Supplemental Text S1: Analytical derivations and
numerical analysis of steady state stability

1 Modeling cell-to-cell variability

Cell-to-cell variability simulations were performed by drawing the kinase concentrations (Xyo,;) and the
phosphatase concentrations (Pio;) from log-normal distributions (denoted LogN) with a mean p and a
variance o2, i.e.,

Xtot,i ™~ LOgN(MXtot.i’ Ug(tom)a Piot,i ~ LOgN(NPtot,w O—%tom)' (1)

We generally assumed the mean concentrations to be ux,,,: = px,,.,i = 1 and set the coefficient of
variation (CV) to a value that represents typical intracellular protein expression noise (CV = o/ = 0.35).
Dose-response simulations were performed for each set of sampled protein concentrations using analytical
equations or numerically (as indicated in the figure captions).

For certain cases, the signaling variability could calculated analytically: In a weakly stimulated signaling
pathway, the activation resistances K;, and thus the total kinase and phosphatase concentrations enter the
signaling output in a multiplicative way (Egs. 5 and 6, main text).
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The magnitude of cell-to-cell variability in the pathway output X5 can be calculated by applying the
standard laws for transforming random variables. The ratio of two log-normally distributed species is again
a log-normal distribution with a variance that equals the sum of the individual variances, i.e.,
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Considering the denominator of Eq. 2 one derives the following expression for the distribution of X5
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The total variance in the signaling output (og(s) therefore equals the sum over all signaling protein
concentration variances (ag(m . for kinases and a%m . for phosphatases) as mentioned in Eq. 7 (main text).
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Hence fluctuations in signaling protein levels are strongly amplified in a weakly stimulated cascade. The
variability would is more pronounced for longer pathways. A similar reasoning was applied to derive an
analytical expression for the cell-to-cell variability of the negative feedback system (Eq. 11, main text).

2 Sensitivity analysis reveals a trade-off in controlling pathway sen-
sitivity and maximal activation

We applied one-dimensional sensitivity analysis to understand how fluctuations in certain kinase and phos-
phatase expression levels (i.e., in the parameters K; and X5 ;) affect the features of the dose-response curve
in the gradual signaling cascade (Eq. 1, main text). The sensitivity of a signaling feature X with respect to
a parameter or concentration change Y is typically quantified using the so-called control coefficient (a.k.a.
gain): O = % . %. The control coefficient is a normalized slope that quantifies how a relative change in
Y translates into a relative change in X. A control coefficient of unity refers to a linear relationship, while
Cyf <1 and C5f > 1 imply sub-linear and ultrasensitive behavior, respectively.

The sensitivities of the half-maximal pathway stimulus K, 5 can be calculated using Eq. 4 (main text),

and are given by
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Similarly, one derives for the maximal pathway activation sensitivities
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The sensitivity analysis reveals that fluctuations in signaling protein levels generally affect the dose-
response features in a linear or less-than linear manner (all CHKms < 1 and all CXmaezs < 1). In terms of
cell-to-cell variability, this means that signaling protein fluctuations tend to be dampened. K, 5 is primarily
controlled by the k1net1c parameters and b1gnahng protein concentrations regulating the upstream cascade

steps (C’ B> C’ B> C’ B> C me > C’ ™*). In contrast, Xmqz 5 is controlled more strongly by the

features of the downbtream cabcade levels (C’I)((;"“’“ < C mans < 0N Kot < C mans < OF xo"?). Thus,

K, 5 and X,,4,5 are controlled in an opposite way, and both cannot be made 1nvar1ant at the same time
by reducing the expression noise of a certain signaling protein (equivalent to reducing the fluctuations of a
certain K;).

The sensitivies and thus cell-to-cell variability may also be tuned by changing the kinetic rate constants of
(de)phosphorylation (kg ; and kg ;) or the median kinase/phosphatase concentrations, all of which determine
the median values of the K. Increasing the K; individually or simultaneously decreases the variability of
K5 (all Cﬁ" decrease), but increases the variability of X4, 5 (all C;““ increase). K, 5 and X405
are therefore again controlled in an opposite way, and both cannot be made invariant at the same time by
parameter tuning.

3 Analytical approximation for strong negative feedback regulation
in a gradual kinase cascade

Strong feedback regulation (kg > 1) was assumed to allow for the derivation of analytical approximations

for the cascade models with upstream or downstream negative feedback (Egs. 9 and 13, main text). For both

feedback variants, the steady state equation for X5 can be written as a polynomial of degree n + 1 (using
Egs. 8 and 12, main text):

0= —akp X2 —bX5 +ec, (12)
with
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for the second level feedback variant and
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for the fifth level feedback variant. For strong feedback (ks > 1), the second term is small compared to
the first one, and the steady state of X5 can be approximated by:
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Inserting Egs. 13 and 14 into Eq. 15 allows to find the analytical approximations of feedback variants
(Egs. 9 and 13, main text).




