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1. Supplementary Text

GroEL PDB structures

In Table S1, we list the PDB structures of GroEL used in this study,
together with the experimental method, conformational state, and reference.
Structures were modified to have the same sequence (by correcting a few mi-
nor variations), and the same number of residues (524 for each monomer) as
the apo crystal structure with PDB ID 1XCK. For optimal structural align-
ments, we appropriately permutated the monomer chain identifiers within
the two rings. We used the same reference orientation for all structures, with
the rotational axis along the z-axis.

To assess the structural similarity between the different models, we list in
Table S2 the Cα root mean square deviations (RMSDs) of the entire protein.
In Tables S3 and S4, we list the Cα RMSDs between the PDB structures for
monomer chains A and H, respectively, as representatives of monomers in
the two rings.

In Fig. S1, we plot ln(Pmω/PNoise) as a measure of the normalized evidence
for model m from image ω, rank-ordered for each model m according to Pmω.
Results are shown for models 1KP8, 1PF9, and 1SX4. The models 1XCK,
3C9V and 1AON analyzed in the main text are included with dashed lines
for reference. We found similar results as those presented in Fig. 2 of the
main text. 1XCK is the most probable structure to have generated the EM
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images. Not surprisingly, slightly behind is model 1KP8 that is only 1.7 Å
in Cα RMSD from 1XCK. Lowest ranked are structures of GroEL bound to
GroES+ADP such as 1PF9 and 1SX4, that are very similar to 1AON (∼ 1
Å in Cα RMSD; GroES and nucleotides removed in the calculations).

GroEL symmetry

Fig. S2 shows the log-posterior ln(Pmω/PNoise) for models 1XCK and
1AON as a function of the Euler angle α (corresponding to rotations about
the z-axis, with β = γ = 0) for a top view image of GroEL (see inset). Points
are fitted to A sin(fα+c). For all models we find a frequency factor of f = 7,
with α in radians, consistent with the 7-fold symmetry of GroEL. Also, as
mentioned in the main text, for this particular image the model 1AON has
a higher log-posterior than 1XCK, indicating that top-views are challenging
projections for distinguishing overall similar GroEL models.

GroEL coarse-grained model

The GroEL coarse-grained model was constructed with 14 spheres each
corresponding to a monomer with 20 Å radius. 7 spheres were centered on the
edges of a heptagon with radius 60 Å. The remaining 7 spheres are reflected
symmetrically on a plane parallel to the heptagon, with a distance of 80 Å
between corresponding centers. In Fig. S3, we plot the coarse-grained model
and its dimensions.

Particle classification

As a further test whether we can consistently identify the best structure
within a pool of models for a given EM image, we determined the “best”
model individually for each of the 1,283 GroEL images. Our model set con-
sisted of the five PDB structures analyzed in Figs. 2-4 of the main text.
For each of the 1,283 EM images, we determined the model with the highest
log-posterior. In Fig. S4 we plot the relative fraction of GroEL particles
for which each PDB model scored at the top. Since we expect images of
poor signal-to-noise ratio to have low discriminatory power, we grouped the
images according to the top-ranked log-posterior for the five models (less
than 250: 471 particles, between 250 and 500: 605 particles, and over 500
relative to noise: 207 particles). As expected, in the group with low poste-
rior, models 1XCK, 3C9V, 2C7E and 1AON perform similarly, each claiming
approximately 25 % of the particles. However, for images with intermediate
and high probability, model 1XCK performs best, winning out in 60 and 70
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% of the images, respectively, over all other models. In the top group, 1XCK
and the similar 3C9V structure (RMSD 4.6 Å) jointly claim more than 90 %
of all particles.

Similarly, for the ESCRT-I-II system, we find that for the data sets gen-
erated from models with extensions DMax = 360, 313, 267, and 227 Å, the
percentage of correctly assigned particles is 75, 97.5, 98.5 and 98.5 %, re-
spectively. As mentioned in the main text, the needle-like character of the
model with DMax = 360 Å makes it the most challenging structure to distin-
guish from the 17 other ESCRT models.

Total cumulative evidence versus RMSD

Fig. S5 shows, for all GroEL pdb models, the cumulative evidence∑Ω
ω ln(Pmω/P1XCK,ω) over the whole GroEL image set (Ω) as a function of

the Cα RMSDs from structure 1XCK. We find that, overall, the further a
structure is (in RMSD) from 1XCK, the lower is its log-posterior, and the
less likely it is to have generated the images. We emphasize that we do not
expect a perfect correlation since RMSD is only one of many measures of
structural differences.

