB, then d = rB, 
such that the min(Δt) > 1 ps.  We used the diffusion coefficient along the long axis of the super-
ellipsoid (D||) in Eq. S6, as this was the larger of the two translational diffusion coefficients in the 
body frame.  An adjustable constant, λ, is used to scale the size and number of steps taken during 
the simulation.  When subunits were far away from the lattice ( > 100 nm)λ = 5, otherwise λ = 
10 for all simulations.  Using these values of λ ensured that energy changes of bound zones 
were relatively small (average |ΔU| < 1.0 kBT) while still minimizing simulation time. 

Before advancing to the next time point, attempted steps were either allowed or 
disallowed through implementation of Metropolis Monte Carlo (3), where Pstep = min[1,exp(-
ΔU/kBT)]. Here favorable steps (ΔU ≤ 0) are always allowed and unfavorable steps (ΔU > 0) are 
accepted according to Boltzmann’s law.  When a freely diffusing subunit spatially overlaps the 
microtubule lattice, we assumed that ΔU = ∞ (such that Pstep = 0) to implement hard sphere 
rejection criteria.  In the case of a rejected step, time is advanced by Δt but the position and 
orientation of the diffusing unit does not change from the previous time point.  While the 
implementation of a variable time step and sampling moves from a Gaussian random variable 
were modifications to previous versions of the Metropolis algorithm for protein dynamics (4, 5), 
we found that this algorithm converged to theoretical expectation both in the presence and 
absence of an external force (Fig. S1; see also Supporting Results and Discussion) while 
enabling faster simulation. 

Estimating on-rate constants 
 

To isolate potential effects on both diffusion-limited arrivals to the microtubule lattice 
and binding, we split simulations into two parts, far- and near-field.  Rates for each simulation 
scale were calculated according to (6) as 

k = kD(Rstart )β
1− (1−β)kD(Rstart ) / kD(Rend )

,     (S7) 

where kD(R) is the diffusion-limited rate of arrival to a center-to-center distance of R defined by  
kD(R) = 4πDavgR       (S8) 

Here, Davg is the average diffusion coefficient in three body axes of the ellipsoid from 
Davg = (2D⊥ +D|| ) / 3          (S9) 

In far-field simulations (diffusion-limited arrivals), freely diffusing subunits are initiated by 
placement on a spherical surface of radius Rstart = 400 nm and with a random orientation.  
Subunits are allowed to diffuse until reaching either Rend = 3200 nm (i.e. they diffused far away 
from the binding site and were highly unlikely to bind) or a center-to-center distance of 10 nm 
from the subunit of interest within the microtubule lattice (i.e. they diffused close to the binding 
site and were potentially capable of binding).  Here, β in Eq. S7 is the fraction of diffusing units 
that reach 10 nm center-to-center before reaching Rend.  Therefore, k is the diffusion-limited 
arrival rate to a center-to-center distance of 10 nm (kD(R = 10 nm)).  The centroid positions of 
units that reach 10 nm are subsequently used as the starting positions to initiate the 
corresponding near-field simulations.  In the near-field simulations Rend = 400 nm (value of Rstart 
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for far-field) and kD(Rstart) in Eq. S7 is replaced by the estimated value of kD(R = 10 nm) from the 
corresponding far-field simulations.  For near-field simulations, β is the fraction of subunits that 
completely bind, or meet the criteria that all individual zones (either longitudinal, lateral, or 
both) are within the binding radius (ri <= rB for all values of i).  Eq. S7 then gives the estimated 
association rate constant (kon,PF) for binding to the protofilament of interest.  For each binding 
site condition, we ran a total of 500,000 far-field and 200,000 near-field simulations, which 
required about 50 CPU hours/processor.  

