
Supporting Information 
 
Description of fitting density for crossover helix: The crystal structure of wild-type was solved and the initial 

placement of the cross over helix residues was challenging. While density of W296 and M297 were apparent, 

the helical twist was difficult to model. Crystal structure of the high resolution loop truncated structure  allowed 

for the determination of the helicity and the kinking of the cross over helix by P292. The model of the cross 

over helix built at this resolution was then used to build the cross over helix in the wild-type at low resolution 

and confirm the positions of the residues and their side chains. 

 
 

Supplementary Figure 1: Stereo figure of a sim omit difference map (Fo-Fc) contoured at 2.5σ (A) and 3σ (B) of 
the crossover helix. Wild-type at 3.7Å (A) and loop truncated at 2.2Å (B).The helix is shown in green sticks. For 
molecular replacement, coordinates of the crossover helix and the linker were not included in the search model in 
order to prevent phase bias in this region. One three cycle run of simulated annealing (starting and final temperature 
2500K and 300K, respectively, and 500 cooling steps) and real space refinement was done in Phenix prior to model 
building in this area. Strong electron (and at high resolution planar) density corresponding to W296 and M297 is 
clearly present at high and low resolution. If L294, potentially the only other bulky residue of the crossover helix, is 
placed at W296 density for initial model building, the strong electron density currently observed for M297 could 
not account for A295, the next amino acid in the sequence, that would be placed there upon the register change. 
Likewise, P292 would not fit in the electron density for L294 at high resolution.  Crystal structures of the C. 
hominis and P. falciparum TS-DHFR both contain an aromatic residue at this position of the crossover helix, and 
thus provide additional support that W296 is placed correctly in the crystal structures presented here. Finally, rich 
electron density of key side chains at low resolution support that the cross over helix is at the same position when 
compared wild-type and loop truncated crystal structures. 
	
  



 

 

 

Supplementary Figure 2. A) Sim omit Fo-Fc difference density map of the crossover helix of the loop 
truncated mutant at 2.2Å resolution, contoured at 3σ. B) and C) Final 2Fo-Fc map contoured at 1.5σ. Residues 
are shown as sticks, and W296 and P292 are labeled. Bending or the kinking of the crossover helix at this 
resolution can clearly be seen when the helix is shown in cartoon representation (Panel C). 
 
 

 

 

 

 

  



 

Supplementary Figure 3: Alignment of thymidylate synthase-dihydrofolate reductases. Sequences of 

bifunctional TS-DHFRs from T. gondii, C. hominis, P. falciparum, and L. major (GenBankTM accession 



Q07422, Q5CGA3, P13922, and P07382, respectively) and monofunctional human TS and DHFR (accession 

P04818.3 and AAH71996.1, respectively). The alignment was generated using the COBALT alignment 

software(1) and conserved residues were colored according to the ClustalX color scheme (W,L,V,I,M,F,A,C: 

blue; T,S,N,Q: green; G: orange; H,Y: cyan; P: yellow; K,R: red; D,E: magenta)(2). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4: Interface between TS and DHFR domains showing that both hydrophobic interactions 

and salt bridges are prominent between the two domains. Hydrophobic interactions are predominant. 
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Supplementary Figure 5:  Key features of the DHFR domain. (A) Superposition of T. gondii (blue) and C. 

hominis (orange) DHFR domain. Location of distinct surface loops in T. gondii DHFR are shown as indicated. 

(B) Final 2Fo-Fc map, contoured at 1.5σ, showing the electron density of DHFR active site with ligands 

NADPH and MTX at 2.2 Å resolution. The ligands were excluded during initial molecular replacement and 

added in later rounds of refinement. (C) Key interactions between the active site ligands and the DHFR domain 

are shown in magenta.  
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Supplementary Figure 6: Ligand plot illustrating DHFR domain protein-ligand interactions with active site 

ligands. (A) NADPH and (B) Methotrexate. 
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Supplementary Figure 7: Ligand plot illustrating TS domain protein-ligand interactions with active site 

ligands. (A) PDDF (CB3) and  (B) dUMP. 
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Supplementary Figure 8: Stereo figure of superposition of T. gondii and C. hominis TS active site. T. gondii 

active site ligands dUMP and PDDF are colored red and C. hominis green. Also shown are important residues 

interacting with the substrates. Note that for the atoms involved in methyl transfer, C5 of dUMP and CP1 of 

