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Brownian Dynamics of Subunit Addition-Loss Kinetics and
Thermodynamics in Linear Polymer Self-Assembly

Brian T. Castle and David J. Odde*
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota

ABSTRACT The structure and free energy of multistranded linear polymer ends evolves as individual subunits are added and
lost. Thus, the energetic state of the polymer end is not constant, as assembly theory has assumed. Here we utilize a Brownian
dynamics approach to simulate the addition and loss of individual subunits at the polymer tip. Using the microtubule as a primary
example, we examined how the structure of the polymer tip dictates the rate at which units are added to and lost from individual
protofilaments. We find that freely diffusing subunits arrive less frequently to lagging protofilaments but bind more efficiently,
such that there is no kinetic difference between leading and lagging protofilaments within a tapered tip. However, local structure
at the nanoscale has up to an order-of-magnitude effect on the rate of addition. Thus, the kinetic on-rate constant, integrated
across the microtubule tip (konm), is @an ensemble average of the varying individual protofilament on-rate constants (kon pg)-
Our findings have implications for both catastrophe and rescue of the dynamic microtubule end, and provide a subnanoscale
framework for understanding the mechanism of action of microtubule-associated proteins and microtubule-directed drugs.
Although we utilize the specific example of the microtubule here, the findings are applicable to multistranded polymers generally.

INTRODUCTION

Linear biological polymers typically consist of homogenous
globular protein subunits that interact noncovalently to form
the functional structure. Examples of linear polymers are
diverse and include members of the cytoskeleton, such as
microtubules and actin filaments, as well as viruses,
sickle-hemoglobin, and paired helical filaments. Because
most interactions are noncovalent, both assembly and disas-
sembly are reversible reactions that can be readily
controlled and adapted. The adaptability of linear polymers
such as microtubules and F-actin enables the congression
and subsequent separation of chromosomes during mitosis
as well as allows migratory cells to rapidly reorganize
cellular protrusions in response to extracellular signals.
Because of the importance of the linear polymer assembly
dynamics in various cellular processes, they have been stud-
ied extensively for several decades both experimentally and
theoretically.

Assembly theory for linear polymers assumes that the
subunit association and dissociation rates are constant and
equal for each strand (1). This theory has been corroborated
experimentally, fitting with the observed concentration-
dependent net-assembly rates for multistranded polymers
such as F-actin (2), GTP-tubulin (3,4), and GMPCPP-
tubulin (5,6), enabling estimates of the underlying kinetic
rate constants. This model for assembly inherently assumes
that the dynamic end of the polymer is energetically con-
stant. However, the structure and free energy of the end
evolves because of the formation and loss of lateral interac-
tions as individual subunits are gained and lost from the
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end (7). In the simplest form, single-stranded linear poly-
mers have a single longitudinal interaction; however, the
increasing complexity of multistranded polymers introduces
lateral interactions between neighboring subunits (Fig. 1 A).
Thus, despite fitting with experimental results, the assump-
tions of basic assembly theory break down for more com-
plex multistranded polymers. This was recently shown in
microtubule self-assembly where the off-rate (ko) in-
creases as the majority of protofilament ends shift from
more stable configurations to less stable configurations at
higher free tubulin concentrations (8). Not only did these re-
sults have significant consequences for how we view micro-
tubule self-assembly, but also demonstrate that kinetics vary
as the structure of the microtubule tip evolves. Thus, the
dissociation rate of tubulin subunits is not constant, as the-
ory has assumed.

Hill (7) indicated that both the on- and off-rates will
depend on the number of lateral interactions, but concluded
that the full effect would be on the off-rate for a diffusion-
limited process. In agreement, the majority of theoretical
models for microtubule self-assembly have assumed a sin-
gle on-rate constant (k,,mr) for the microtubule end
(9-13). However, Gardner et al. (8) found that an on-rate
penalty (kon pr2 = kon pr/0, Where 0 = 15) to protofilaments
with two neighboring protofilaments of greater length,
although not necessary to qualitatively match tip taper
trends with free tubulin concentration, was necessary to
quantitatively match the model-predicted protofilament
length variance to that estimated experimentally. Without
this penalty, the model predicted a protofilament length
variance that is smaller than experimentally observed,
meaning all protofilaments are of approximately equal
length. This suggests that the evolving tip structure and
free energy may affect the on-rate constant in addition to
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the off-rate and that kinetic or thermodynamic inequality at
the microtubule end may be necessary to produce the exper-
imentally observed structures (14,15). More generally,
multistranded self-assembled polymers, in principle, could
have different on-rate constants for each protofilament;
however, we currently lack the theoretical underpinnings
for on-rate heterogeneity, or whether it is even expected to
exist.

To explain the specific case of microtubule tip structure
and self-assembly, Gardner et al. (8) imposed an on-rate
penalty only to protofilaments with two neighboring proto-
filaments of greater length and ignored any penalty imposed
by a single neighboring protofilament. Even so, a single
neighbor may be sufficient to hinder subunit incorporation
into the lattice. As the microtubule grows, the tip becomes
increasingly tapered (14,16), in which the one-neighbor
case will be the most frequent. Thus, a one-neighbor penalty
could significantly influence net assembly and the resulting
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FIGURE 1 Simulated structures and interactions
in linear polymer self-assembly. (A) Examples of
single and multistranded linear polymers are
shown. The number of possible configurations in-
creases with complexity. Darker subunits are
bound, whereas lighter subunits represent potential
binding sites for incoming subunits. The number of
laterally interacting subunits is indicated for each
binding site. (B) Diagram of an a$-tubulin subunit
assumed within the model. Zones constituting the
longitudinal bond are A (red), B (green), and C
(blue). Lateral zones (solid and open circles in
orange) (- and «-tubulin, respectively, with
colored symbols indicating the paired binding part-
ners on separate subunits (i.e., open green associ-
ates with solid green on a separate subunit). (C)
Diagram of the microtubule lattice as constructed
within the simulation. Tapered example (right) is
four dimer layers. (D) Interaction energy as a func-
tion of separation distance is shown for a single
longitudinal (red, one of three zones) and lateral
bond (orange, one of two zones) zone. Interaction
energy increases as a Hookean spring within the
binding radius (rg).

Leading
Binding Site

Tapered Tip

structure of the microtubule tip, as well as influence assem-
bly in multistranded linear polymers generally. Gardner
et al. (8) assumed the presence of neighboring protofila-
ments is unfavorable due to the steric hindrance of aligning
incoming units with the orientation of adjacent protofila-
ments, although the presence of neighboring protofilaments
could also be favorable due to the additional free energy of
forming lateral bonds. Thus, the net-effect of laterally inter-
acting protofilaments at the end of linear polymers is not
clear.

In addition to local effects of neighboring protofila-
ments, the global structure or the distribution of proto-
filament lengths at the end of the microtubule could
influence the kinetics of individual protofilaments, inde-
pendent of the local conditions. Individual protofilaments
vary in length within a microtubule (often referred to as
tip taper or raggedness), and often range up to several
hundred nanometers both in vitro (14) and in vivo (15).
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The tip structures in many cases appear much like the tip
of a syringe needle (i.e., like a cylinder cut obliquely;
see e.g., Chrétien et al. (14)). The extended leading proto-
filaments potentially block freely diffusing subunits from
reaching shorter lagging protofilaments, thus the rate by
which free subunits arrive to a potential binding site could
depend upon its global position within the microtubule tip
structure.

To investigate the impact of polymer-end structure on
kinetics and thermodynamics of linear polymer self-assem-
bly generally, we created a Brownian dynamics computa-
tional model for the noncovalent interactions of subunits
with the polymer tip. This allowed us to simulate the asso-
ciation and dissociation of individual subunits, using micro-
tubule assembly as a central focus. We found that due to
counteracting effects, global structure of the extending tip
does not affect the association rate to lagging protofilaments
compared to leading protofilaments, assuming there are no
lateral neighbors. However, local presence of either one or
two neighboring protofilaments inhibits the association
despite the presence of short-range favorable interactions.
These results demonstrate that the association rate constant
for the microtubule (k,,Mmr) should be considered an
ensemble average of the individual nanoscale rate constants
of individual protofilaments (k,, pg), Which are dependent
on the number of lateral interactions at the polymer end
and evolve with the gain and loss of individual subunits.
Additionally, our model serves as a framework to study
the specific mechanisms by which microtubule-associated
proteins and microtubule-targeting drugs affect the micro-
scale microtubule dynamics through alteration of the under-
lying kinetics and thermodynamics. To our knowledge, this
is the first intermediate-scale simulation of subunit associa-
tion and dissociation in linear filament self-assembly where
the translational and rotational dynamics of subunits are
explicitly simulated along with the interaction potentials be-
tween subunits. This modeling approach, based on the
method articulated by Northrup and Erickson (17), provides
a bridge from the atomistic method (18-22) and simple
addition-loss methods (9-12,23,24).

METHODS

Our model was based on the Brownian dynamics approach described by
Northrup and Erickson (17) for estimating kinetic association rate con-
stants, with the following modifications:

1. Nonspherical subunit structure;

2. Interaction with a self-assembled polymer lattice; and

3. Separate near- and far-field simulations to isolate effects on either diffu-
sion-limited arrivals or binding.

Additionally, we implement a modified Metropolis Monte Carlo (25)
algorithm for Brownian dynamics in the presence of an external force.
All simulations were carried out with custom code written in the software
MATLAB (The MathWorks, Natick MA). To test the model predictions, we
implemented two specific linear self-assembled polymer structures: micro-
tubules and actin filaments. Simulated structures and interactions are
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described below. For a detailed description of the simulation procedure,
see the Supporting Material.

