Supporting Information

Mechanistic Study of the Biomimetic Synthesis of Flavonolignan Diastereoisomers in Milk Thistle

Hanan S. Althagafy, Maria Elena Meza-Aviña, Nicholas H. Oberlies,^{*} and Mitchell P. Croatt^{*}

Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Sullivan Science Building, P.O. Box 26170, Greensboro, NC,27402, USA

* Corresponding authors. Tel.: (336)334-3785 (M.P.C.) and (336)334-5474 (N.H.O.).

E-mail addresses: mpcroatt@uncg.edu (M.P.C) and nicholas_oberlies@uncg.edu (N.H.O.)

Table of Contents

Figure S1. UPLC chromatograms of natural flavonolignans in silymarin compared with the product of the biomimetic reaction (Scheme 2)	<i>S4</i>
Figure S2. UPLC chromatograms of biomimetic synthesis of flavonolignans (Scheme 2)	<i>S5</i>
Figure S3. UPLC chromatograms of <i>cis</i> -coniferyl alcohol and its reaction with taxifolin (Scheme 3)	<i>S6</i>
Figure S4. UPLC chromatograms of oxidation reactions of taxifolin and coniferyl alcohol (Scheme 4)	<i>S7</i>
Figure S5. UPLC chromatograms of reactions of taxifolin and coniferyl aldehyde (Scheme 5)	<i>S</i> 8
Figure S6. UPLC chromatograms of co-injection of biomimetic and natural flavonolignans (left column) and purified biomimetic flavonolignans (right column)	<i>S9</i>
Figure S7. ¹ H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) silybin A	<i>S10</i>
Figure S8. ¹³ C NMR spectra (125 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) silybin A	<i>S11</i>
Figure S9. ¹ H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) silvbin B	<i>S12</i>
Figure S10. ¹³ C NMR spectra (125 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) silybin B	<i>S13</i>
Figure S11. ¹ H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) isosilybin A	<i>S14</i>
Figure S12. ¹³ C NMR spectra (125 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) isosilybin A	<i>S15</i>
Figure S13. ¹ H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) isosilybin B	S16
Figure S14. ¹³ C NMR spectra (125 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) isosilybin B	<i>S17</i>
Table S1. ¹ H NMR data (500 MHz in DMSO- d_6) comparing natural flavonolignans to the biomimetic counterparts	<i>S18</i>
Table S2. ¹³ C NMR data (125 MHz in DMSO- d_6) comparing natural flavonolignans to the biomimetic counterparts	<i>S19</i>
Figure S15. ¹ H NMR spectra (500 MHz in acetone- d_6) of purchased (top) and synthetic (bottom) coniferyl aldehyde (16)	<i>S20</i>
Figure S16. ¹ H NMR spectrum (500 MHz in acetone- d_6) of (±)-dehydrodiconiferyl alcohol (18)	S21
Figure S17. ¹³ C NMR spectrum (125 MHz in acetone- d_6) of (±)-dehydrodiconiferyl alcohol (18)	S22

Table S3. ¹ H NMR data (500 MHz in acetone- d_6) comparing biomimetic (±)-dehydrodiconiferyl alcohol (18) to the literature data	S23
Table S4. ¹³ C NMR data (125 MHz in CDCl ₃) comparing biomimetic (±)-dehydrodiconiferyl alcohol (18) to the literature data	S24
Figure S18. ¹ H NMR spectrum (500 MHz in CDCl ₃)of 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxyphenol	S25
Figure S19. ¹³ C NMR spectrum (125 MHz in CDCl ₃) of 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxyphenol	S26

Figure S20. ¹H NMR spectrum (500 MHz acetone- d_6) of *cis*-coniferyl alcohol (19) S27

Table S5. 1 H NMR data (500 MHz in acetone- d_6) comparing biomimetic *cis*-coniferyl alcohol (19) to theS28literature data

Figure S1. UPLC chromatograms of natural flavonolignans in silymarin compared with the product of the biomimetic reaction (Scheme 2)

(A) natural flavonolignans; (B) reaction of taxifolin (1 equiv), *trans*-coniferyl alcohol (2 equiv), and Ag_2O (4 equiv) in ethyl acetate (0.04 M) at 75 °C for 96 h. Compounds are silybin A (1); silybin B (2); isosilybin A (3); isosilybin B (4); silydianin (5); silychristin (6); isosilychristin (7); taxifolin (8); *trans*-coniferyl alcohol (9); coniferyl alcohol (16); dehydrodiconiferyl alcohol (18).