4 Dose-response curve of an ultrasensitive two-step cascade with
distributed switching
The two-step signaling cascade with distributed switching is described by Eq. 14 in the main text. Assuming

the same Hill coefficient for both levels and a low phosphatase activity at the second level (IN(g < Xiot,1),
one derives the following expression for the overall response of the two-stage cascade
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The overall dose-response curve has the form of the Hill equation, and the high Hill coefficient (n?)
indicates amplification of ultrasensitivity. The maximal activation level equals the total concentration of the
terminal kinase (X402 = Xiot,2) and the half-saturation point where the system switches from low to high
activation is given by Eq. 15 in the main text.

5 Threshold variability in an ultrasensitive signaling cascade with
switching at a single step

The ultrasensitive signaling cascade with switching at a single step is described by Eqs. 16 and 17 in the
main text. The parameters controlling the heterogeneity of the threshold stimulus (K, 5) can be estimated
by setting X4, = K5 in Eq. 16 (main text). Solving for the stimulus S we obtain:

Km,4K5 ~ Km,4K5
Xmaz,4 — K5 Xmax,4

In this approximation, we assumed that the maximal activation of X4 significantly exceeds the Hill equation
threshold (X404 > K 5) . The overall threshold of the signaling cascade is thus proportional to the local
threshold of the Hill equation (f( 5) times the ratio X,nqz4/Km 4 which depends on the product Ky K3K2K,
in a gradual kinase cascade (cf. Eq. 6, main text). In total, seven protein concentrations enter the signaling
threshold in a multiplicative fashion: the phosphatase determining the Hill equation threshold, and three
kinase-phosphatase pairs controlling the gradual upstream cascade (K3-K4). As a conclusion, a signaling
cascade with a localized switch at the terminal level will always show pronounced variability in the signaling
threshold.

Kns = (17)

6 Basal transcriptional feedback corrects for pathway threshold fluc-
tuations

Slow transcriptional feedback may measure pre-stimulation basal signaling to suppress the signaling threshold
variability, without necessarily affecting the steepness of the dose-response curve upon acute stimulation
(Fig. 5B, main text). In the following, it will be shown that basal state signaling activity and the signaling
threshold depend on the same combination of kinetic parameters and protein concentrations. A mechanism
that suppresses the variability of basal state signaling is therefore (potentially) able to reduce signaling
threshold fluctuations as well.

The basal state activity of the ultrasensitive pathway (Egs. 16 and 17, main text) is given by
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Here it is assumed that a very low basal stimulus Sy, < K, 4 is present and that the basal activation of
X4 is much lower than the Hill equation threshold (K5). The basal state signaling activity in Eq. 18 strongly



depends on the threshold stimulus concentration K,, 5 where the terminal kinase level is switched on (Eq.
17) and to a much lesser extent on the total concentration of the fifth kinase (X0 5). A transcriptional
negative feedback driven by basal signaling could therefore efficiently correct for imbalances in the pathway
activation threshold, e.g. by enhancing the expression of a phosphatase acting upstream of the switch. The
expression level of this induced phosphatase would be higher for low signaling thresholds (i.e., for higher
basal signaling). Variability suppression would be very efficient because the signaling threshold enters Eq.
18 with a high exponent n, giving rise to strong nonlinearity in the basal transcriptional feedback loop.

7 Analysis of oscillatory behavior for kinase cascades with negative
feedback regulation

Negative feedback regulation is known to establish oscillations in biochemical networks if the feedback is
sufficiently strong and nonlinear, and additionally characterized by a delay. In the following, we employ
linear stability analysis and numerical simulations to analyze whether the negative feedback circuits in this
paper can show damped or sustained oscillations. In the case of damped oscillations, the systems reach a
steady state after a transition time with oscillatory behavior, while they continue to oscillate around the
steady state if oscillations are sustained. The cell-to-cell variability simulations in this paper reflect the
steady state behavior for non-oscillatory systems and for damped oscillators. For sustained oscillations, the
simulations show the cell-to-cell variability in the mean activation level of the oscillator.
Stability analysis of the steady state Xgs of a dynamic system X = f (X) is done by linearization using
the Jacobi matrix Dy.
F(X) = Dy(Xes) - (X — Xes) + F(Xos) (19)

D¢(Xss) is the Jacobi matrix at the steady state and the entries of this matrix are defined as Dy ;; = g—))gf.
J

The expression Df(Xgs) - (X — Xgs) equals the linear term of a Taylor expansion around the steady state.
The eigenvalues of Dy allow statements about the dynamics of the system and about the stability of the
steady state. Oscillatory behavior can only be observed if at least one of the eigenvalues is complex. The
stability is determined by the real parts of the eigenvalues: The steady state Xgg is stable if all real parts are
negative and unstable if at least one of the real parts is positive. A damped oscillator exhibits only negative
real parts, while at least one real part is zero or positive for sustained oscillators.