Averaging images leads to loss in discriminatory power

Individual particles within a class unavoidably have small variations in
their relative orientations. With our single-image analysis, we can assess
the loss of information resulting from averaging over these particles instead
of analyzing them individually. Specifically, for model m, we calculated the
discriminatory power of the cumulative evidence over the individual particles
in a class-set,

∏$
ω=1 Pmω, with respect to the posterior over its corresponding

class-averaged map, Pm1...$, as a function of the number of averaged images,
$, in each set. To represent a class-set, we selected one random orientation
of 1XCK, and generated 50 synthetic images that varied with a Gaussian-
distributed overall rotational angle of 6 degrees in width from the initial
orientation, random noise (signal-to-noise ratio= 0.01 to 0.2), blurring (σ =
1 to 4Å) and a small center displacement ± 3Å. To mimic the effect of
averaging particles with minute differences in orientation, we averaged over
random image pairs, triples, etc. to obtain maps that averaged a different
number of the synthetic images. In Fig. S6, we show the average logarithm of
the discriminatory power per individual image, for model 3C9V with respect

to 1XCK, 1
$

ln(
∏$
ω=1 P3C9V,ω/P3C9V,1...$∏$
ω=1 P1XCK,ω/P1XCK,1...$

), as a function of the number of images
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averaged in each class-set. Negative values indicate a loss in log-posterior,
per image, for discriminating 1XCK from 3C9V, when averaged class-sets
are used instead of individual particles. We find that the information is
gradually lost as a function of the number of averaged images. So while
averaging within a class improves the SNR (see inset of Fig. S6) the overall
information content is nonetheless reduced. This loss of about 15 log units
per image as a result of averaging is significant, with the total log-evidence
in favor of 1XCK over 3C9V being only ≈ 8000/1283 = 6.2 per image.

General Point Spread Function

The complex imaging process in cryo-EM is commonly described with
a contrast transfer function (CTF) and its real-space equivalent, the point
spread function (PSF). The two functions are related through a 2D Fourier
transformation,

PSF(r) =

∫ ∞
0

J0(rs)Env(s)CTF(s)sds , (1)

where s is the reciprocal radial coordinate, J0(rs) is the Bessel function of
the first kind of order 0 and Env(s) is the envelope function. The contrast
transfer function is commonly approximated as CTF(s) = A cos(as2/2) −√

1− A2 sin(as2/2) and the envelope function as Env(s) = e−bs
2/2 (Penczek,

2010), with A, a, b parameters. For these functional forms we obtain a simple

analytical expression also for the PSF. With
∫∞

0
J0(rs)e−γ

2s2/2sds = e−r
2/2γ2

γ2
,

and by using complex arithmetic with γ2 = b− ia, the point spread function
becomes

PSF(r) = ARe[γ−2e−r
2/2γ2 ]−

√
1− A2Im[γ−2e−r

2/2γ2 ]

=
e−χr

2/2

√
b2 + a2

(
AR cos(θr2/2)−

√
1− A2

R sin(θr2/2)

)
, (2)

where θ = a/(b2 +a2), χ = b/(b2 +a2) and AR = cos(cos−1(A)− tan−1(a/b)).
In the following, we assess the effect of this general PSF, or equivalently

the general CTF, by convolving the PSF with the ideal image I0(x′, y′|m,ϕ)
(see Main Text Eq. 4),

IPSF(x, y|m,ϕ, χ, θ, AR) =

∫
PSF(r′, χ, θ, AR)I0(x′, y′|m,ϕ)dx′dy′ , (3)
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where r′ =
√
x′2 + y′2. We also note that for the particular case θ = 0, the

PSF(r) ∝ e−χr
2/2 corresponds to the Gaussian blurring described in the Main

Text.
We have characterized the performance of the general PSF for a sub-

set of 50 GroEL images. In Fig. S7 A, the cumulative evidence of model
1XCK with the general PSF is compared against 1XCK with only Gaussian
blurring, as a function of parameters χ and θ, for AR = 1. We find that the
inclusion of the general PSF boosts the posterior of each model with respect

to each individual image. Parameters χ = 0.00375 Å
−2

and θ = 0.008 Å
−2

maximize the posterior (arrow in Fig. S7 A) by favoring with ∼ 3500 log-
units the model that includes the general PSF as compared to just Gaussian
blurring. In Fig. S7 B, we show the real-space PSF for these parameters, and
for the particular case (θ = 0, χ = 1/(8 Å)2) corresponding to only Gaussian
blurring. To validate this analysis, for each individual image, we calculated
the power spectrum of the calculated image (IPSF, see Eq. S3), for parameters

that maximized the posterior, χ = 0.00375 Å
−2

, θ = 0.008 Å
−2

and AR =
1. In Fig S8 C, we compare the calculated average power spectrum to the
corresponding average power spectrum of the experimental GroEL images
with background modeled as a Gaussian in s and subtracted (Heymann and
Belnap, 2007; Heymann et al., 2008). The curves agree and we thus conclude
that including the PSF in the analysis accounts accurately for the contrast
transfer effects also in Fourier-space.