Microtubule simulation structures

The microtubule structure was modeled as a B-lattice, consisting of 13 pro-
tofilaments and a helical pitch of 1 1/2 dimers per turn (Fig. 1). Individual
tubulin subunits were modeled as superellipsoids, obtained by rotating the
Lamé curve

‘X

a

with @ =2 nm, b =4 nm, and n = 5, about the vertical axis (Fig. 1 B). Fora
blunt tip, each protofilament consisted of 100 dimers to capture any poten-
tial long-range effects and to create variable tip structures through the
removal of dimers from the lattice. To create a tapered tip, the first protofila-
ment was 100 dimers in length and the dimer number decreased linearly be-
tween protofilaments 1 and 10, which was of equal length to protofilaments
11-13 (Fig. 1 C). Protofilament 11 was then used as the protofilament of
interest for simulations of lagging protofilaments to insure that immediately
adjacent protofilaments were of equal length. Lag distance was defined as
the center-to-center distance between the subunit of interest and either
the most distal subunit (when lagging, positive-lag distance) or the closest
subunit on a separate protofilament (when leading, negative-lag distance).
In simulations where the protofilaments adjacent to the protofilament of in-
terest were of greater length (lateral neighbors), protofilament 7 of a blunt
end was used and subunits were then added to one or both of protofilaments
6 and 8 to create the one- and two-neighbor cases, respectively. We define
the tolerance of lateral neighbors as the minimum distance (surface-to-sur-
face) between adjacent subunits within the microtubule lattice (Fig. 1 B).
Tolerance was adjusted by modifying the radius of the microtubule and
keeping the dimensions of individual subunits constant.

T, )
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*;

Longitudinal and lateral interactions between
subunits

To represent the longitudinal bonds between freely diffusing subunits and
the protofilament of interest, we used three zones based on the high-resolu-
tion description of tubulin subunits within the microtubule lattice (26)
(Fig. 1 B). Three zones would be the minimum number necessary for cor-
rect rotational orientation to allow for lateral interactions, and is the number
of contacts that best matched experimental estimates of kinetic association
rates according to Northrup and Erickson (17). The three zones (A, B, and
C) were placed noncollinearly in a plane (i.e., in a triangle), tangential to the
end of the subunit, normal to and centered on the subunit long axis on both
the a- and B-tubulin ends of the dimer (Fig. 1 B). Zones were paired, and
mutually exclusive, such that zone A of «-tubulin could only bind with
zone A of B-tubulin on the subunit of interest. Zones were rotated about
the vertical (long) axis so that their position relative to the inside or outside
of the microtubule lattice was independent of protofilament number (e.g.,
Zone A, red, is always located near the inside face of the microtubule, as
in Fig. 1 C).

Two zones, one « and one 3, were used to model the lateral bonds be-
tween subunits (Fig. 1 B), which was sufficient to ensure that subunits
were aligned vertically with neighboring protofilaments. Similar to longitu-
dinal bonds, lateral zones were paired and mutually exclusive. Because of
the helical and cylindrical shape of the microtubule lattice, lateral zones
were offset from center on either side of the tubulin subunit and rotated in-
ward toward the microtubule lumen (Fig. 1 B). Accounting for both the he-
lical pitch and cylindrical shape of the microtubule lattice minimized the
distance between lateral zones when a subunit was bound within the lattice.

Bonds were modeled as Hookean springs of zero rest length with a well-
depth equal to the total bond energy for an individual zone (Fig. | D). Thus,



Brownian Dynamics of Self-Assembly

the energy at each time point was the difference between the total potential
energy and the displacement of stretching the spring, given by the harmonic
potential

1
Ui(1) = Ekbond,i (r; (f_;))z + Upond,is @)

where r; is the distance between paired zones and kpopna,; is the spring con-
stant of an individual interaction zone. Individual zones were modeled as
springs in parallel and the total bond potential energy was evenly distributed
across all zones, such that kyona; = Kbonda/q and Upona; = Upona/g (Where
g = 3 for the longitudinal bond and g = 2 for lateral bond). We assumed
kiong Was equal to that previously estimated for the longitudinal bond
modeled as a harmonic potential (kjong = 900 pN/nm) (12). We initially es-
tablished bounds for the total longitudinal bond potential energy (Uong)
(see the Supporting Material), but later found that Ujong = —20.4 kgT re-
sulted in AGOIong = —6.8 kgT (see Results and Discussion), consistent
with that previously estimated for the longitudinal bond free energy (11).
Therefore, this value of Ujo,e Was used for the longitudinal bond in all sim-
ulations unless otherwise noted.

Several studies have noted that the intrinsic bond energy of the lateral
bond is weaker (more positive) than the longitudinal bond by ~12-16
kgT (11,20,27). To account for this difference, we assumed that the total
bond energy for the lateral bond was one-third that of the longitudinal
bond (Ujy = —20.4/3 kgT = —6.8 kgT), thus weakening the lateral bond
by ~14 kgT. Additionally, the spring constant of the lateral bond was
three-times softer than the longitudinal bond (ki = Kkiong/3) to account
for the flexible M-loop involved in the lateral contact between tubulin sub-
units (26). Softening the lateral bond also made the binding radius (rz)
equal for both the longitudinal and lateral bond. A bond was considered
broken when the strain of stretching was greater than the total bond energy.
This separation distance (where U(t) = 0) was defined as the binding
radius (r) and given by

_ ) 1/2
rg = < 2Ubond,1> ] (3)

kbond,i

Based on the bond strengths and stiffness values indicated above, rz =
0.43 nm. Individual zones were considered bound when their separation
distance was less than the binding radius (Fig. 1 D), and only those zones
that were bound contributed to the total energy at a given time point accord-
ing to

), @)

where N is the number of zones within rp (the longitudinal and lateral zones
both contribute to the value of N, such that max() = 3, 5, or 7 with zero,
one, or two lateral bonds). A subunit was considered completely bound
when all three zones constituting the longitudinal bond were within rg
(N = 3 for longitudinal bond).

Actin filaments

To simulate actin (instead of tubulin), we assumed G-actin monomers were
superellipsoids with dimensions of 4 x 4 x 6.7 nm (¢ = 2 nm and b =
3.35 nm in Eq. 1), comparable to de la Cruz et al. (28), and that the proto-
filaments of F-actin were offset by 2.8 nm (29). Protofilaments were 100
subunits in length, and then subunits were added to the leading protofila-
ment to increase the lag distance of the lagging protofilament. We found
a total bond energy of Ujong = —19.2 kgT best fit estimates of the standard
Gibbs free energy for the longitudinal bond (30). Additionally, we adjusted
the stiffness of the longitudinal bond based on previous estimates for ATP-
actin (kjong = 165 kgT/nm* = 700 pN/nm) (28). Modifying the total bond
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energy and bond stiffness only slightly changed the binding radius (rp =
0.46 nm) compared to tubulin. To include the diagonal bonds between actin
monomers, we used a single interaction zone per diagonal bond with
Ugiag = —6.4 kgT and kgiag = Kiong-

RESULTS AND DISCUSSION
Global position has no net effect on kinetics

We anticipated two potential effects of global and local tip
conditions, either 1), reducing the rate at which freely
diffusing tubulin subunits arrive (through diffusion) to a sur-
face some short distance away from the protofilament of in-
terest or 2), inhibiting the subsequent binding. To isolate
these two potential effects, we split our simulation into
two parts (see the Supporting Material), initially simulating
the diffusion-limited arrival rate to a surface a short distance
from the bound subunit of interest (kp(R), where R = 10 nm
center-to-center; Fig. 2 A), and then simulating the
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FIGURE 2 Diffusion-limited arrivals to leading and lagging protofila-
ments. (A) Freely diffusing subunits arrive to a spherical surface (R =
10 nm, yellow) centered on the leading subunit of the protofilament of
interest. Darker subunits identify potential binding partners (subunits of
interest), whereas lighter subunits show the immediately surrounding
microtubule lattice. (B) Diffusion-limited arrivals to protofilaments at vary-
ing global positions within the microtubule tip. (Solid black line) Theoret-
ical Smoluchowski limit to the yellow sphere shown in panel A (47D,R).
(Gray vertical line) Zero lag. (Blue and red arrows) Leading (blue) and
lagging (red) cases shown in panels C and D. (C and D) Probability that
a freely diffusing subunit (starting from R = 400 nm) reaches the 10-nm
surface at a given position relative to the subunit of interest within the
microtubule lattice.
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subsequent binding of units that arrived at this surface. As
shown in Fig. 2 B, freely diffusing subunits approach lag-
ging protofilaments at a slower rate compared to leading
protofilaments. The arrival rate to leading protofilaments
rapidly approaches the predicted Smoluchowski rate (see
Eq. S8 in the Supporting Material), whereas the arrival
rate to lagging protofilaments is approximately twofold
slower. Interestingly, once a protofilament is leading or lag-
ging by a certain distance (on the order of a single subunit
layer), there is relatively little change in the rate (Fig. 2
B). The greatest change in rate occurs around zero lag, indi-
cating that only small differences in the relative length of in-
dividual protofilaments are necessary to reduce the arrival
frequency of freely diffusing subunits. This suggests that
global structure would have similar implications in other
multistranded polymers that exhibit less variation in proto-
filament lengths, such as F-actin.

To more specifically examine the cause of reduced ar-
rivals to lagging protofilaments, we looked at the positions
of arriving units (that reach the 10-nm center-to-center dis-
tance) relative to the subunit of interest within the microtu-
bule lattice (Fig. 2, C and D). Although there was no
apparent spatial bias in the reduction of arrivals above or
below the subunit of interest, we found that fewer subunits
arrive to lagging protofilaments from the direction of the in-
side (lumen) of the microtubule compared to leading proto-
filaments (Fig. 2 D). This supports our original hypothesis
that longer protofilaments shield lagging protofilaments,
but the fact that the observed effect starts at ~+90° longi-
tude further suggests that the observed effect is in part due
to the neighboring protofilaments of nearly equal length.
If adjacent protofilaments were the only effect on diffu-
sion-limited arrivals, we expect there would be no difference
among protofilaments 2—11 in a blunt tip, as the local con-
ditions are equivalent for each. As seen in Fig. 2 B, however,
protofilaments 2-11 (lag distance ~0-8 nm) exhibit the
greatest absolute rate of change in arrival rate. These results
together indicate that the global structure mainly reduces ar-
rivals to lagging protofilaments by blocking the angles from
which freely diffusing subunits can approach the binding
site.