Defining a distance criterion for unbinding events 
 

Defining when a subunit is unbound is not as straightforward as defining when it is 
bound.  As seen in Fig. S3A, freely diffusing subunits break all zone contacts (N = 0, ri > rB for 
all i) multiple times before finally diffusing away from the microtubule lattice.  This is because 
when a free unit first breaks all contacts, it is still highly correlated with its bound orientation, 
making the probability of rebinding very high.  It is difficult to reason that this is a true 
unbinding event because the majority will immediately rebind (Fig. S3).  Thus, to more 
appropriately define an unbinding event we used a separation distance criterion, similar to (7), 
where the unbinding radius (RU) is greater than the binding radius (rB) (Note: we can not directly 
compare rB and RU, as rB is an edge-to-edge distance and RU is center-to-center).  To determine 
this distance, we simulated completely bound subunits until they reached varying center-to-
center separation distances (R) from their binding partner.  The resulting centroid positions and 
subunit orientations were then used to initiate subsequent binding simulations to estimate the 
probability of rebinding.  We define RU as the distance where a free unit has a low probability (p 
< 0.01) of rebinding before diffusing away, RU = 11 nm center-to-center in this case (Fig. S3B).  
Using our distance criterion for unbinding, the distribution of unbinding times fits well with the 
expected single exponential (p = 0.82, Kolmogorov-Smirnov test) for a first-order rate (Fig. 
S3C).  Therefore, we reason that this distance criterion is a reasonable way to practically define 
when a freely diffusing subunit is unbound within the simulation. 
 We did not simulate complete unbinding events in the very stable condition where a 
subunit has a longitudinal bond and two lateral bonds, due to the expected duration of the 
interaction (from (8), koff = 0.05 s-1 for kon,PF = 4 µM-1s-1).  Alternatively, we set a limit for the 
unbinding time, τ, and looked at the number of successful unbinding events in that amount of 
time.  The number of successes will obey a binomial distribution, with probability of success p = 
k/n where k is the number of successes and n is the total number of simulations.  Since the 
unbinding time is exponentially distributed (Fig. S3C), the probability that an event occurs in 
T<=τ is p = 1-e-λτ.  From this we obtain k/n = 1-e-λτ and thus can estimate the rate, λ, from the 
number of successes and the cut-off time.  Setting a limit of τ =1ms, we found that zero subunits 
successfully unbound for conditions with one longitudinal and two lateral bonds for both tubulin 
and actin.  Therefore we set an upper limit on the off-rate by finding the maximum value of λ, 
such that the probability of observing zero success in n trials for the binomial B(n, p = 1-e-λτ) was 
greater than 0.05. 

Simulation of microtubule net assembly 
 
 Net assembly of individual microtubules was simulated according to (8) at 6.5 µM free 
tubulin concentration for three penalty conditions: without penalties, two-neighbor penalty only 
(9), and model estimated penalties for one and two lateral neighbors. Simulations in each 
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condition were run for a total of 60 s of real-time and the resulting tip structures from the last 30s 
were examined at 1s intervals.  A total of 16 runs were performed, resulting in 496 structures per 
condition.  The zero-neighbor on-rate constant (kon,PF) was scaled in simulations with penalties 
such that the average microtubule on-rate constant (kon,MT) was equal for all simulations. 
Additionally, we increased the strength of the longitudinal bond in simulations with penalties 
(more negative ΔG0

long; -0.4 kBT or -1.0 kBT for simulations with only two-neighbor and with 
both penalties, respectively) such that the net assembly rate was equal in each condition. 
Resulting structures from each simulation condition were ordered by the standard deviation of 
protofilament lengths, then the lower and upper 10% were considered to be blunt and tapered for 
that condition, respectively.  This parsing of the tip structures was performed for each condition 
individually in order to compare the fraction of protofilaments with zero, one, or two lateral 
neighbors in the blunt and tapered tips across simulation conditions. 

Supporting Results and Discussion 

Comparing the modified Metropolis Monte Carlo to previous methods 
 

In the presence of an external force, our simulation approach is based on the Metropolis 
Monte Carlo (3) (MMC) method for protein dynamics. The MMC method is a solution for the 
diffusive Fokker-Plank equation 

∂p(x, t)
∂t

= D ∂
2p(x, t)
∂x2

−
1
γ
∂
∂x
[F(x)p(x, t)] 	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  (S10) 

when molecule steps are sampled from a uniform distribution [-r,r], where r is small and held 
constant throughout the simulation (4, 5).  We implemented the following two modifications, 
which serve to improve algorithm efficiency without a substantial cost in accuracy (documented 
below): 1) steps were sampled from a Gaussian distribution instead of a uniform distribution, and 
2), the time step varies throughout the simulation such that time steps are larger when the 
diffusing tubulin subunit is far from the binding site on the microtubule. Since our algorithm has 
been modified from the original MMC, we simulated a number of asymptotic cases that have 
analytical solutions to Eq. S10 to confirm that our modified MMC yields the correct solutions (4, 
5). 

