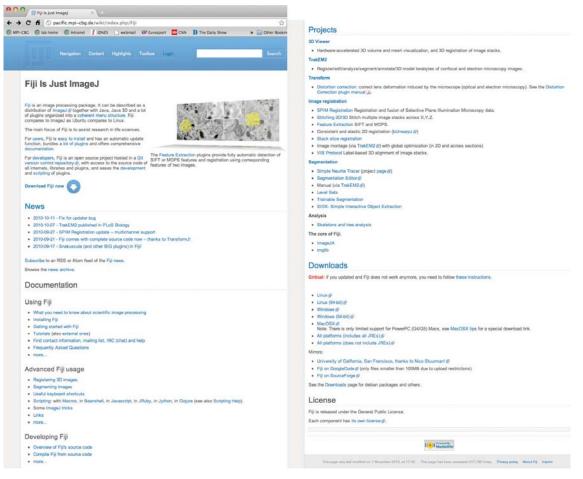

Supplementary Figures

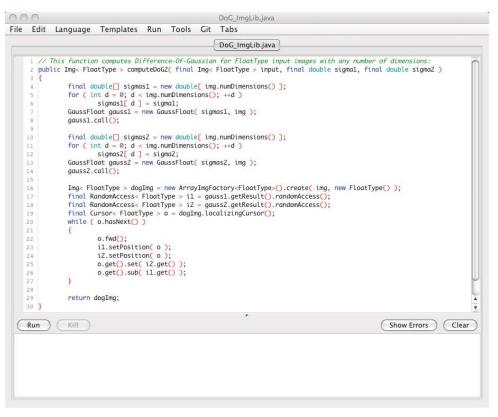


Command Launcher

Register Virtual Stack Slices
Registration
Rigid Registration
StackReg
Statistical Region Merging
TurboReg

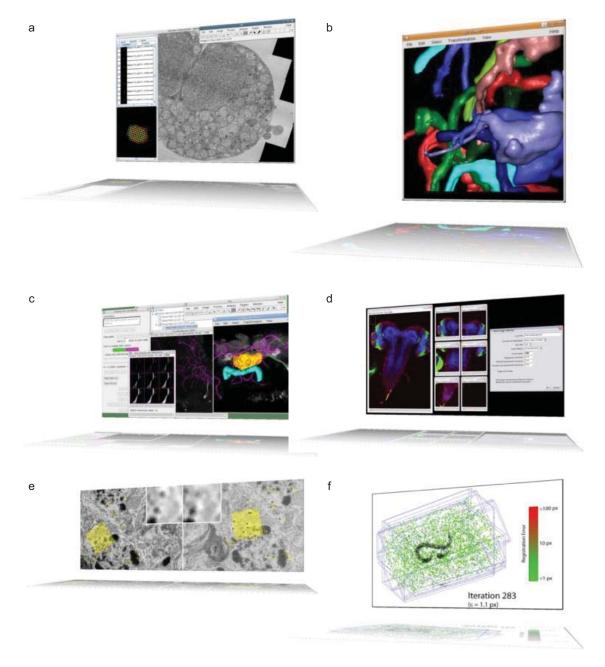
Show full information
Run
Export
Close
Pands
The Fiii application packs several hundred commands

Supplementary Figure 1: Fiji commands The Fiji application packs several hundred commands, organized by category. Each command executes a plugin. *Above*, a snapshot of the *Registration category*. The separation of hundreds of commands into categories relevant to biological researchers greatly aids new users in the discovery of such commands. Most Fiji plugins appear as commands under the *Plugins Menu*; others are inserted into the other menus inherited from ImageJ. For best ease of use, a Command Finder command (*below*), launched via the keybinding *I* (lowercase L), provides the means to find and launch any command with a real-time search that responds to keystrokes. Where a plugin appears in the menu is specified in the *plugins.config* file packed in the plugin's jar file. Any plugins that are not part of Fiji but which adhere to this ImageJ convention will integrate transparently with the Fiji menus.


Supplementary Figure 2: Fiji Wiki. Screenshot of Fiji wiki pages at http://fiji.sc showing overview of the project, news section, documentation, selected Fiji projects, downloads and license information. The wiki has 353 pages with content related to Fiji and ImageJ, with numerous tutorials and details on both usability and the algorithms underlying the functionality of the respective plugins.