Lastly, we assessed the GroEL model ranking when including the PSF in
the Bayesian analysis. The posterior probability of the Main Text (see Eq.
3) now includes integrals over (χ, θ, AR). In Fig. S8, we show the cumulative
evidence

∑
ω ln(Pmω), of models 3C9V and 3CAU with respect to 1XCK,

when parameters χ, θ are sampled within [0,0.0075] Å
−2

, and [0,0.15] Å
−2

,
respectively, for AR = 1; results with only Gaussian blurring are shown as
dashed lines for reference. Tests have also been performed sampling AR
within [0, 1], and the general conclusions remain the same: 1XCK has the
highest overall posterior probability, and models 3C9V and 3CAU are ranked
slightly lower. Whereas the inclusion of the PSF indeed boosts the poste-
rior for each individual image, the Gaussian blurring is the simplest and
most efficient one-parameter representation that accounts well for the ma-
jor diffraction effects and maintains the correct GroEL model differentiation
and ranking. Nonetheless, elaborate CTF models can be handled within our
Bayesian approach and further boost the discriminatory power.
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Overall variations in normalization and offset

Individual EM images vary not only in the molecule conformation and
orientation but also the in the detailed imaging conditions. The relative in-
tensities are affected by thermal and mechanical variations, electron dose, ice
thickness and proximity to the carbon grid (Penczek, 2010). Moreover, the
transformation of the image intensities to zero mean and unit variance affects
different projections differently. Introducing additional normalization and
offset parameters with respect to the em2D score presented in (Velazquez-
Muriel et al., 2012), accounts for these overall variations and improves the
quality of the posterior without increase in computational expense. To illus-
trate their importance, we calculated the variations in the posterior prob-
ability as a function the offset and normalization for GroEL model 1XCK
with respect to two individual experimental images in different projections
(top/side view). The results are shown in Fig. S9. Regardless of the fact that
both experimental maps are normalized to zero mean and unit standard de-
viation, we find that the parameter values that maximize the posterior vary
significantly from image to image, this depending on the molecule orientation
and specific signal-to-noise conditions. Selecting the best parameter values a
priori is non-trivial, and it would be unlikely to obtain the highest posterior
probability for each individual image with a fixed-value set. As a result, to
further boost the performance, it is important to account for variations in
the offset and normalization, and as shown in the following section, we do
so analytically, at no additional computational cost and without numerical
integration error.

Analytical integration of the posterior

In the calculation of the Bayesian probability, the posterior is integrated
over uniformly distributed parameters of orientation (ϕ), blurring (σ), trans-
lation (d), normalization (N), offset (µ), and standard deviation of the noise
(λ). The Gaussian integrals over N and µ can be evaluated analytically,

Pmω(ϕ, σ,d, λ) =∫ ∞
−∞

∫ ∞
−∞

(
2πλ2

)−Npix/2 e
−
∑

(x,y)

[
I
(obs)
ω (x,y)−NI(x,y|m,ϕ,σ,d)−µ

]2
/2λ2

dNdµ

=
λ2−Npix(2π)1−Npix/2e

−
Npix(CccCoo−C

2
oc)+2CoCocCc−CccC2

o−CooC
2
c

2λ2(NpixCcc−C2
c )√

NpixCcc − C2
c

, (4)
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where

Co =
∑
(x,y)

I(obs)
ω (x, y) , (5)

Cc =
∑
(x,y)

I(x, y|m,ϕ, σ,d) , (6)

Coo =
∑
(x,y)

[I(obs)
ω (x, y)]2 , (7)

Ccc =
∑
(x,y)

[I(x, y|m,ϕ, σ,d)]2 , (8)

Coc =
∑
(x,y)

I(obs)
ω (x, y)I(x, y|m,ϕ, σ,d) (9)

are the averages and cross-correlations of the intensities of observed (o) and
calculated (c) images. A saddle-point-type approximation was used to inte-
grate the posterior over the standard deviation of the noise, λ. We define
f(λ) = lnPmω(m,ϕ, σ,d, λ). Then, to second order, f(λ) ≈ f(λ0) + (λ −
λ0)2 ∂