If the efficiency of binding is independent of the global tip
structure, then our estimated on-rate constant for lagging
protofilaments should be lower than that for leading protofi-
laments. As shown in Fig. 3 A, however, binding efficiency
is not independent of the global position and exhibits the
opposite trend compared to arrivals. This means that freely
diffusing dimers, once they have gotten to within a few
nanometers of the binding site, are more likely to bind to
lagging protofilaments than leading protofilaments. The
observed trend in binding efficiency effectively cancels
out the trend in diffusion-limited arrivals, such that the
on-rate constant is independent of the global position of
the binding site within the microtubule tip (Fig. 3 B). The
same trend in binding efficiency was observed when starting
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FIGURE 3 Binding efficiencies and estimated on-rate constants for vary-
ing global positions. (A) The probability that subunits satisfy N = 1 (dark
blue dots), N = 2 (blue dots), or N = 3 (light blue dots) longitudinal zones
within rp before diffusing to 400-nm center-to-center distance. (Gray line)
Zero lag. (B) Estimated on-rate constants of completely bound subunits
(N = 3) for a variety of global positions. In panels A and B, the arrows indi-
cate the leading (blue) and lagging (red) cases analyzed in panels C and D.
Error bars are mean = SE. (C and D) Binding efficiencies of all arrival
positions are shown. Efficiency is the number of subunits per position
that eventually bind before diffusing to 400-nm center-to-center distance
divided by the total number of simulations initiated at that position.

positions were artificially randomized along the 10-nm sur-
face rather than sampled from the diffusive arrivals (see
Fig. S2 in the Supporting Material). Therefore, the observed
trend in binding efficiency was not due to bias in the starting
positions but due, instead, to an inherent property of lagging
versus leading protofilaments.

The fact that the trend is observed for each degree of con-
tact specificity (N = 1, 2, and 3) indicates that the global
structure does not promote the transition to a higher degree
of binding, but instead increases the chance that a single
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contact is established in the first place (Fig. 3 A). Note that
the percentage of freely diffusing subunits that reach the
N =1 state is very small (2-3%), thus even though they
arrive at a very short distance (10-nm surface) relative to
the binding site, the vast majority of subunits diffuse
away without ever interacting with the protofilament of in-
terest. Subunits arriving above the binding site are more
efficient for both leading and lagging protofilaments; how-
ever, those arriving from the direction of the microtubule
lumen are approximately three times more efficient when
binding to lagging versus leading (Fig. 3, C and D). Thus,
even though fewer freely diffusing subunits reach lagging
protofilaments from the direction of the inner part of the
microtubule (Fig. 2 D), those units are more likely to
interact with the protofilament of interest and eventually
incorporate into the lattice. These results together suggest
that the surrounding longer protofilaments in the lagging
case keep free units from escaping, in the same manner
that they blocked units from arriving in the first place,
thus increasing the probability that the free unit establishes
at least one interaction contact. Thus, the extending global
tip structure is like a double-edged sword that simulta-
neously blocks subunit arrivals to and departures from the
vicinity of lagging protofilaments, such that leading and
lagging protofilaments end up with essentially the same
on-rate constant.

Local structure sterically inhibits subunit
association

Although global structure did not affect subunit addition, we
were interested to see whether local structure might—an
effect invoked to quantitatively explain microtubule tip
structure in a previous study (8). In a multistranded self-
assembled polymer, lateral interactions are formed and
lost as a consequence of the gain and loss of individual sub-
units at the dynamic end of the microtubule, and thus the
local conditions for a given protofilament will vary over
time. For a multistranded polymer with at least three proto-
filaments, there are three conditions that an incoming sub-
unit could encounter (7). The protofilament of interest
could have zero, one, or two neighboring protofilaments
that are longer by at least one subunit. In contrast to global
structures, the potential effects of local structures are more
immediately apparent. For example, in the case with two
adjacent longer protofilaments, an incoming unit would
have less freedom of orientation due to the steric hindrance
of the neighboring protofilaments. Based on these argu-
ments, Gardner et al. (8) implemented an on-rate penalty
(15-fold decrease of the association rate constant, ko, pr)
to protofilaments with two neighboring protofilaments of
greater length to replicate the experimentally observed pro-
tofilament length variance. Here we sought to use our Brow-
nian dynamics model to investigate whether a single
neighboring protofilament of greater length could induce a
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similar penalty and to obtain a more rigorous estimate of
what the two-neighbor penalty should be, if any.

We defined local tip structure as the relative lengths of an
individual protofilament to its immediately adjacent neigh-
boring protofilaments (Fig. 1 A). In our simulation, a blunt
tip (zero lateral neighbors) assumes both neighboring proto-
filaments are the same length as the protofilament of inter-
est. The one- and two-lateral-neighbor cases are where
one or two adjacent protofilaments, respectively, are longer
by at least a single dimer. As seen in Fig. 4 A, our estimated
on-rate constant decreases progressively with the addition of
one and two lateral neighbors. Thus, the on-rate constant for
a protofilament in each condition will be penalized relative
to the zero neighbor case. This observation was robust with
respect to the details of the shape of the potential as well as
the bond stiffness (see Fig. S6). Although we assume that all
protofilaments are oriented parallel to the microtubule axis,
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respective zero neighbor case. (C and D) On-rate penalties (fold decrease
from the zero neighbor case) for the single- (C) and two- (D) neighbor cases
with (lighter) and without (darker) lateral bonds. Penalties were estimated
across a range of tolerances, where tolerance is defined as the minimum dis-
tance between adjacent protofilaments within the microtubule lattice. (E)
Estimated on-rate constants of G-actin binding to the leading and lagging
protofilament are shown (lateral neighbor numbers are illustrated in
Fig. 1 A) for simulations with (lighter) and without (darker) the diagonal
bonds. All error bars are mean + SE.
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the gentle outward curling of leading protofilaments in
growing ends (14) is not likely to reduce the steric penalty
because a single dimer layer is sufficient to impose the pen-
alty. In contrast to global structures, these local structures
have little effect (<20% between zero and two neighbors)
on the arrival of freely diffusing subunits. Instead, the
main effect of local structure is through inhibition of the
eventual binding of subunits after they have approached
the protofilament of interest (Fig. 4 B and see Movie S1
and Movie S2 in the Supporting Material). This is consistent
with a steric penalty, due to the constraint of orientation,
imposed by the adjacent protofilaments.

If the penalty to the one- and two-neighbor case is indeed
due to steric hindrance, then the more severe the orientation
constraint, the greater the penalty should be. Therefore, we
estimated the one and two-neighbor penalties for a range of
tolerances to examine the constraint sensitivity of each pen-
alty (Fig. 4, C and D). Not surprisingly, the two-neighbor
case is penalized to a greater extent compared to the one-
neighbor case for all tolerances within the range we exam-
ined. The one-neighbor penalty is relatively independent
of tolerance whereas the two-neighbor penalty becomes
more severe at lower tolerances. If we assume that the
tolerance range for a microtubule is within the lateral
interaction distance defined by Nogales et al. (26) (<4 10\),
then protofilaments with one or two lateral neighbors will
have ~2 or ~10 times, respectively, slower on-rate constants
than those without neighbors. While our estimated on-rate
constant for the blunt case is greater than previous estimates,
the one-neighbor case is within error of previous estimates
(see Gardner et al. (8) for summary). It is interesting to
note that a binding site with a single lateral neighbor will
be common within a tapered tip, thus the average associa-
tion constant (konmt) estimated from our model is within
the range of previous estimates by both experimental and
computational approaches (8).

As subunits get close to the binding position, it is possible
that the lateral bond will reduce the steric penalty by
providing additional favorable free energy, particularly in
the presence of two lateral protofilaments. To examine
whether this is expected to be a significant effect, we added
the lateral bond consisting of two zones (one for «- and
B-tubulin each) on both sides of the af-tubulin subunit
(Fig. 1 B). We decreased both the total bond energy and
the spring constant of the lateral bond threefold compared
to the longitudinal bond (see Methods). Doing so resulted
in the lateral bond being ~14 kg7 weaker than the longitudi-
nal (consistent with published estimates (11,20,27)) and
made the binding radius (rg) equal for both the longitudinal
and lateral bond, giving the lateral bond the best chance to
reduce the on-rate penalty. Even so, the lateral bond did
not significantly reduce the severity of the one- and two-
neighbor penalties for the majority of tolerances examined
(Fig. 4, C and D). Because the lateral bond is so weak
compared to the longitudinal, the interaction is not sufficient
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to facilitate the establishment of a longitudinal interaction.
This suggests that the longitudinal bond is necessary for a
subunit to incorporate into the microtubule lattice (the rela-
tive strengths of the lateral and longitudinal bond are dis-
cussed further below).

The fact that even one neighbor is sufficient to inhibit the
association of incoming subunits suggests that a similar
effect will occur in all multistranded polymers. Even in a
two-stranded polymer, such as F-actin, one protofilament
will be longer than the other, resulting in multiple local
structure conditions for incoming subunits (Fig. 1 A). To
assess the generality of structurally induced kinetic pen-
alties in linear polymer assembly, we simulated G-actin
monomer subunit binding to the leading and lagging proto-
filament of a two-protofilament polymer. In simulating actin
instead of tubulin, we shortened the long axis of the super-
ellipsoid used to define a subunit and adjusted the total bond
interaction energies (Upong) and bond stiffness (kpong) to bet-
ter match previous estimates for actin (see Methods). As
seen in Fig. 4 E, the estimated on-rate constant is reduced
by ~1.5-fold for the lagging protofilament compared to the
leading protofilament. Similar to tubulin, the addition of
diagonal bonds did not reduce the steric penalty imposed
by the leading protofilament. The effect of one neighbor is
not as strong for F-actin compared to the microtubule; how-
ever, our results show that neighboring protofilaments steri-
cally hinder addition to lagging protofilaments even in the
simple case of a two-stranded polymer.