PDDF, the distance for Tg is >1 Å relative to Ch.  
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Supplementary Figure 9:	
  Ligand plot illustrating the interface interactions between crossover helix (Residues 

285-299)  and B-helix are mainly aliphatic. The loop truncated structure was used. 
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Supplementary Figure 10: Effect of crossover helix mutations on DHFR steady state reaction. Rate constants 

for steady state experiments were estimated by fitting the data to a Michaelis-Menten hyperbolic curve (v = 

Vmax[S]/(Km+[S]) using Kaleidagraph. Enzyme efficiencies were calculated using the equation Efficiency = 

kcat/Km.. (A) Effect of crossover helix mutants on steady state H2F binding. (B) Effect of crossover helix mutants 

on steady state NADPH binding (Inset: steady state rate plot at lower concentrations of NADPH). Individual 

data points are the average of experiments repeated in duplicate or triplicate and variance does not exceed 10% 

for any point included. (C) Efficiency of WT T. gondii DHFR compared to crossover helix mutants. Efficiency 

was calculated using the Km of H2F and kcat of the DHFR reaction in each case. Errors in kcat, Km, and efficiency 

result from standard error of parameters. 

  



	
   

 

 

 

 

 

 

 

 

 

Supplementary Figure 11: Representative stopped-flow fluorescence traces of DHFR and TS catalysis. Each 

trace is an average of three replicates. Residuals are shown below each plot. (A-B) For the DHFR reaction, 50 

µM enzyme was incubated with 250 µM NADPH and mixed with 25 µM H2F. Coenzyme fluorescence energy 

transfer was measured using an output filter at 450 nm (± 10 nm) and the resultant data were fit in Kaleidagraph 

to a single exponential curve, Fluorescence = Ae(-kchem*time). Shown are the traces for the (A) P292A and (B) 

A B 

C 



helix deletion mutants. (C) Representative stopped-flow absorbance trace of the TS burst reaction for the wild-

type enzyme. 25 µM enzyme was incubated with 1 mM dUMP and mixed with 500 µM CH2H4F and 

absorbance was measured with an output filter at 340 nm (± 10 nm). The trace was fit to a burst curve  

Fluorescence = Ae(-kburst*time) + kss*time. 

  



 

 

 

Supplementary Figure 12: Effect of crossover helix mutations on TS steady state reaction. Rate constants for 

steady state experiments were estimated by fitting the data to a Michaelis-Menten hyperbolic curve (v = 

Vmax[S]/(Km+[S]) using Kaleidagraph. Enzyme efficiencies were calculated using the equation Efficiency = 

kcat/Km.. (A) Effect of crossover helix mutants on steady state dUMP binding. (B) Effect of crossover helix 

mutants on steady state CH2H4F binding. Individual data points are the average of experiments repeated in 

duplicate or triplicate and variance does not exceed 10% for any point included. (C) Efficiency of WT T. gondii 

TS compared to crossover helix mutants. Efficiency was calculated using the Km of dUMP and kcat of the TS 

reaction in each case. Errors in kcat, Km, and efficiency result from standard error of parameters. 



 

Supplemental Figure 13: Bar graph representing [H2F]/[H4F] at peak H2F concentration during the single 

turnover bifunctional reaction (See Figure 4, red arrows). Enzyme (50 µM) was incubated with dUMP (500 

µM), and NADPH (500 µM) and mixed with [3H]-CH2H4F (10 µM). 

 

  



 

 

Supplementary Figure 14: (A) Poisson-Boltzmann electrostatic surface representation of TS-DHFRs from L. 

major (left), C. hominis (middle), and T. gondii (right). Electrostatic field greater than 0.5 kT/e is shown in blue, 

less than -0.5 kT/e is shown in red. (B) Electrostatic field lines of L. major, C. hominis, and T. gondii TS-

DHFR. The negative field lines suggest that the surface charges of C. hominis DHFR may prevent the 

negatively charged H2F from channeling. The coloumbic charges were created by using the program Chimera 

employing default settings. (3) The negative charges are colored red, and positive charges are colored blue.  

  



 

Supplementary Figure 15:  Possible mechanism for crossover helix and distal TS allosteric interactions. The 

domains are colored as described in Figure 2A. Key residues important for allostery are colored in yellow. Salt 

bridges and hydrogen bonds are shown as yellow dashes. 
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