2f(λ)
∂2λ
|λ0/2 with λ0 such that ∂f(λ)

∂λ
|λ0 = 0. Under this approximation, the

integration of the posterior over λ becomes a Gaussian integral, from which
we obtain

Pmω(ϕ, σ,d) ≈
√
π(2πe)1−Npix/2

×[Npix(CccCoo − C2
oc) + 2CoCocCc − CccC2

o − CooC2
c ]3/2−Npix/2

×[(Npix − 2)(NpixCcc − C2
c )]Npix/2−2. (10)

The remaining integrals over the orientation, blurring, and translation were
performed numerically using grid summation.
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resolution. J. Mol. Biol. 327, 843–855.

Xu, Z., Horwich, A., Sigler, P., 1997. The crystal structure of the asymmetric
GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750.

8



2. Supplementary Figures
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Figure S1: GroEL model discrimination. Statistical evidence ln(Pmω/PNoise) as a
function of the rank-ordered experimental image ω for models 1KP8, 1PF9, and 1SX4.
The corresponding curves for 1XCK, 3C9V, and 1AON are shown with dashed lines.
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Figure S2: GroEL symmetry assessment. Statistical evidence ln(Pmω/PNoise) as a
function of Euler angle α (rotational angle about z-axis) for GroEL models 1XCK (black)
and 1AON (red). Euler angles β, γ were set to zero. The inset shows the experimental
image (ω), showing GroEL in a top view (shown also in Main text Fig. 1).
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Figure S3: GroEL Coarse-Grained (CG) model. Black lines indicate the sphere
radius (20 Å), the distance between stacked spheres in the two rings (80 Å), and the
distance of the spheres from the symmetry axis (60 Å).
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Figure S4: Identifying GroEL models from particles. Shown is the fraction of GroEL
particles for which each model 1XCK, 3C9V, 3CAU, 3C7E, and 1AON has the highest
log-posterior. The 1,283 images are grouped according to the log-posterior of the top-
performing models, with log-posteriors less than 250, between 250 and 500, and over 500
relative to noise.
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Figure S5: Cumulative evidence for GroEL models relative to 1XCK versus
RMSD. Shown is the total cumulative model evidence

∑Ω
ω=1 ln(Pmω/P1XCK,ω) of model

m relative to 1XCK over the whole GroEL image set (Ω) as a function of the Cα RMSD
from structure 1XCK, for all GroEL pdb models. Error bars corresponding to one standard
deviation were estimated using the bootstrap technique.
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Figure S6: Loss in discriminatory power by averaging images as a result of small
variations in the orientation of the particles within a class. Shown is the average
logarithm of the discriminatory power, per individual image for model 3C9V with respect

to 1XCK, 1
$ ln(

∏$
ω=1 P3C9V,ω/P3C9V,1...$∏$
ω=1 P1XCK,ω/P1XCK,1...$

) as a function of the number of averaged images, $,

in a synthetic class-set. Negative values indicate a loss in discriminatory power per image,
when averaged class-sets are used instead of individual particles. 50 synthetic images
were generated that differ only slightly in the relative orientations of the model 1XCK.
Specifically, the model was rotated randomly by an angle with a Gaussian distribution
of width 6◦, with respect to the reference orientation α = 110.4◦;β = 42.1◦; γ = 151.5◦.
Pairs, triples etc. of the resulting images were averaged to create classes. Error bars
corresponding to one standard deviation of the mean were estimated using the bootstrap
technique. The line is a fit to c1(e−(x−1)/c2 − 1) as guide to the eye (c1 = 14.8, c2 = 2.1).
Inset: Representative images obtained by averaging 1 (left) and 8 (right) images per class-
set, shown with (bottom) and without (top) noise. Averaging improves the SNR (compare
bottom left and right images) but sacrifices detail (see top images). This loss in detail is
responsible for the lower discriminatory power of the ’class-averaged’ images.