Kinetic penalties influence polymer tip structures

Despite the one-neighbor on-rate constant being only a fac-
tor-of-two slower compared to zero neighbors, it can poten-
tially have a significant effect on net assembly if it occurs
frequently. To investigate the consequence of our predicted
on-rate penalties, we examined the resulting microtubule tip
structure from simulations of individual microtubule net as-
sembly according to VanBuren et al. (11): without penalties;
with only a two-neighbor penalty (8); and with our model-
predicted penalties for both one and two lateral neighbors
(from Fig. 4, C and D). Without penalties, individual proto-
filaments remain of approximately equal length and tip
structures do not achieve the same extension compared to
simulations with penalties (Fig. 5, A and B). A two-neighbor
penalty is sufficient to achieve experimentally observed ta-
pers (14), but it typically results in a single protofilament
that lags many dimer layers behind the others, which remain
of approximately equal length (Fig. 5, A and C). It is un-
likely that this single trailing protofilament would be
resolved by experimental methods and thus would appear
as a relatively blunt tip because the fraction of zero- and
one-neighbor cases is comparable to the nonpenalized
case (Fig. 5 C). Our estimate of the two-neighbor penalty
is comparable to that required for quantitative agreement
with the protofilament standard deviation in GMPCCP
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FIGURE 5 On-rate penalties influence the resulting microtubule tip
structure. (A) Examples of tapered microtubule end structures (displayed
as two-dimensional sheets) from each of the three simulation conditions:
no on-rate penalties (fop); a single penalty to protofilaments with two lateral
neighbors (middle); and model predicted penalties to protofilaments with
both one and two lateral neighbors (bottom). (B) Probability density values
of protofilament length standard deviations for tips in each simulation con-
dition are shown. (C and D) The fraction of protofilaments with zero, one,
or two lateral neighbors in (C) tapered tips from all three cases and (D)
blunt (lighter) or tapered (darker) tips from simulations with one- and
two-neighbor penalties.

microtubules (8). Addition of the one-neighbor penalty,
however, resulted in a gradual loss of protofilaments out
to the microtubule end, more closely resembling those struc-
tures observed by electron microscopy (14,16,31) (Fig. 5 A).
Additionally, the one-neighbor penalty shifted the majority
of protofilaments from zero neighbors to one and two neigh-
bors in tapered tips compared to blunt (Fig. 5 D). Because
the microtubule on-rate constant is determined by the frac-
tion of protofilaments in each condition, tapered tips will
have a slower on-rate constant than blunt tips in this case.
In fact, we found the average on-rate constant (ko mt) fOr
the microtubule-end decreased ~22% in tapered tips
compared to blunt in the case with one- and two-neighbor
penalties; however, the on-rate constant decreased only
~T7% in the case of a two-neighbor penalty only. Thus, on-
rate penalties dictate the resulting tip structure, which will
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feed-back to influence association and promote further
tapering of the tip.

The observed kinetic inequality between protofilaments
due to the local structure provides a potential explanation
for the observed history dependence of both catastrophe
(16,32,33) and rescue (34). Although it has been shown
that gradual tapering of the microtubule tip leads to a higher
probability of catastrophe with microtubule age (16), it is not
clear how tip taper promotes catastrophe. A potential expla-
nation is that increased taper will correspondingly increase
the off-rate (ko mr) due to the loss of stabilizing lateral
bonds (8), thus reducing the net assembly rate. If tip taper
only increases kg v, however, it would be difficult to lose
a large GTP-cap at higher tubulin concentrations and as esti-
mated in vivo (35). Our results here suggest that, in addition
to affecting the off-rate, increasing tip taper will result in a
decrease of the average on-rate constant for the microtubule
(kon.mt)- Thus, the net addition of subunits will potentially
decrease to a greater extent and be more variable in time.
Because the net assembly rate is the small difference between
a large on- and off-rate (8), changes in both k,, vt and Koge vt
could switch the microtubule from a state of net assembly to
net disassembly. Thus, a tapered tip will have a net assembly
rate that is lower than a blunt tip. We suggest that, rather than
there being a series of specific events leading to catastrophe
(as indicated by the literature (32,33,36)), gradual tapering of
the microtubule tip (16), on average, transitions it to a state of
net disassembly, resulting in the loss of the GTP-cap and ca-
tastrophe. It may be challenging to experimentally detect this
transition, however, because individual tips are highly dy-
namic (8,16) and variable (14). In contrast to growth, as a
microtubule shortens, the tip will evolve toward a blunt struc-
ture because of the stability of subunits with two lateral
bonds within the microtubule lattice compared to those
with one or zero. The transition toward a blunt tip will result
in an increase in the net assembly rate, allowing the microtu-
bule to reestablish its GTP-cap and rescue as a result. Thus,
the feedback relationship of kon M kofrmT, and tip structure
can explain history-dependent catastrophe and rescue
through the gradual transition between microtubule tip states
biased toward net assembly or disassembly.

Simulating subunit dissociation closes the
thermodynamic loop

Because the local tip structure affected the association rate
constant, we were interested to assess whether it also affects
the dissociation rate constant. For a bimolecular reaction,
the standard Gibbs free energy of association (AG®) is
related to the ratio of the association and dissociation rate
constants by

AG’ = —kgT 1n(kon/koit), 5)

where k., is defined to have units of M~ ' s~ and kg to have
units of s~'. Due to the nature of our simulation, we
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separated the standard Gibbs free energy into two contribu-
tions: the intrinsic bond energy, AG% (a large negative
value assumed here to mainly be the hydrophobic interac-
tions between tubulin subunits in the specific case of the
microtubule), and an entropic penalty of binding, AG’g
(a positive value due to the loss of translational and rota-
tional freedom upon binding) (27,30,37,38), such that

AG" = AGY + AGS. (6)

Because we have already simulated the association of freely
diffusing subunits, we can obtain a complete thermody-
namic picture of af-tubulin subunits at the dynamic end
of microtubules by simulating their subsequent unbinding.
We defined the time to unbind as the amount of time that
passed between when a subunit is completely bound to
when it returns to a center-to-center separation distance
where the probability of rebinding is <0.01 (Ry = 11 nm,
see the Supporting Material for further discussion and
Movie S3).

As noted above (see Methods), Upong 1S not equivalent to
AG';, because for AG%; = Ubong, all interacting zones have
to be perfectly aligned (r; = O for all 7). This is rarely the
case, because one zone’s energy decreases at the cost of
another zone as the subunit rotates about its center. Instead,
we consider Upong to be an adjustable parameter that will set
the intrinsic bond energy, but is not necessarily equal to it.
To estimate AGOB from the simulation, we calculated the
time-averaged interaction energy while a subunit was within
Ry, according to

m n—1

)y _70U(fj) (11— 1)

AGg = — m ? (7)
> tali)

i=1

where m is the total number of unbinding events simulated
and n is the number of steps taken before unbinding for a
given unbinding event.

To check that our simulations agreed with theoretical
thermodynamic expectations, we estimated ko, pg ko, and
AG; for values of Ulong within the range estimated for
the longitudinal bond (see the Supporting Material). From
these estimates, we could then estimate AG® by Eq. 5 and
AGOS from Eq. 6. As shown in Fig. 6, both ko, pr and ko
are dependent on the value of the total bond energy (Uiong).
From this we found that Uy, = —20.4 kgT resulted in
AGOR,ng ~ —6.8 kg7, as estimated previously for the longi-
tudinal bond (11) (Fig. 6 C). The intrinsic bond energy
(AG®p) becomes more favorable with decreasing values of
Ulong, approaching its value but never equal to it. Our esti-
mated values for AG’ within this range of U,y are compa-
rable to previous estimates for the intrinsic energy of the
longitudinal bond (11,27). Interestingly, AG%one >AG’
for all values of Upgng (Fig. 6 C). This is due to the loss of
translational and rotational freedom introduced by the im-
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FIGURE 6 Extracting kinetics and thermodynamics from the model. The
estimated on-rate (A) and off-rate (B) constants are dependent on the total
bond energy (Ujong) used to define the longitudinal bond and are calculated
from the simulation. Trend line for k¢ is best-fit exponential. (C) The stan-
dard Gibbs free energy (AGolong, green), intrinsic bond strength (AGY,
magenta), and entropic penalty of binding (AG’s, blue) are shown as a func-
tion of the total bond energy for the longitudinal bond. From the results in
panel A and B, and an estimate of the average AGOB within the simulation,
AG(’lung and AG can be obtained. The total bond energy that best matched
previous estimates of the longitudinal bond free energy (AGOk,ng) was ex-
tracted from the resulting trend line. All trend lines are linear best fit, unless
otherwise noted.

plementation of Boltzmann’s law while the subunit is bound
(see the Supporting Material). Thus, the entropic penalty of
binding comes out naturally from the simulation. In the
range of values for Uy, used here, our estimate of the
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entropic penalty of binding, AG% = 10 kg7, is comparable
to previous estimates based on tubulin polymerization (27),
actin fragmentation (30), and experimentally observed fila-
ment lengths (39), and is independent of the total bond en-
ergy. Thus, all three components of Eq. 6 can be extracted
from the simulation for a given parameter set and, using
our estimate of Ujone = —20.4 kg7, are in agreement with
previous estimates for tubulin-tubulin interactions.