Method: UPLC was conducted using a CH₃OH/H₂O (0.1% formic acid) gradient that initiated at 5:95 and increased to 50:50 over 10 min and held with that ratio for 2 min at a flow rate of 0.6 mL/min (50 °C) using an HSST3 column (1.8 μ m, 2.1 \times 100 mm) monitored at 288 nm.

Figure S2. UPLC chromatograms of biomimetic synthesis of flavonolignans (Scheme 2)

(A) reaction of taxifolin (1 equiv), *trans*-coniferyl alcohol (2 equiv), and Ag_2O (4 equiv) in ethyl acetate (0.06 mM) at 75 °C for 96 h; with co-injection (B) of 1; (C) of 2; (D) of 3; (E) of 4. (*Note*: More dilute reaction resulted in more selective formation of the flavonolignans and minimization of the byproducts.)

Method: UPLC was conducted using a CH₃OH/H₂O gradient that initiated at 30:70 and increased to 60:40 over 10 min at a flow rate of 0.4 mL/min (40 °C) using an HSST3 column (1.8 μ m, 2.1 × 100 mm) monitored at 288 nm.

(A) *cis*-coniferyl alcohol; (B) reaction of *cis*-coniferyl alcohol (2 equiv) with with taxifolin (1 equiv) and Ag_2O (4 equiv) in ethyl acetate (0.001 M) at 75 °C after 10 min.; (C) after 2.5 h; (D) after 96 h; (E) after 2.5 h with co-injection of silybin A; (F) after 2.5 h with co-injection of silybin B; (G) after 2.5 h with co-injection of isosilybin A; (H) after 2.5 h with co-injection of isosilybin B.

Method: UPLC conditions same as in Figure S1.

(A) taxifolin; (B) reaction of taxifolin (1 equiv) with Ag₂O (4 equiv) in ethyl acetate (0.001 M) for 96 h at 75 °C; (C) *trans*-coniferyl alcohol; (D) reaction of *trans*-coniferyl alcohol (1 equiv) with Ag₂O (2 equiv) in ethyl acetate (0.001 M) for 115 h at 75 °C.

Method: UPLC conditions same as in Figure S1.

(A) coniferyl aldehyde; (B) taxifolin; (C) reaction of coniferyl aldehyde (2 equiv) with taxifolin (1 equiv) without Ag_2O in ethyl acetate (0.0005 M) for 96 h at 75 °C; (D) Reaction of coniferyl aldehyde (2 equiv) with taxifolin (1 equiv) and Ag_2O (4 equiv) in ethyl acetate (0.0005 M) for 96 h at 75 °C.

Method: UPLC conditions same as in Figure S1.

Figure S6. UPLC chromatograms of co-injection of biomimetic and natural flavonolignans (left column) and purified biomimetic flavonolignans (right column)

(A) natural silybin A and biomimetic silybin A; (B) biomimetic silybin A; (C) natural silybin B and biomimetic silybin B; (D) biomimetic silybin B (E) natural isosilybin A and biomimetic isosilybin A; (F) biomimetic isosilybin A; (G) natural isosilybin B and biomimetic isosilybin B; (H) biomimetic isosilybin B.

Method: UPLC conditions same as in Figure S2.