12



0 10 20 30 40 50

r (Å)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
o
in

t
S
p
re

ad
F
u
n
ct

io
n

PSF θ=0.008Å
-2
χ=0.00375Å

-2

PSF θ=0Å
-2
χ=0.015625Å

-2

0 0.02 0.04 0.06 0.08 0.1 0.12

s (Å
-1

)

0

0.5

1

P
o
w

er
S
p
ec

tr
u
m

Calculated
Experimental

B) C)

Figure S7: Effect of general point spread function / contrast transfer function.
A) Cumulative evidence,

∑
ω ln(PPSFmω /Pmω), of model 1XCK with PSF against 1XCK

with only Gaussian blurring, as a function of parameters θ, and χ in units of Å
−2

,
for AR = 1, over a sub-set of 50 GroEL experimental images. Remaining parameters
were integrated similarly as in the Main Text: Euler angles α, γ ∈ (−π, π), cosβ ∈
(−1, 1), N ∈ (−∞,∞), µ ∈ (−∞,∞), λ ∈ (0,∞), and −16 Å < dx, dy < 16 Å. The

arrow indicates the parameters χ = 0.00375 Å
−2

, and θ = 0.008 Å
−2

that maximize the
posterior. B) Real-space PSF for parameters that maximize the posterior, and for the
case (θ = 0, χ = 1/(8 Å)2) corresponding to only Gaussian blurring. C) Fourier-space
average power spectrum of the experimental GroEL images (Experimental) and of the
back-transformed best IPSF (Calculated).
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∑
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calculated using the general PSF, as a function of the image rank r for a sub-set of 50

GroEL images. Parameters χ, θ are sampled within [0,0.0075] Å
−2

, and [0,0.15] Å
−2

,
respectively, and AR = 1. Remaining parameters were integrated similarly as in the Main
Text. Results with only Gaussian blurring (θ = 0) are included with dashed lines for
reference.
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A)

B)

Figure S9: Effect of variations in offset and normalization. Shown is the posterior
probability of model 1XCK, ln(P1XCK/PNoise), as a function of offset and normalization
parameters, for top (A) and side (B) projections of single-particle GroEL images. Re-
maining parameters were integrated similarly as in the Main Text. Arrows show the
parameter values that maximize the posterior. Note that the optimal values differ in the
two projections.
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3. Supplementary Tables

Table S1: GroEL PDB structures
PDB Method State Reference
code

1XCK X-ray Apo (Bartolucci et al., 2005)
1AON X-ray GroEL+GroES+ADP (Xu et al., 1997)
1KP8 X-ray GroEL+KMgATP (Wang and Boisvert, 2003)
1PF9 X-ray GroEL+GroES+ADP (Chaudhry et al., 2003)
2C7E EM GroEL+ATP (Ranson et al., 2001)
3C9V EM Apo (Ludtke et al., 2008)
3CAU EM Apo (Ludtke et al., 2008)
1SX4 TSL refinement GroEL+GroES+ADP (Chaudhry et al., 2004)

Table S2: Full 14-monomer Cα RMSD (Å) between GroEL PDB structures
Model 1XCK 1KP8 3CAU 3C9V 2C7E 1AON 1PF9 1SX4
1XCK 0.000 1.686 4.678 4.604 6.689 11.371 11.281 11.229
1KP8 0.000 4.529 4.509 6.123 11.033 10.941 10.887
3CAU 0.000 2.286 7.025 11.691 11.633 11.584
3C9V 0.000 7.358 11.872 11.811 11.765
2C7E 0.000 10.563 10.486 10.421
1AON 0.000 0.647 0.728
1PF9 0.000 0.342
1SX4 0.000
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Table S3: A chain Cα RMSD (Å) between GroEL PDB structures
Model 1XCK 1KP8 3CAU 3C9V 2C7E 1AON 1PF9 1SX4
1XCK 0.000 0.977 4.348 4.329 5.509 12.231 11.999 11.975
1KP8 0.000 4.411 4.390 5.222 11.931 11.694 11.668
3CAU 0.000 2.281 6.520 12.440 12.254 12.230
3C9V 0.000 6.696 12.556 12.364 12.343
2C7E 0.000 12.168 11.935 11.881
1AON 0.000 0.874 0.934
1PF9 0.000 0.356
1SX4 0.000

Table S4: H chain Cα RMSD (Å) between GroEL PDB structures
Model 1XCK 1KP8 3CAU 3C9V 2C7E 1AON 1PF9 1SX4
1XCK 0.000 1.421 4.475 4.487 3.298 1.472 1.515 1.489
1KP8 0.000 4.354 4.340 2.392 1.168 1.175 1.174
3CAU 0.000 2.189 4.769 4.345 4.359 4.347
3C9V 0.000 4.801 4.421 4.439 4.429
2C7E 0.000 2.611 2.594 2.611
1AON 0.000 0.289 0.418
1PF9 0.000 0.284
1SX4 0.000
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