A summary of complete kinetic and thermodynamic re-
sults (estimated using Eqs. 5-7) for varying local conditions
is shown in Table 1 (see Table S1 in the Supporting Material
for F-actin). Interestingly, the estimated entropic penalty of
binding is nearly equal between the zero- and one-neighbor
conditions (~1 kgT difference, which can mostly be attrib-
uted to the approximately twofold steric penalty to the on-
rate, In(2) = 0.7 kgT). This indicates that once a subunit is
bound longitudinally it does not pay an additional entropic
penalty by forming the lateral bond (consistent with the
assumption in VanBuren et al. (11) that the entropic penalty
is absorbed entirely by the longitudinal bond). Thus, lateral
bonds have a significant stabilizing effect (~60-fold to
>300-fold longer subunit lifetime with one and two lateral
bonds, respectively) by contributing favorably to the free
energy of association (see Movie S3). Although we only
set an upper limit for the off-rate for subunits with two
lateral bonds (see the Supporting Material), this upper limit
is still fivefold lower than with one lateral bond, thus we
expect the addition of the second lateral bond to further
contribute favorably to the free energy.

The observed stabilizing effect of the lateral bond is depen-
dent upon the longitudinal bond being established first. Lateral
bonds, by themselves, are unfavorable because the entropic
penalty of binding is greater than the intrinsic bond strength
of the lateral bond, resulting in a very short-lived interaction
(see Table S2). The exceptionally short duration of lateral
bonds in the absence of a longitudinal bond (~0.1 us) explains
why they were not able to overcome the steric penalty imposed
on association by lateral neighbors (Fig. 4). The reduction in
free energy by one lateral bond (—3.6 kgT) is less than previ-
ously estimated for the lateral bond (11); however, it would
become more negative for decreasing total bond energies
(Uar)- Therefore, we do not consider this to be an estimate
of AG®,,, but rather a value determined by the total interaction

TABLE 1 Summary of simulation results with zero, one, and
two lateral bonds in addition to the longitudinal bond

Longitudinal
bond only

Longitudinal and
lateral bond

Model-estimated Lateral Lateral Lateral

parameters neighbors = 0 neighbors = 1 neighbors = 2
konpr (uM ™' s7! PFY) 12.7 7.4 1.7

kor 51 15 x 10° 250 <50
AG®s (kgT) -17.7 —22.6 —285
AG® (kgT) —6.7 -10.3 <—10.4
AG s (kgT) +11.0 +12.3 <+18.0
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energy used in the simulation, i.e., U, could be adjusted
downward to obtain previously estimated values of AGolat.
Even so, the total bond energy would still be on the order of
the entropic penalty. Thus, we conclude that subunits adding
to the microtubule lattice require the stronger longitudinal
bond to incorporate into the lattice.

The necessity of the longitudinal bond is in qualitative
agreement with the suggestion that cracks between protofi-
laments may be present within the lattice due to a delay in
lateral bond formation after a subunit binds (24). However,
we argue that quantitatively they would be extremely short-
lived, because we find lateral bonds form rapidly after the
longitudinal bond (7.0 £ 0.7 ns for one and 9.0 * 0.8 ns
for two lateral bonds, mean = SE) in our model. The neces-
sity of the longitudinal bond further suggests that additions
with either a single or two lateral bonds but no longitudinal
bond, resulting in a lattice defect, would be very rare due to
their extremely short duration. Thus, the strength difference
between the longitudinal and lateral bonds may be an evolu-
tionary advantage to reduce the frequency of lattice defects
and resulting structural weakness.

A model to investigate the actions of microtubule-
associated proteins and drugs

To our knowledge, the model described here is the first
to bridge the gap between molecular dynamics models
(18-22) and dimer-level stochastic microtubule models (9—
12,23,24). Thus, the Brownian dynamics modeling approach
we employed here provides a method to analyze the effects of
microtubule-associated proteins (MAPs) and microtubule-
directed drugs for which the relative structure and interaction
with the microtubule lattice is known. The simplest cases are
interactions that modify one of the parameters included in our
model, such as longitudinal or lateral bond energy or bond
stiffness. For example, the majority of studies have found
that paclitaxel decreases the rigidity of microtubules (40—
44), except one that saw the opposite effect (45). Because of
its binding position close to the M-loop of the §-monomer,
it has been suggested that paclitaxel may function to increase
the strength of the lateral bond to overcome nucleotide-based
structural changes of the tubulin dimer (26,46). Further, drug
binding to the taxane-pocket of (-tubulin structures the
M-loop closer to that of the bound state before incorporation
into the lattice (47). Structuring of the M-loop implies an
increase in stiffness in the presence of paclitaxel, which agrees
with molecular dynamics simulations that found the M-loop
shows reduced root-mean-squared fluctuations in stable forms
of tubulin (18,19). In addition to locally altering the lateral
interactions, paclitaxel has long-range allosteric effects on
the residues that establish the longitudinal bond interface
(T1-T5 and H11 loops) in B-tubulin, increasing the root-
mean-squared fluctuations (18).

Though it may not be clear which effect (lateral or longi-
tudinal) of paclitaxel is more important for stabilization, it
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can be assumed that paclitaxel modifies the intrinsic rigidity
of regions within the tubulin dimer involved in establishing
interdimer interactions. Our model predicts that increased
bond stiffness decreases the on-rate constant and increases
the off-rate, meaning that softer bonds lead to a more favor-
able interaction (more negative AGolong; see Fig. S4 and
Fig. S5). Despite influencing the on-rate constant, the
bond stiffness had no effect on the steric penalties imposed
by laterally neighboring protofilaments (see Fig. S6). Inter-
estingly, the intrinsic bond strength estimated from the
simulation (AG’p) is not sensitive to the bond stiffness.
Therefore, the change in AGolong is due to the entropic pen-
alty of binding (AG) (see Fig. S4). Because softer bonds
do not constrain the translational and rotational freedom
to the extent that stiffer bonds do, the entropic penalty of
binding is reduced for softer longitudinal bonds.

These results indicate that the stabilizing modifications of
paclitaxel are likely through the longitudinal rather than the
lateral bond, because structuring of the M-loop itself will be
unfavorable due to an increased entropic penalty. To combat
this, however, rearrangement of the M-loop favorably posi-
tions several additional residues to form lateral contacts
with the neighboring (-tubulin (47). These counteracting
effects of paclitaxel could potentially explain experimental
results suggesting that paclitaxel has no net effect on the
lateral interaction between protofilaments when deformed
by osmotic stress (48). Our model predicts that softening
of the longitudinal bond should increase the association
rate constant in the presence of paclitaxel (see Fig. S4 A),
and therefore should increase the polymerization rate.
While this increase has not been observed experimentally,
it may be difficult to detect because paclitaxel increases
the amount of tubulin in polymer form at the expense of
free tubulin in solution (49,50). A drop in the free concen-
tration would counteract any increase of the association
rate constant such that the on-rate (kon* = konmr [Tub])
might change only weakly in the presence of paclitaxel.

Our Brownian dynamics simulations emphasize the inef-
ficiency of subunit addition, despite the presence of a favor-
able interaction potential (17). Of those that reach R =
10 nm, only 0.5% ultimately bind (Fig. 3 A). Additionally,
although a high percentage of free subunits get close to
binding (N = 1), the vast majority ultimately diffuse away
from the microtubule lattice before forming a more specific
bond and incorporating into the lattice (~80%, Fig. 3 A). By
increasing the probability that these nearly-bound units ulti-
mately bind, a MAP or microtubule-targeting drug could
significantly affect the rate at which subunits incorporate
into the lattice (konpp). In fact, it was suggested that
XMAP215 functions in this manner to increase the on-rate
constant, by stabilizing an intermediate, diffusion-limited
collision complex (6). Any molecule that binds at the
microtubule end will impose an unfavorable steric penalty,
similar to that which we have shown here for one- and
two-neighbor protofilaments. Thus, for a MAP to function
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as proposed for XMAP215, an additional favorable effect
will have to overcome this steric effect. Additionally, the
free subunit would have to associate very favorably with
the MAP, because a relatively weak bond, such as the inter-
dimer lateral bond, does not affect the on-rate constant
(Fig. 4). Incorporating an interaction similar to that
described for XMAP215 into our model could give esti-
mates for the minimum bond strength necessary to increase
the on-rate. Alternatively, if a MAP strengthens (makes
more negative) the intrinsic bond free energy or decreases
the longitudinal bond rigidity, according to our model it
then would be predicted to increase the on-rate constant
(Fig. 6, and see Fig. S4 and Fig. S5).

CONCLUSIONS

To our knowledge, we have developed the most detailed
kinetic and thermodynamic computational model to-date
for the association and dissociation of individual tubulin
subunits at the microtubule plus-end, and find that it is
consistent with both experimental observations and theoret-
ical predictions for tubulin-tubulin interactions. This model
demonstrates that the on-rates for individual strands in
multistranded polymers are independent of the global posi-
tion, but that local structure imposes a steric penalty on as-
sociation. Thus, the microscopic on-rate constant will be an
average of the individual nanoscale protofilament on-rate
constants and will vary in time as subunits are gained and
lost at the dynamic end. These findings are robust with re-
gard to molecular structure and the precise shape of inter-
particle potential. Therefore, we believe similar effects
will arise not only in other linear polymers but in any system
where local steric constraints are placed on binding. The
simulation results suggest a feedback mechanism that slows
subunit net addition as the microtubule tip tapers, which
would promote history-dependent catastrophe and the possi-
bility of more efficient search-and-capture by microtubule
plus-ends in vivo (51). Additionally, the approach that we
employ here provides a model with which to theoretically
investigate, at a subnanometer length scale and pico-
second-to-millisecond timescale, the actions of microtu-
bule-associated proteins and microtubule-targeting drugs
on tubulin kinetics and thermodynamics.
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Supporting Methods

Simulation procedure

For all simulations we implemented the following procedure:

1. Initialize microtubule structure, as well as the starting position and orientation of the
freely diffusing unit.

2. Translate and rotate the free unit.

3. Implement Metropolis Monte Carlo criterion based on the current and projected energetic
states.

4. Check ending criteria for the given simulation (binding state or separation). If satisfied,
continue to step 5 otherwise return to step 2.