Figure S7. ¹H NMR spectra (500 MHz in DMSO-*d*₆) of natural (top) and biomimetic (bottom) silybin A

Figure S8. ¹³C NMR spectra (125 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) silvbin A

Figure S9. ¹H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) silvbin B

Figure S10. ¹³C NMR spectra (125 MHz in DMSO-*d*₆) of natural (top) and biomimetic (bottom) silybin B

Figure S11. ¹H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) isosilybin A

Figure S13. ¹H NMR spectra (500 MHz in DMSO- d_6) of natural (top) and biomimetic (bottom) isosilybin B

Figure S14. ¹³C NMR spectra (125 MHz in DMSO-*d*₆) of natural (top) and biomimetic (bottom) isosilybin B

Position	natural 1	biomimetic 1	natural 2	biomimetic 2	natural 3	biomimetic 3	natural 4	biomimetic 4
2	5.08, d (11.5)	5.07, d (11.5)	5.08, d (11.5)	5.06, d (11.5)	5.11, d (10.9)	5.10, d (10.9)	5.11, d (11.5)	5.08, d (10.9)
3	4.63, dd (11.5, 6.3)	4.60, dd (11.5, 6.3)	4.61, dd (11.5, 6.3)	4.59, dd (11.5, 6.3)	4.60, dd (10.9, 6.3)	4.58, dd (10.9, 6.3)	4.61, dd (11.5, 5.9)	4.58, dd (10.9, 6.3)
6	5.91, d (1.7)	5.90, d (1.7)	5.91, d (2.3)	5.86, br d (1.7)	5.92, d (2.3)	5.89, d (1.7)	5.92, d (2.0)	5.86, d (2.3)
8	5.86, d (1.7)	5.86, d (1.7)	5.87, d (2.3)	5.82, br d (1.7)	5.89, d (2.3)	5.86, d (1.7)	5.89, d (2.0)	5.83, d (2.3)
2'	7.09, d (1.7)	7.09, d (1.7)	7.08, d (1.8)	7.07, d (1.7)	7.09, d (2.3)	7.09, d (2.3)	7.10, d (1.8)	7.10, d (1.8)
5'	6.97, d (8.0)	6.97, d (8.0)	6.97, d (8.1)	6.97, d (8.6)	6.93, d (8.6)	6.93, d (8.6)	6.93, d (8.0)	6.93, d (8.0)
6'	7.00, dd (8.0, 1.7)	7.00, dd (8.0, 1.7)	7.02, dd (8.1, 1.8)	7.01, dd (8.6, 1.7)	6.98, dd (8.6, 2.3)	6.98, dd (8.6, 2.3)	6.98, dd (8.0, 1.8)	6.98, dd (8.0, 1.8)
2"	7.01, d (1.8)	7.01, d (1.8)	7.02, d (1.7)	7.02, d (1.7)	7.00, d (1.7)	7.00, d (1.7)	7.00, d (2.3)	7.00, d (1.8)
5"	6.80, d (8.6)	6.80, d (8.0)	6.79, d (8.6)	6.79, d (8.0)	6.80, d (8.6)	6.80, d (8.0)	6.80, d (8.6)	6.80, d (8.0)
6"	6.86, dd (8.6, 1.8)	6.85, dd (8.0, 1.7)	6.86, dd (8.6, 1.7)	6.86, dd (8.0, 1.7)	6.86, dd (8.6, 1.7)	6.86, dd (8.0, 1.7)	6.86, dd (8.6, 2.3)	6.85, dd (8.0, 1.8)
7"	4.90, d (7.5)	4.90, d (8.0)	4.90, d (7.5)	4.90, d (7.5)	4.91, d (8.1)	4.91, d (8.0)	4.91, d (7.5)	4.91, d (8.0)
8"	4.17, ddd	4.17, ddd	4.16, ddd	4.16, ddd	4.16, ddd	4.16, ddd	4.17, ddd	4.17, ddd
	(7.5, 4.6, 2.3)	(8.0, 4.6, 2.3)	(7.5, 4.1, 2.3)	(7.5, 4.1, 2.3)	(8.1, 4.6, 2.3)	(8.0, 4.6, 2.3)	(7.5, 4.6, 2.3)	(8.0, 4.6, 2.3)
9"a	3.53, ddd	3.53, ddd	3.53, ddd	3.52, ddd	3.53, ddd	3.53, ddd	3.54, ddd	3.53, ddd
	(10.3, 5.2, 2.3)	(10.3, 5.2, 2.3)	(9.8, 4.6, 2.3)	(9.7, 5.2, 2.3)	(12.0, 4.6, 2.3)	(12.0, 5.2, 2.3)	(11.9, 5.2, 2.3)	(11.9, 5.2, 2.3)
9"Ъ	3.33, m	3.32, m	3.33, m	3.31, m	3.33, m	3.33, m	3.33, m	3.33, m
3"-OCH ₃	3.77, s	3.77, s	3.77, s	3.77, s	3.78, s	3.77, s	3.77, s	3.77, s
3-OH	5.83, d (6.3)	5.81, d (6.3)	5.83, d (6.3)	5.80, d (6.3)	5.83, d (6.3)	5.84, d (6.3)	5.84, d (5.9)	5.81, d (6.3)
5-OH	11.90, s	11.92, s	11.90, s	11.93, s				
7-OH	10.86, s	-	10.86, s	-	10.85, s	-	10.86, s	-
4"-OH	9.18, s	9.18, s	9.17, s	9.19, s	9.15, s	9.19, s	9.16, s	9.19, s
9"-OH	4.97, dd (5.7, 5.2)	4.96, dd (5.7, 5.2)	4.98, dd (5.7, 4.6)	4.99, dd (5.7, 5.2)	4.95, dd (5.7, 4.6)	4.98, dd (5.7, 5.2)	4.96, dd (5.5, 5.0)	4.97, dd (5.7, 5.2)