Assuming a delta function initial condition p(x,t = 0) = δ(x-x0) at x0 = 0, solutions to Eq. 
S10 are well defined in both the presence and absence of an external force, and in each case 
converge to a Gaussian distribution 

p(x, t) = 1
2πσ 2
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In the absence of force, µ = 0 and σ2 = 2Dt, where D is the diffusion coefficient.  In the presence 
of a constant external force, F, the force causes the molecule to move with constant velocity v = 
F/γ, where γ is the drag coefficient.  This drift velocity is superimposed on the diffusive motion 
such that only the mean is affected and is given by µ = vt = (F/γ)t.  To test whether our 
simulation obeyed Eq. S10, we used our modified MMC to simulate molecular diffusion in one 
dimension with D = Davg (from Eq. S9) in the absence and presence of a constant external force 
F = 2 pN (Figure S1A and B).  As shown in Fig. S1A and B, our simulation results fit well with 
theoretical expectation (from Eq. S11) at multiple time scales and were comparable to those 
using previous MMC methods. 
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Since we assume the interaction potential between binding partners is harmonic, we 
further sought to examine whether our modified MMC algorithm agreed with expectation for 
diffusion in a harmonic potential, U(x) = ½kx2 where k is the spring constant.  Assuming a delta 
function initial condition, as above, molecular motion obeys an Ornstein-Uhlenbeck process 
(10), in which the analytical solution to Eq. S10 is  

p(x, t) = k
2πkBT (1− exp[−(2k /γ )t])
"

#
$

%

&
'

1/2

exp − k
2kBT
"

#
$

%

&
'
x − x0 exp[−(k /γ )t]( )2

1− exp[−(2k /γ )t]( )

(

)
*
*

+

,
-
-
.       (S12) 

As shown in Fig. S1B and C our modified MMC algorithm agrees with Eq. S12 in both cases 
where x0 = 0 and x0 = 0.2 nm using k = klong,i.  Comparing Eq. S12 to Eq. S11 we can see that in a 
harmonic potential the resulting distribution is also Gaussian, where the mean and variance are 
both a function of time  

µ(t) = x0 exp[−(k /γ )t]         (S13) 

σ 2 (t) = kBT
k
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As t→∞ , Eq. S12 is equivalent to Boltzmann’s law (p ~ e−U /kBT ) for a harmonic with U(x) = 
½kx2 

p(x, t→∞) = k
2πkBT
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At steady-state, µ(t→∞) = 0 and σ 2 (t→∞) = kBT k , which is consistent with equipartition of 
energy.  The mean and variance of particle position converge to steady-state with time constant τ 
= γ/k and τ = γ/(2k) for the mean and variance, respectively.  By estimating the mean and 
variance of molecule positions as a function of time for the case where x0 = 0.2 nm, we found 
that our modified MMC algorithm approached steady-state on the correct time scale (Fig. S1D 
and E).  As our algorithm agrees with theoretical expectation in various conditions of diffusion in 
the absence and presence of force and in steady-state and in unsteady-state, we conclude that it is 
a good approximation to the equations of diffusive motion. 

While our results do not differ from previous methods, our modified MMC approach has 
several advantages over the previous methods.  First, in sampling from a uniform distribution, 
multiple moves are required before the distribution converges to a Gaussian (via the central limit 
theorem), compared to our approach where moves for every time step are Gaussian distributed.  
Therefore, at short time scales (i.e. after few steps) our modified MMC should more accurately 
predict the expected molecule distribution.  Other Brownian dynamics methods have sampled 
moves from a Gaussian, but assume that the force is constant for each step and therefore is 
implemented as a drift term (11).  Under the simulation conditions used here, we found that 
results using this method did not differ from our modified MMC (< 5% difference).  The 
assumption that force is constant, however, would break down for steep interaction potentials 
(i.e. stiff bonds), possibly resulting in quicker transitions to steady-state (Eq. S13 and S14) or 
quicker escape time from the potential well (unbinding). Additionally, when simulating few 
diffusing molecules of interest, our algorithm allows the mean squared step size to be scaled to 
the relative separation between molecules (Eq. S6), so that computational time is not wasted 
taking small steps ([-r,r]) while molecules are far away from their binding partner.  
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Influence of hydrodynamic interactions on stereospecific binding in linear polymers 
 