5. Calculate the rate.

At each time step, subunits experienced a translational-rotational displacement described by
v=(Ax A, Axy ' 01, 9,.05) 5 (ST)

where Ax;’, Ax,’, and Ax;” are translational displacements of the centroid position in the subunit

body frame and ¢,, ¢, and ¢, are rotations of the body frame axes about the lab frame axes.

Each translational displacement was sampled from a Gaussian distribution that obeys

((Axk ')2> = 2DAt (S2)
where D is the translational diffusion coefficient parallel ( D,, for k=1) or perpendicular ( D, , for
k=2,3) to the long axis of an ellipsoid (1) and At is the current time step. Similar distributions
were used to generate rotational displacements with D replaced by the respective rotational
diffusion coefficient for axial (D,, for k=1) or non-axial rotation (D, for k=2,3). Centroid

displacements in the body frame were translated to the lab frame as described by (2). At each
time point

A')Cl A'xl|
Ax, |=M@)| Ax,' |, (S3)
A'XS A'x3‘

where M(t j) is a three-dimensional rotation matrix that defines the rotation of the body frame
axes about each individual axis of the lab frame at the current time step. The matrix M(tj) 18

updated after each accepted step using the random rotational displacements according to
M(z,,)=M() R(¢,.¢,,0,)=M(;)'R;'R, "R, (54)

where R, R, , and R, are the respective rotation matrices about each lab frame axis, for example

1 0 0
R, =| 0 cos(¢,) -sin(¢,) |. (S5)

0 sin(¢) cos(¢,)

To minimize the number of steps when a free unit was not near the microtubule lattice,
we used a variable time step that was based on the separation distance between paired binding
zones. At each time point, the time step was calculated from
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such that the root-mean-squared displacement for a given time step was less than the distance
between interacting zones. In Eq. S6 above, d is defined as the minimum separation distance
between corresponding interaction zones (d = min[ri(%), r2(%), r3(¢)]) unless d < rg, then d = rg,
such that the min(A7) > 1 ps. We used the diffusion coefficient along the long axis of the super-
ellipsoid (D)) in Eq. S6, as this was the larger of the two translational diffusion coefficients in the
body frame. An adjustable constant, 4, is used to scale the size and number of steps taken during
the simulation. When subunits were far away from the lattice (> 100 nm) A =5, otherwise 1 =
10 for all simulations. Using these values of 1 ensured that energy changes of bound zones
were relatively small (average [AU| < 1.0 kgT) while still minimizing simulation time.

Before advancing to the next time point, attempted steps were either allowed or
disallowed through implementation of Metropolis Monte Carlo (3), where Py, = min[1,exp(-
AU/ksT)]. Here favorable steps (AU < 0) are always allowed and unfavorable steps (AU > 0) are
accepted according to Boltzmann’s law. When a freely diffusing subunit spatially overlaps the
microtubule lattice, we assumed that AU = oo (such that Py, = 0) to implement hard sphere
rejection criteria. In the case of a rejected step, time is advanced by A¢ but the position and
orientation of the diffusing unit does not change from the previous time point. While the
implementation of a variable time step and sampling moves from a Gaussian random variable
were modifications to previous versions of the Metropolis algorithm for protein dynamics (4, 5),
we found that this algorithm converged to theoretical expectation both in the presence and
absence of an external force (Fig. S1; see also Supporting Results and Discussion) while
enabling faster simulation.

Estimating on-rate constants

To isolate potential effects on both diffusion-limited arrivals to the microtubule lattice
and binding, we split simulations into two parts, far- and near-field. Rates for each simulation
scale were calculated according to (6) as

= kD (Rstart )/3
1- (1 - ﬁ)kD(Rstan ) / kD (Rend)
where kp(R) is the diffusion-limited rate of arrival to a center-to-center distance of R defined by

(S7)

ky(R)=47D, R (S8)
Here, D,y, is the average diffusion coefficient in three body axes of the ellipsoid from
D,,=2D, +D,)/3 (S9)

In far-field simulations (diffusion-limited arrivals), freely diffusing subunits are initiated by
placement on a spherical surface of radius Rt = 400 nm and with a random orientation.
Subunits are allowed to diffuse until reaching either Reng = 3200 nm (i.e. they diffused far away
from the binding site and were highly unlikely to bind) or a center-to-center distance of 10 nm
from the subunit of interest within the microtubule lattice (i.e. they diffused close to the binding
site and were potentially capable of binding). Here, £ in Eq. S7 is the fraction of diffusing units
that reach 10 nm center-to-center before reaching Reng. Therefore, £ is the diffusion-limited
arrival rate to a center-to-center distance of 10 nm (kp(R = 10 nm)). The centroid positions of
units that reach 10 nm are subsequently used as the starting positions to initiate the
corresponding near-field simulations. In the near-field simulations Repg = 400 nm (value of Ryt
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for far-field) and kp(Rsiwrt) in Eq. S7 is replaced by the estimated value of kp(R = 10 nm) from the
corresponding far-field simulations. For near-field simulations, £ is the fraction of subunits that
completely bind, or meet the criteria that all individual zones (either longitudinal, lateral, or
both) are within the binding radius (r; <= rp for all values of i). Eq. S7 then gives the estimated
association rate constant (kon pr) for binding to the protofilament of interest. For each binding
site condition, we ran a total of 500,000 far-field and 200,000 near-field simulations, which
required about 50 CPU hours/processor.

Defining a distance criterion for unbinding events

Defining when a subunit is unbound is not as straightforward as defining when it is
bound. As seen in Fig. S3A, freely diffusing subunits break all zone contacts (N =0, r; > rp for
all 1) multiple times before finally diffusing away from the microtubule lattice. This is because
when a free unit first breaks all contacts, it is still highly correlated with its bound orientation,
making the probability of rebinding very high. It is difficult to reason that this is a true
unbinding event because the majority will immediately rebind (Fig. S3). Thus, to more
appropriately define an unbinding event we used a separation distance criterion, similar to (7),
where the unbinding radius (Ry) is greater than the binding radius (rg) (Note: we can not directly
compare rg and Ry, as rg is an edge-to-edge distance and Ry is center-to-center). To determine
this distance, we simulated completely bound subunits until they reached varying center-to-
center separation distances (R) from their binding partner. The resulting centroid positions and
subunit orientations were then used to initiate subsequent binding simulations to estimate the
probability of rebinding. We define Ry as the distance where a free unit has a low probability (p
<0.01) of rebinding before diffusing away, Ry = 11 nm center-to-center in this case (Fig. S3B).
Using our distance criterion for unbinding, the distribution of unbinding times fits well with the
expected single exponential (p = 0.82, Kolmogorov-Smirnov test) for a first-order rate (Fig.
S3C). Therefore, we reason that this distance criterion is a reasonable way to practically define
when a freely diffusing subunit is unbound within the simulation.

We did not simulate complete unbinding events in the very stable condition where a
subunit has a longitudinal bond and two lateral bonds, due to the expected duration of the
interaction (from (8), korr = 0.05 5™ for konpr=4 pM™'s™"). Alternatively, we set a limit for the
unbinding time, 7z, and looked at the number of successful unbinding events in that amount of
time. The number of successes will obey a binomial distribution, with probability of success p =
k/n where k is the number of successes and # is the total number of simulations. Since the
unbinding time is exponentially distributed (Fig. S3C), the probability that an event occurs in
T<=risp= 1-¢". From this we obtain &z = 1-¢* and thus can estimate the rate, A, from the
number of successes and the cut-off time. Setting a limit of 7 =1ms, we found that zero subunits
successfully unbound for conditions with one longitudinal and two lateral bonds for both tubulin
and actin. Therefore we set an upper limit on the off-rate by finding the maximum value of 4,
such that the probability of observing zero success in # trials for the binomial B(n, p = 1-¢™) was
greater than 0.05.

Simulation of microtubule net assembly

Net assembly of individual microtubules was simulated according to (8) at 6.5 uM free
tubulin concentration for three penalty conditions: without penalties, two-neighbor penalty only
(9), and model estimated penalties for one and two lateral neighbors. Simulations in each
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condition were run for a total of 60 s of real-time and the resulting tip structures from the last 30s
were examined at 1s intervals. A total of 16 runs were performed, resulting in 496 structures per
condition. The zero-neighbor on-rate constant (konpr) Was scaled in simulations with penalties
such that the average microtubule on-rate constant (konmt) Was equal for all simulations.
Additionally, we increased the strength of the longitudinal bond in simulations with penalties
(more negative AGolong; -0.4 kgT or -1.0 kgT for simulations with only two-neighbor and with
both penalties, respectively) such that the net assembly rate was equal in each condition.
Resulting structures from each simulation condition were ordered by the standard deviation of
protofilament lengths, then the lower and upper 10% were considered to be blunt and tapered for
that condition, respectively. This parsing of the tip structures was performed for each condition
individually in order to compare the fraction of protofilaments with zero, one, or two lateral
neighbors in the blunt and tapered tips across simulation conditions.

Supporting Results and Discussion

Comparing the modified Metropolis Monte Carlo to previous methods

In the presence of an external force, our simulation approach is based on the Metropolis
Monte Carlo (3) (MMC) method for protein dynamics. The MMC method is a solution for the
diffusive Fokker-Plank equation

2
WD) p2 2D 19 ey pan) (310)
ot 0x y 0x
when molecule steps are sampled from a uniform distribution [-7,7], where 7 is small and held
constant throughout the simulation (4, 5). We implemented the following two modifications,
which serve to improve algorithm efficiency without a substantial cost in accuracy (documented
below): 1) steps were sampled from a Gaussian distribution instead of a uniform distribution, and
2), the time step varies throughout the simulation such that time steps are larger when the
diffusing tubulin subunit is far from the binding site on the microtubule. Since our algorithm has
been modified from the original MMC, we simulated a number of asymptotic cases that have
analytical solutions to Eq. S10 to confirm that our modified MMC yields the correct solutions (4,
5).