Table S1. ¹H NMR data (500 MHz in DMSO-*d*₆) comparing natural flavonolignans to the biomimetic counterparts

chemical shifts in δ , coupling constants in Hz

Position	type	natural 1	biomimetic 1	natural 2	biomimetic 2	natural 3	biomimetic 3	natural 4	biomimetic 4
2	СН	82.6	82.5	82.5	82.5	82.5	82.5	82. 5	82. 4
3	СН	71.4	71.4	71.4	71.4	71.5	71.5	71.5	71.4
4	С	197.8	197.6	197.7	197.6	197.8	197.5	197.8	197.2
4a	С	100.4	100.2	100.4	100.2	100.5	100.2	100.5	100.1
5	С	163.3	163.3	163.3	163.3	163.3	163.4	163.3	163.4
6	СН	96.1	96.2	96.1	96.2	96.1	96.2	96.1	96.3
7	С	167.1	167.5	166.9	167.6	166.9	167.7	166.9	167.0
8	СН	95.1	95.2	95.0	95.2	95.1	95.3	95.1	95.3
8a	С	162.5	162.5	162.4	162.5	162.5	162.5	162.5	162.4
1'	С	130.1	130.1	130.1	130.2	130.3	130.4	130.3	130.4
2'	СН	116.6	116.6	116.6	116.7	116.5	116.5	116.5	116.5
3'	С	143.3	143.3	143.2	143.3	142.9	142.9	142.9	142.9
4'	С	143.7	143.7	143.6	143.6	143.9	143.9	143.9	143.9
5'	СН	116.3	116.3	116.3	116.4	116.4	116.5	116.5	116.5
6'	СН	121.4	121.4	121.4	121.2	120.9	120.9	120.9	120.9
1"	С	127.5	127.5	127.5	127.5	127.5	127.5	127.5	127.5
2"	СН	111.6	111.6	111.6	111.6	111.7	111.7	111.7	111.6
3"	С	147.6	147.6	147.6	147.6	147.6	147.6	147.6	147.6
4"	С	147.0	147.0	147.0	147.0	147.0	147.0	147.0	147.0
5"	СН	115.3	115.3	115.3	115.3	115.3	115.3	115.3	115.3
6"	СН	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5
7"	СН	75.9	75.9	75.8	75.9	75.9	75.9	75.9	75.8
8"	СН	78.1	78.1	78.1	78.1	78.0	78.0	78.0	78.0
9"	CH ₂	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2
3"-OCH ₃	CH ₃	55.7	55.7	55.7	55.7	55.7	55.7	55.7	55.7

Table S2. ¹³C NMR data (125 MHz in DMSO- d_6) comparing natural flavonolignans to the biomimetic counterparts

chemical shifts in $\boldsymbol{\delta}$

Figure S15. ¹H NMR spectra (500 MHz in acetone- d_6) of purchased (top) and synthetic (bottom) coniferyl aldehyde (16)