As two Brownian particles approach each other or as a particle approaches a wall, the 
solvent between them must be forced out, resulting in an increased drag force upon approach 
(12).  In the absence of inter-particle interaction potential, these hydrodynamic interactions 
reduce the diffusion-limited rate of encounters by ~30% (13, 14).  In the presence of an 
interaction potential, hydrodynamic interactions induce correlation between the movements of 
nearby molecules, increasing the translational diffusion coefficient while reducing rotational 
diffusion (11).  Thus, it seems that it might be important to include these interactions in any 
kinetic simulation.  In the model described here, freely diffusing subunits bind to sites at the end 
of the microtubule lattice, which can be thought of as immobile compared to the freely diffusing 
subunit.  Hydrodynamic interactions between the free subunit and the lattice, therefore, will be 
similar to a particle approaching a wall as described by (12). In this case, hydrodynamic 
interactions result in a distance dependent effect on the fluid viscosity, η.  Therefore, we sought 
to examine the expected effects of fluid viscosity on the resulting kinetic rate constants. 

When considering stereospecific-binding interactions, one must consider both the rate at 
which molecules collide as well as whether they are properly aligned upon collision.  If not 
initially aligned properly, binding partners can explore additional configurations through 
rotational diffusion during a single encounter, thereby promoting binding (6). Thus, the 
efficiency of binding will be dependent on the duration of the encounter and the extent of 
rotational diffusion during a single encounter 

φ =
Δθ 2

1/2

2π
=
(2Drτ E )

1/2

2π
          (S16) 

τ E =
δ 2

6Dt

                  (S17) 

where φ 	
  is the binding efficiency, δ is the encounter distance, and Dr and Dt are the rotational 
and translational diffusion coefficients, respectively.  Using our model parameters in Eqs. S16-
S17, assuming Dt = Davg and δ = 2rB, we estimate φ 	
  = 0.025, which is nearly identical to that 
resulting for N = 1 (purely diffusive motion) in our simulation (Fig. 3A).  Predicting how the 
binding efficiency will scale with viscosity, η, we see 
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Increased viscosity results in a longer encounter but also slows rotational diffusion, and therefore 
the binding efficiency does not depend upon the viscosity.  Assuming the association rate 
constant is the diffusion-limited collision rate (Smoluchowski rate from Eq. S8) scaled by the 
binding efficiency 

kon = φkD ∝ (const.)
1
η

       (S19) 

Thus, the net-effect of hydrodynamic interactions on the rate constant will be equivalent to 
reduction in diffusion-limited collisions due to distance dependent changes in the viscosity.  As 
noted above, this is predicted to be ~30% reduction for two-spheres (13, 14).  Therefore, we 
predict that incorporating hydrodynamic interactions will reduce the estimated values for the on-
rate constant, however, will not influence the binding efficiency of individual subunits.  As the 
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effects of global and local structures at the end of the microtubule are due to the binding 
efficiency (Fig. 3 and 4) and not due to the translational diffusional approach to a position close 
to the binding site (i.e. 10 nm in the present study), we have ignored explicit inclusion of 
hydrodynamic interactions in the results presented here. Instead, the simulation results can be 
corrected by ~30% to provide more accurate estimates of association rate constants. 

Establishing upper and lower bounds for the total longitudinal bond energy 
 

Due to the way that we have modeled bond zone interactions, negative displacements 
away from the potential minimum (x = 0), which result in overlap of super-ellipsoid surfaces, are 
not allowed.  Therefore, we can think of each bound zone as a thermally driven spring where 
only positive displacements are allowed.  The intrinsic bond energy will be related to the total 
longitudinal bond energy (potential energy well-depth) by  

Ulong = ΔGB
0 −3Ui (µ)         (S20) 

where Ui(µ) is the individual spring potential at the mean position, µ, and ΔG0
B is the intrinsic 

bond strength of the longitudinal bond.  If we consider the standard free energy of the 
longitudinal bond, ΔG0

long, as the difference between the favorable ΔG0
B and unfavorable 

entropic penalty of binding, ΔG0
S, then we can substitute for ΔG0

B in Eq. S20 to get 
Ulong = ΔGlong

0 −ΔGS
0 −3Ui (µ)                 (S21) 