Assuming a delta function initial condition p(x,t = 0) = d(x-xo) at xo = 0, solutions to Eq.
S10 are well defined in both the presence and absence of an external force, and in each case
converge to a Gaussian distribution

1 (x—u)2
p(x,t)= - . S11
(e \27ro? exp[ 207 ( )

In the absence of force, 1 = 0 and ¢” = 2D¢, where D is the diffusion coefficient. In the presence
of a constant external force, F, the force causes the molecule to move with constant velocity v =
F/y, where y is the drag coefficient. This drift velocity is superimposed on the diffusive motion
such that only the mean is affected and is given by x = v¢ = (F/y)t. To test whether our
simulation obeyed Eq. S10, we used our modified MMC to simulate molecular diffusion in one
dimension with D = D,,, (from Eq. S9) in the absence and presence of a constant external force
F =2 pN (Figure S1A and B). As shown in Fig. SIA and B, our simulation results fit well with
theoretical expectation (from Eq. S11) at multiple time scales and were comparable to those
using previous MMC methods.
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Since we assume the interaction potential between binding partners is harmonic, we
further sought to examine whether our modified MMC algorithm agreed with expectation for
diffusion in a harmonic potential, U(x) = Yskx* where k is the spring constant. Assuming a delta
function initial condition, as above, molecular motion obeys an Ornstein-Uhlenbeck process
(10), in which the analytical solution to Eq. S10 is

( k ) [ ( k )(x—xo exp[~(k /)t])’
p(x,t)= exp|—
27k, T(1-exp[-(2k /y)t]) 2kyT ) (1-exp[—(2k/y)t])

As shown in Fig. S1B and C our modified MMC algorithm agrees with Eq. S12 in both cases
where xo = 0 and xo = 0.2 nm using k = kiongi. Comparing Eq. S12 to Eq. S11 we can see that in a
harmonic potential the resulting distribution is also Gaussian, where the mean and variance are
both a function of time

. (S12)

u(t) = x, exp[—(k / y)t] (S13)
Gz(l‘)=(kZT)(l—eXp[—(2k/j/)t]) (S14)
As t — o, Eq. S12 is equivalent to Boltzmann’s law (p ~e™""*") for a harmonic with U(x) =

sk

(S15)

1/2
k.2
exp|- x|
27k, T 2k, T

At steady-state, u(t — )=0and o’ (t — ») = k,T /k , which is consistent with equipartition of

p(x,t—>°°)=(

energy. The mean and variance of particle position converge to steady-state with time constant t
= v/k and 1t = y/(2k) for the mean and variance, respectively. By estimating the mean and
variance of molecule positions as a function of time for the case where xo = 0.2 nm, we found
that our modified MMC algorithm approached steady-state on the correct time scale (Fig. S1D
and E). As our algorithm agrees with theoretical expectation in various conditions of diffusion in
the absence and presence of force and in steady-state and in unsteady-state, we conclude that it is
a good approximation to the equations of diffusive motion.

While our results do not differ from previous methods, our modified MMC approach has
several advantages over the previous methods. First, in sampling from a uniform distribution,
multiple moves are required before the distribution converges to a Gaussian (via the central limit
theorem), compared to our approach where moves for every time step are Gaussian distributed.
Therefore, at short time scales (i.e. after few steps) our modified MMC should more accurately
predict the expected molecule distribution. Other Brownian dynamics methods have sampled
moves from a Gaussian, but assume that the force is constant for each step and therefore is
implemented as a drift term (11). Under the simulation conditions used here, we found that
results using this method did not differ from our modified MMC (< 5% difference). The
assumption that force is constant, however, would break down for steep interaction potentials
(i.e. stiff bonds), possibly resulting in quicker transitions to steady-state (Eq. S13 and S14) or
quicker escape time from the potential well (unbinding). Additionally, when simulating few
diffusing molecules of interest, our algorithm allows the mean squared step size to be scaled to
the relative separation between molecules (Eq. S6), so that computational time is not wasted
taking small steps ([-7,7]) while molecules are far away from their binding partner.
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Influence of hydrodynamic interactions on stereospecific binding in linear polymers

As two Brownian particles approach each other or as a particle approaches a wall, the
solvent between them must be forced out, resulting in an increased drag force upon approach
(12). In the absence of inter-particle interaction potential, these hydrodynamic interactions
reduce the diffusion-limited rate of encounters by ~30% (13, 14). In the presence of an
interaction potential, hydrodynamic interactions induce correlation between the movements of
nearby molecules, increasing the translational diffusion coefficient while reducing rotational
diffusion (11). Thus, it seems that it might be important to include these interactions in any
kinetic simulation. In the model described here, freely diffusing subunits bind to sites at the end
of the microtubule lattice, which can be thought of as immobile compared to the freely diffusing
subunit. Hydrodynamic interactions between the free subunit and the lattice, therefore, will be
similar to a particle approaching a wall as described by (12). In this case, hydrodynamic
interactions result in a distance dependent effect on the fluid viscosity, #. Therefore, we sought
to examine the expected effects of fluid viscosity on the resulting kinetic rate constants.

When considering stereospecific-binding interactions, one must consider both the rate at
which molecules collide as well as whether they are properly aligned upon collision. If not
initially aligned properly, binding partners can explore additional configurations through
rotational diffusion during a single encounter, thereby promoting binding (6). Thus, the
efficiency of binding will be dependent on the duration of the encounter and the extent of
rotational diffusion during a single encounter

<A92>1/2 2D1.)"
- t'E
2 2
62
6D,

where ¢ is the binding efficiency, J is the encounter distance, and D, and D; are the rotational

and translational diffusion coefficients, respectively. Using our model parameters in Eqgs. S16-
S17, assuming D; = D, and 6 = 2rg, we estimate ¢ = 0.025, which is nearly identical to that

resulting for N =1 (purely diffusive motion) in our simulation (Fig. 3A). Predicting how the
binding efficiency will scale with viscosity, 7, we see

2D 12 D 1/2

9= (S16)

(S17)

Tg

¢ 27 D

t

: 1/2
%] (S18)

n

Increased viscosity results in a longer encounter but also slows rotational diffusion, and therefore
the binding efficiency does not depend upon the viscosity. Assuming the association rate
constant is the diffusion-limited collision rate (Smoluchowski rate from Eq. S8) scaled by the
binding efficiency

k,, = ¢k, (const.)l (S19)
n

Thus, the net-effect of hydrodynamic interactions on the rate constant will be equivalent to
reduction in diffusion-limited collisions due to distance dependent changes in the viscosity. As
noted above, this is predicted to be ~30% reduction for two-spheres (13, 14). Therefore, we
predict that incorporating hydrodynamic interactions will reduce the estimated values for the on-
rate constant, however, will not influence the binding efficiency of individual subunits. As the
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effects of global and local structures at the end of the microtubule are due to the binding
efficiency (Fig. 3 and 4) and not due to the translational diffusional approach to a position close
to the binding site (i.e. 10 nm in the present study), we have ignored explicit inclusion of
hydrodynamic interactions in the results presented here. Instead, the simulation results can be
corrected by ~30% to provide more accurate estimates of association rate constants.

Establishing upper and lower bounds for the total longitudinal bond energy

Due to the way that we have modeled bond zone interactions, negative displacements
away from the potential minimum (x = 0), which result in overlap of super-ellipsoid surfaces, are
not allowed. Therefore, we can think of each bound zone as a thermally driven spring where
only positive displacements are allowed. The intrinsic bond energy will be related to the total
longitudinal bond energy (potential energy well-depth) by

U,,.=AGy-3U.(u) (S20)

where Ui(u) is the individual spring potential at the mean position, u, and AG’g is the intrinsic
bond strength of the longitudinal bond. If we consider the standard free energy of the
longitudinal bond, AGolong, as the difference between the favorable AG’s and unfavorable
entropic penalty of binding, AGs, then we can substitute for AG% in Eq. S20 to get

long

Unong = AGiop = AGg = 3U, (1) (S21)
The mean position of the constrained, thermally driven spring is
u= f:X'f(X)-dx __2 f:x-e_’éozdx , (S22)

\270°

where the factor of two in the numerator is used to scale the area under the curve to unity.
Integration of Eq. S22 results in a mean position of

u _20 (S23)

2w

If we assume that spring displacements have three degrees of freedom, then from equipartition of
energy we get o> = 3kgT) 7kiong,i- Inserting this into Eq. S23, results in a mean position of

12
M=( 6k, T ) 24)

7k

long,i

and the energy at this position is

- (S25)

long.i

Ul(Au) = lklongi ( 6kBT ] = 3kBT *
2 " 1
Therefore, we assume an unfavorable contribution to Upeng 0f ~1 kg7 per interaction zone.
Estimates of AG’s range from about 10-12 kg7 (15-17), therefore using AGolong =-6.8 kgT from
(8) we predict that Uiong = -21.8-19.8 k7. As shown in Fig. 6C, we find that Ujong = -20.4 kgT

results in AG®jong = -6.8 kpT.