Figure S17. ¹³C NMR spectrum (125 MHz in acetone- d_6) of (±)-dehydrodiconiferyl alcohol (18)

Position	Туре	Experimental	Literature ^a
		(shift, multiplicity, coupling)	(shift, multiplicity, coupling)
2	СН	7.04, d (2.3)	7.03, d (2.0)
5	CH	6.81, d (8.0)	6.80, d (8.1)
6	CH	6.88, dd (8.0, 1.7)	6.87, ddd (8.1, 2.0 and 0.5)
7	CH	5.56, br d (6.3)	5.56, dt (6.3, not given)
8	CH	3.53, q (6.3)	3.53 br q (not given)
9a	CH_2	3.83, dd (10.3, 6.9)	3.78 m
9b	CH_2	3.88, dd (10.3, 5.2)	3.88 m
OCH ₃	CH ₃	3.82, s	3.81, s
2'	CH	6.95, d (1.7)	6.94, br s
6'	CH	6.98, br s	6.97, br s
7'	CH	6.52, dt (16.0, 1.7)	6.52, dt (15.8, 1.5)
8'	CH	6.23, dt (16.0, 5.2)	6.23, dt (15.8, 5.5)
9'	CH_2	4.20, dd (5.7, 1.8)	4.19, td (5.2, 1.5)
OCH ₃	CH ₃	3.86, s	3.85, s

Table S3. ¹H NMR data (500 MHz in acetone- d_6) comparing biomimetic (±)-dehydrodiconiferyl alcohol (18) to the literature data

chemical shifts in δ , coupling constants in Hz

^aQuideau, S.; John, R. Holzforschung, **1994**, 48, 12-22.

Position	Туре	Experimental	Literature ^a
1	С	134.4	134.4
2	СН	110.5	110.5
3	С	148.4	148.4
4	С	147.4	147.3
5	СН	115.7	115.7
6	СН	119.6	119.6
7	СН	88.6	88.5
8	СН	54.8	54.7
9	CH_2	64.6	64.6
OCH ₃	CH ₃	56.3	56.3
1	С	132.0	131.9
2	СН	111.6	111.7
3	С	145.2	145.1
4	С	149.0	148.8
5	С	130.5	130.4
6	СН	116.1	116.1
7	СН	130.5	130.5
8	СН	128.4	128.3
9	CH_2	63.5	63.4
OCH ₃	CH ₃	56.4	56.4

Table S4. ¹³C NMR data (125 MHz in CDCl₃) comparing biomimetic (±)-dehydrodiconiferyl alcohol (18) to the literature data

chemical shifts in $\boldsymbol{\delta}$

^aQuideau, S.; John, R. Holzforschung, 1994, 48, 12-22.

Figure S18. ¹H NMR spectrum (500 MHz in CDCl₃)of 4-(3-hydroxyprop-1-yn-1-yl)-2-methoxyphenol

Figure S20. ¹H NMR spectrum (500 MHz acetone- d_6) of *cis*-coniferyl alcohol (19)

Position	Туре	Experimental	Literature ^a
		(shift, multiplicity, coupling)	(shift, multiplicity, coupling)
2	CH	6.88, d (1.7)	6.87, d (2.0)
5	CH	6.80, d (8.6)	6.79, d (8.1)
6	CH	6.72, dd (8.0, 1.7)	6.72, dd (8.1, 2.0)
7	CH	6.39, dt (12.0, 1.7)	6.37, dt (11.8, 1.8)
8	CH	5.71, dt (12.0, 6.3)	5.70, dt (11.8, 6.2)
9	CH_2	4.37, br t (4.6)	4.37, ddd (6.2, 5.4, 1.8)
OCH ₃	CH_3	3.84, s	3.84, s
Ar-OH	OH	7.70, br s	7.60, br s
OH	OH	3.89, t (5.2)	3.81, t (5.4)

Table S5. ¹H NMR data (500 MHz in acetone- d_6) comparing biomimetic *cis*-coniferyl alcohol (**19**) to the literature data

^a Ralph, J.; Zhang, Y. S. *Tetrahedron* **1998**, *54*, 1349-1354.