The mean position of the constrained, thermally driven spring is  

,           (S22) 

where the factor of two in the numerator is used to scale the area under the curve to unity.  
Integration of Eq. S22 results in a mean position of 

          (S23) 

If we assume that spring displacements have three degrees of freedom, then from equipartition of 
energy we get σ2 = 3kBT/klong,i.  Inserting this into Eq. S23, results in a mean position of 

                    (S24) 

and the energy at this position is 

.                 (S25) 

Therefore, we assume an unfavorable contribution to Ubond of ~1 kBT per interaction zone.  
Estimates of ΔG0

S range from about 10-12 kBT (15–17), therefore using ΔG0
long = -6.8 kBT from 

(8) we predict that Ulong = -21.8-19.8 kBT.  As shown in Fig. 6C, we find that Ulong = -20.4 kBT 
results in ΔG0

long = -6.8 kBT. 

Sensitivity of model predictions to the interaction potential 
 
 To explore whether or not our results were specific to the specific shape of the harmonic 
potential of interaction, we simulated subunit binding and unbinding using a Lennard-Jones (LJ) 
interaction potential where the interaction energy for an individual zone was given by  

µ = x ⋅ f (x)
0

∞
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2πσ 2
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Here rm is the distance at which Ui = Ulong,i and rm = 21/6σ, where σ is a shape parameter that 
defines the slope of the function for a given value of Ulong,i, similar to the harmonic spring 
constant. We added rm to the denominator since ri is the distance between two points on the 
surface of the subunits.  This ensured that Ui = Ulong,i when ri = 0.  The repulsive portion of the 
LJ potential for ri < rm was maintained by hard-sphere rejection.  For simulations using a LJ 
potential, we defined rB as the point where the slope, or equivalently the inter-particle force, was 
at its maximum value.   

As shown in Fig. S5, the predicted kinetic and thermodynamic trends for LJ are similar to 
those predicted using a harmonic potential (Fig. 6 and S4).  Stronger bonds (more negative Ulong) 
resulted in higher kon,PF, lower koff, and thus a more favorable interaction (more negative ΔG0

long).  
The same trend was observed for softer bonds (more positive shape parameter, σ).  Unlike the 
harmonic potential, we found the estimated entropic penalty of binding (ΔG0

S) was sensitive to 
the total bond energy of the LJ.  This is because for constant σ, the slope of the LJ potential 
becomes steeper for more negative values of Ulong.  In contrast, the slope of the harmonic 
potential is only sensitive to the bond stiffness, klong.  Thus, more negative values of Ulong in the 
LJ potential also effectively stiffen the bond.  When considering this, the trend in ΔG0

S with 
regards to bond stiffness is equivalent to that observed for a harmonic potential.  In the absence 
of lateral neighbors, we found that using Ulong = -30 kBT and σ = 0.6 nm resulted in ΔG0

long ≈ -6.8 
kBT, and therefore used these values in all subsequent simulations.  As shown in Fig. S6, the 
estimated on-rate constant was slightly lower using a LJ potential for each local condition, 
however, the steric penalties imposed by local structure were the same as estimated for a 
harmonic.  
 In addition to the shape of the potential, it is possible that the parameters used to define 
the harmonic potential may reduce the steric penalty imposed by laterally adjacent 
protofilaments.  In particular, increasing the bond stiffness would increase the inter-particle force 
and may help to align subunits in the one and two neighbor case.  Alternatively, softer bonds 
may be able to interact for a longer period of time, while the subunit aligns with the neighboring 
protofilaments.   Therefore, we estimated the penalties for varying longitudinal bond stiffness.  
While the bond stiffness affected both the estimated on-rate constant and the off-rate constant 
(Fig. S4), there was no significant effect on the penalties imposed by either one or two lateral 
neighbors (Fig. S6C and D).  These results indicate that the absolute value of the model 
estimated values depend upon the shape of the chosen potential as well as the parameters that 
describe it, however, the kinetic rate penalties as well as the kinetic and thermodynamic trends 
are robust and relatively insensitive to the particular mathematical form of the attractive 
potential. 
 