Sensitivity of model predictions to the interaction potential

To explore whether or not our results were specific to the specific shape of the harmonic
potential of interaction, we simulated subunit binding and unbinding using a Lennard-Jones (LJ)
interaction potential where the interaction energy for an individual zone was given by
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U,(t)=-U

long,i

r#] - 2(”#] for ri(#) >0 (526)

rm+ri(tj) rm+ri(tj)

Here ry, is the distance at which U; = Ulgngjand rmy = 285, where o is a shape parameter that
defines the slope of the function for a given value of Ulgng;, similar to the harmonic spring
constant. We added r, to the denominator since r; is the distance between two points on the
surface of the subunits. This ensured that U; = Ulongi When r; = 0. The repulsive portion of the
LJ potential for r; < r, was maintained by hard-sphere rejection. For simulations using a LJ
potential, we defined g as the point where the slope, or equivalently the inter-particle force, was
at its maximum value.

As shown in Fig. S5, the predicted kinetic and thermodynamic trends for LJ are similar to
those predicted using a harmonic potential (Fig. 6 and S4). Stronger bonds (more negative Ulgng)
resulted in higher ko pr, lower ko, and thus a more favorable interaction (more negative AGolong).
The same trend was observed for softer bonds (more positive shape parameter, ¢). Unlike the
harmonic potential, we found the estimated entropic penalty of binding (AG"s) was sensitive to
the total bond energy of the LJ. This is because for constant o, the slope of the LJ potential
becomes steeper for more negative values of Ulene. In contrast, the slope of the harmonic
potential is only sensitive to the bond stiffness, kiong. Thus, more negative values of Ujgng in the
LJ potential also effectively stiffen the bond. When considering this, the trend in AG"s with
regards to bond stiffness is equivalent to that observed for a harmonic potential. In the absence
of lateral neighbors, we found that using Ujong = -30 kg7 and ¢ = 0.6 nm resulted in AGong = -6.8
ksT, and therefore used these values in all subsequent simulations. As shown in Fig. S6, the
estimated on-rate constant was slightly lower using a LJ potential for each local condition,
however, the steric penalties imposed by local structure were the same as estimated for a
harmonic.

In addition to the shape of the potential, it is possible that the parameters used to define
the harmonic potential may reduce the steric penalty imposed by laterally adjacent
protofilaments. In particular, increasing the bond stiffness would increase the inter-particle force
and may help to align subunits in the one and two neighbor case. Alternatively, softer bonds
may be able to interact for a longer period of time, while the subunit aligns with the neighboring
protofilaments. Therefore, we estimated the penalties for varying longitudinal bond stiffness.
While the bond stiffness affected both the estimated on-rate constant and the off-rate constant
(Fig. S4), there was no significant effect on the penalties imposed by either one or two lateral
neighbors (Fig. S6C and D). These results indicate that the absolute value of the model
estimated values depend upon the shape of the chosen potential as well as the parameters that
describe it, however, the kinetic rate penalties as well as the kinetic and thermodynamic trends
are robust and relatively insensitive to the particular mathematical form of the attractive
potential.
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Supporting Movie Descriptions

Movie S1. Subunit binding with zero neighboring protofilaments. Individual runs of
subunits that reach R = 10 nm separation distance are shown. Percentages indicate the percent of
subunits reaching R = 10 nm that either diffuse away from the lattice (left) or eventually bind

(right).

Movie S2. Subunit binding with two neighboring protofilaments. Individual runs of
subunits that reach R = 10 nm separation distance are shown. Percentages indicate the percent of
subunits reaching R = 10 nm that either diffuse away from the lattice (left) or eventually bind

(right).

Movie S3. Bound subunit lifetimes. Bound subunits with zero (left) and one (right) lateral
bond are shown. Movie continues until the first subunit leaves the microtubule lattice.
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A 1000 3
- ]
=100 3
c 3
S ]
a ]
2 10 ;
a 3
©
8
a3
i
0.1 T T T
-0.04 -0.02 0 0.02 0.04
Displacement (um)
C 10 3
> ]
c 3
S ]
a
2 13
= 3
(]
8
g 01 3
0.01 —& r T 1
-0.4 -0.2 0 0.2 0.4

Displacement (nm)

Mean Disp. (nm)

0 0.5 1
Time (ns)

1.5 2

B 1000

Probability Density

O

Probability Density

MSD (nm?)

Page | 12

100 3

—_
o
"

-
.

0.1
-0.02

0 0.02 0.04

Displacement (um)

100

-
o
sl

—_
sl

0.2

0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

0.8 1

04 06
Time (ns)

0.2

Fig. S1. Comparison of our modified MMC algorithm (circles) to previous MMC methods (squares) as
well as theoretical expectation (solid lines). A-B) Resulting probability distributions in the absence (A) and
presence (B) of a constant external force at 10 ns (blue), 100 ns (red) and 1 ps (black). In each runx,= 0.
C-D) Probability distributions for diffusion in a harmonic potential where x, = 0 (C) or x, = 0.2 nm (D).
Distributions were sampled after 10 ps (blue), 100 ps (red), and 1 ns (black). E-F) Starting from x, = 0.2
nm, the mean displacement (from x = 0, E) and the mean-squared displacement (F) were calculated at
regular intervals in order to estimate the transition to the predicted steady-state distribution. Theoretical
expectation (solid lines) was calculated from Eq. S11 (A and B), Eq. S12 (C and D), Eq. S13 (E), or Eq.

S14 (F).
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Figure S2
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Fig. S2. A) Probabilities of reaching N = 1, 2, or 3 zones within the binding
radius for binding simulations where the centroid starting position was randomly
selected from points along a sphere with radius R =10 nm, centered at the
centroid of the subunit of interest in the microtubule lattice. Randomization
eliminated any potential spatial bias in the positions of diffusive arrivals.
Similar to the trend seen for non-randomized starting positions, free subunits
bind more efficiently to lagging protofilaments compared to leading. B) The
probability of escaping (diffusing away before binding, blue line) and the
probability of return (to R = 10 nm separation, red line) as a function of center-
to-center separation distance. The probability of escape rapidly increases with
separation distance within the range equal to the diameter of the microtubule
(~25 nm), suggesting that the longer protofilaments could enhance binding to
lagging protofilaments by inhibiting escape.
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Figure S3
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Fig. S3. A) Cumulative density function of the number of times that bound subunits reach the N = 0 (all zones
separated by greater than the binding radius) state prior to diffusing to a center-to-center distance of R = 11 nm.
The line is best fit of a geometric distribution (Kolmogorov-Smirnov test, p > 0.05), with mean = 17.7. The
fit of the a geometric distribution indicates that a subunit has an escape probability of 0.06 (P = 1/u) or 94%
chance of rebinding each occurrence of N = 0. B) The probability that a subunit completely rebinds (N = 3)
before diffusing away to a 400 nm center-to center distance as a function of the subunit separation distance.
Because diffusing subunits maintain rotational correlation between N = 0 and the unbinding distance, units are
more likely to rebind compared to a random orientation. The probability decreases the further a subunit is
allowed to separate from the protofilament of interest. We defined the unbinding distance by the separation
where the probability of rebinding decayed to < 0.01, which was around 11 nm. As the minimum attainable
center-to-center distance of bound units is 8 nm, units diffuse ~3 nm before being considered unbound. C)
Cumulative density function of the times from the point of first complete binding (N =3) to return to a
separation of R =11 nm. Using this distance criterion for unbinding, the unbinding times fit with the expected
exponential distribution, fit line, (Kolmogorov-Smirnov test, p = 0.82) for a first-order rate.
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Figure S4
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Fig. S4. Kinetic and thermodynamic estimates for longitudinal bonds of
varying stiffness are shown. Estimated on-rate constant (A) and off-rate
(B) as a function of the stiffness of the longitudinal bond. All
simulations are longitudinal bond only with constant total bond energy
(Uygng = -20.4 kpT). C) The standard free energy (AG',,,,, green),
intrinsic bond strength (AG,, magenta) and entropic penalty of binding
(AGY, blue) are shown as a function of the longitudinal bond stiffness.
All trend lines are linear best fit.
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Figure S5
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Fig. S5. Kinetic and thermodynamic trends with varying UIOng (left) and o (right) used to
define the Lennard-Jones potential. For each condition 100,000 near-field binding runs
and 10 unbinding runs were performed. A-D) For each value of Uy, 6= 0.4 nm (blue),
0.6 nm (red), or 0.8 nm (black). E-H) For each value of o, U,,,= -22 kg7 (blue), -26 kT
(red), or -30 kT (black). We found that using U, = -30 kz7"and ¢ = 0.6 nm resulted in
AG',, = -6.8 kT, therefore these values were used to estimated k,, p and the on-rate
penalties for each local condition. All trend lines are linear best fit, except for ki which is
exponential.
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Figure S6
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Fig. S6. A) Estimated on-rate constants in each local condition are shown when modeling
the interaction potential as a harmonic or Lennard-Jones potential (LJ). Parameters for LJ
potential were fit such that AG®,, was equal to that using the harmonic. B) On-rate
penalties for different potential shapes in each local condition. One-neighbor (C) and two-
neighbor (D) on-rate penalties for a range of longitudinal bond stiffness values (harmonic
spring constant). While the on-rate estimates are sensitive to the bond stiffness (Fig. 7A),
the on-rate penalties are independent of the bond stiffness. All error bars are 95%
confidence interval.
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Supporting Tables

Table S1 — Model estimated kinetics and thermodynamics for F-actin.

Leading PF Lagging PF Lagging PF
0 LN %2 LN 1LN
k,, pp (UM 's"IPFT) 13.7 10.7 9.4
ko (s71) 35x 103 320 <42
AG (kgT) -16.1 -21.5 -28.5
AG° (kgT) -6.0 -10.4 <-123
AG"s (kgT) +10.1 +11.1 <+16.2

Table S2 — Summary of simulation results with lateral bond only.

Lateral Bond Only, no Longitudinal Bond

1 Lateral Neighbor 2 Lateral Neighbors
ko pr (UM 's'PE) 0.15 0.10
kg (s 107 7 x 10°
AG; (kg -0.44 -3.4
AG? (kgT) +4.4 +4.3

AGY (kgT) +4.8 +7.7
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