The eigenvalues A; of the gradual system without negative feedback (Eq. 1, main text) can be calculated
analytically:

Ni = —kaiProti — kaiXic156 <0 (20)
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These eigenvalues are real valued, implying that no oscillations around the steady state are possible. The
steady state is stable, because all eigenvalues are all smaller than zero, thus confirming the hypothesis
oscillations cannot be observed without negative feedback regulation.

Next, we investigated the gradual cascade with downstream negative feedback, where X5 activates its
own phosphatase Ps (Eq. 12, main text). The eigenvalues of the Jacobian are

Ai = —kdiPiot;i — ka,iXi—1gg, 1 =1...4

As = —kas5Piots — kasXi—5ss — kaskso(n +1)Prot 5 X5 o 1)

Again, all eigenvalues are real and smaller than zero for biologically relevant parameter ranges. Thus, the

system with a short, downstream negative feedback does not exhibit damped or sustained oscillations even

for strongly cooperative feedback (n > 1). This result is consistent with previous findings [1]. Oscillations
are absent, because the feedback loop does not exhibit a significant delay.

In contrast, a delay and thus oscillations can be observed in the system with upstream feedback (Eq.

8, main text), as the feedback mediator (X5) is separated from the feedback site of action (P) by several

steps. The eigenvalues of the system with upstream feedback could not be solved analytically. We therefore

analyzed the steady state stability using numerical simulations: The steady state of the system was calculated



by numerically integrating the ODE system (Eq. 8, main text). The simulation result was used to formulate
the Jacobian Dy at the steady state, and the corresponding eigenvalues were calculated numerically.

We investigated how strong the feedback cooperativity needs to be to observe oscillations in some parts of
the dose-response curve. The eigenvalues are thus shown for variations in the feedback cooperativity n and
the stimulus S (Figs. S7 and S8). For simplicity, we assumed strong feedback (ks, = 10'%), and fixed the
kinase rates k, ; as well as the total kinase and phosphatase concentration in the cascade (Xior,; and Piot i,
respectively) to 1. Stability analyses were performed for two phosphatase activity levels in the cascade: In
Fig. S7, it was assumed that all activation resistances in the cascade are low (K; = 0.1, Eq. 5, main text)
by setting kq; = 0.1. In Fig. S8, all activation resistances in the cascade were high (K; = 10, Eq. 5, main
text) by setting kq,; = 10.

The cascade with low activation resistances (Fig. S7) shows complex eigenvalues over a broad range
of stimuli and feedback cooperativities (red area, lower panel). Sustained oscillations require very strong
feedback cooperativity, because the real parts of all eigenvalues are negative unless n > 7 (red area, upper
panel). We conclude the corresponding cell-to-cell variability simulations reflect the steady state behavior of
a non-oscillatory system or a damped oscillator as long as n < 7.

The cascade with high activation resistances (Fig. S8) shows complex eigenvalues over a broad range of
stimuli and feedback cooperativities as well (red area, lower panel), but the real parts are always negative
(red area, upper panel). We conclude that the system does not show sustained oscillations in the analyzed
parameter regime, most likely because the high phosphatase activity at the second cascade level prevents
that negative feedback affects the system dynamics significantly. The corresponding cell-to-cell variability
simulations thus reflect the steady state behavior of a non-oscillatory system or a damped oscillator.

The gradual cascade with upstream negative feedback resembles the Goodwin oscillator. This classical
model biochemical comprises mRNA synthesis, mRNA translation into protein and feedback inhibition of
transcription by the biologically active protein product [2]. Previous studies have shown that a Goodwin
oscillator with four steps between mRNA transcription and formation of the mature protein can only show
sustained oscillation for a cooperativity factor of n > 4 [2, 1]. We find that higher cooperativities are required
in our analogous system which involves four steps in a kinase cascade, most likely because mass conservation
effects in phosphorylation-dephosphorylation cycles lead to saturation effects, thereby reducing the efficiency
of negative feedback regulation [1].
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