 
 



Castle and Odde, Supporting Material  Page | 10 
	
  

Supporting References: 

1.  Doi, M., and S.F. Edwards. 1986. The Theory of Polymer Dynamics. New York: Oxford 
University Press. 

2.  Fernandes, M.X., and J.G. de la Torre. 2002. Brownian dynamics simulation of rigid 
particles of arbitrary shape in external fields. Biophysical Journal. 83: 3039–48. 

3.  Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. 1953. 
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical 
Physics. 21: 1087. 

4.  Kikuchi, K., M. Yoshida, T. Maekawa, and H. Watanabe. 1991. Metropolis Monte Carlo 
method as a numerical technique to solve the Fokker—Planck equation. Chemical Physics 
Letters. 185: 335–338. 

5.  Tiana, G., L. Sutto, and R.A. Broglia. 2007. Use of the Metropolis algorithm to simulate 
the dynamics of protein chains. Physica A: Statistical Mechanics and its Applications. 
380: 241–249. 

6.  Northrup, S.H., and H.P. Erickson. 1992. Kinetics of protein-protein association explained 
by Brownian dynamics computer simulation. Proceedings of the National Academy of 
Sciences of the United States of America. 89: 3338–42. 

7.  Andrews, S.S., and D. Bray. 2004. Stochastic simulation of chemical reactions with 
spatial resolution and single molecule detail. Physical Biology. 1: 137–51. 

8.  VanBuren, V., D.J. Odde, and L. Cassimeris. 2002. Estimates of lateral and longitudinal 
bond energies within the microtubule lattice. Proceedings of the National Academy of 
Sciences of the United States of America. 99: 6035–40. 

9.  Gardner, M.K., B.D. Charlebois, I.M. Jánosi, J. Howard, A.J. Hunt, et al. 2011. Rapid 
microtubule self-assembly kinetics. Cell. 146: 582–92. 

10.  Uhlenbeck, G., and L. Ornstein. 1930. On the Theory of the Brownian Motion. Physical 
Review. 36: 823–841. 

11.  Ermak, D., and J. McCammon. 1978. Brownian dynamics with hydrodynamic 
interactions. The Journal of Chemical Physics. 69: 1352. 

12.  Brenner, H. 1961. The slow motion of a sphere through a viscous fluid towards a plane 
surface. Chemical Engineering Science. 16: 242–251. 

13.  Wolynes, P.G., and J.A. McCammon. 1977. Hydrodynamic Effect on the Coagulation of 
Porous Biopolymers. Macromolecules. 10: 86–87. 



Castle and Odde, Supporting Material  Page | 11 
	
  

14.  Wolynes, P.G. 1976. Slip boundary conditions and the hydrodynamic effect on diffusion 
controlled reactions. The Journal of Chemical Physics. 65: 450. 

15.  Erickson, H.P., and D. Pantaloni. 1981. The role of subunit entropy in cooperative 
assembly. Nucleation of microtubules and other two-dimensional polymers. Biophysical 
Journal. 34: 293–309. 

16.  Erickson, H.P. 1989. Co-operativity in protein-protein association. The structure and 
stability of the actin filament. Journal of Molecular Biology. 206: 465–74. 

17.  Horton, N., and M. Lewis. 1992. Calculation of the free energy of association for protein 
complexes. Protein Science. 1: 169–81.  

 

 

 

Supporting Movie Descriptions 

Movie S1.  Subunit binding with zero neighboring protofilaments.  Individual runs of 
subunits that reach R = 10 nm separation distance are shown.  Percentages indicate the percent of 
subunits reaching R = 10 nm that either diffuse away from the lattice (left) or eventually bind 
(right).   

Movie S2.  Subunit binding with two neighboring protofilaments.  Individual runs of 
subunits that reach R = 10 nm separation distance are shown.  Percentages indicate the percent of 
subunits reaching R = 10 nm that either diffuse away from the lattice (left) or eventually bind 
(right).   

Movie S3.  Bound subunit lifetimes.  Bound subunits with zero (left) and one (right) lateral 
bond are shown.  Movie continues until the first subunit leaves the microtubule lattice. 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S6 
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