Batch-processing: swap red and green channels for a set of image stacks

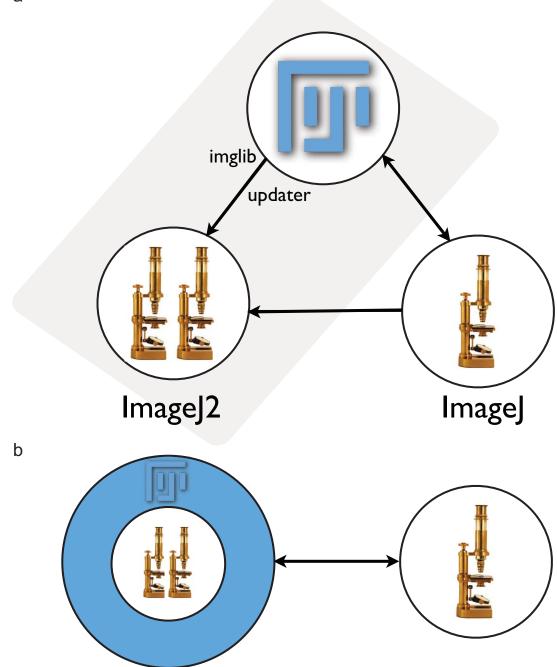
Supplementary Figure 3: Scripting in Fiji. An example of a simple Jython script that achieves relatively simple task of swapping the channels (using *ImgLib* lines 15 and 16) but is able to apply it to a directory of images using file manipulation commands inherent to the scripting language.


а

b

	DoG ImgLib.java MSER ImgLib.java	
1 // computing MSER region tree fo		
<pre>2 final Img< T > input;</pre>		
3 // with the only restriction that	at T extends RealType <t></t>	
4		
5 // parameters of the algorithm		
	// delta intensity levels for computing instability score.	
	<pre>// minimum size (in pixels) of accepted MSER.</pre>	
	<pre>// maximum size (in pixels) of accepted MSER.</pre>	
	<pre>// maximum instability score of accepted MSER.</pre>	
	; // minimal diversity of adjacent accepted MSER.	6-1
	lse; // whether to apply thresholds from dark to bright (true) or bright to dark (f ee = MserTree.buildMserTree(byteIma, delta, minSize, maxSize, maxVar, minDiversity	
12 Mserfree< Unstgnedbyterype > tre	ee = Mserfree.bullumserfree(byteing, delta, minsize, maxsize, maxvar, minbiversity	, aarktobright),
15		
	·	
Run) (Kill)	(-5	Show Errors) (Clear

Supplementary Figure 4: Examples of ImgLib code. (a) Screenshot of the *Script Editor* with ImgLib code that computes Difference of Gaussian (DoG) for float type input images with any number of dimensions. (b) Screenshot of the *Script Editor* with ImgLib code that computes Maximally Stable Extremal Regions (MSER) for float type input images with any number of dimensions.



Supplementary Figure 5: Fiji Projects. (a) TrakEM2 is an ImageJ plugin for morphological data mining, three-dimensional modeling and image stitching, registration, editing and annotation. (b) 4d viewer offers hardware-accelerated visualization for image stacks. Stacks can be displayed as texturebased volume renderings, surfaces or orthoslices. The viewer can be steered programatically through a powerful API. (c) The Simple Neurite Tracer plugin is designed to allow the semi-automatic tracing of neurons or other tube-like structures through 3D image stacks. (d) The 2D/3D Stitching Plugin is able to reconstruct big images/stacks from an arbitrary number of tiled input images/stacks. (e) The Feature Extraction plugins identify a set of corresponding points of interest in two images and export them as PointRoi. (f) SPIM registration plugin enables bead-based registration of multi-view microscopy data (particularly SPIM).

Last Update: Reported period:	31 Mar 2012 - 11:01		404		
		Summary			
Reported period First visit Last visit	Month Mar 2012 01 Mar 2012 - 00:00 31 Mar 2012 - 10:49				
	Unique visitors	Number of visits	Pages	Hits	Bandwidth
Viewed traffic *	25,087	44,966 (1.79 visits/visitor)	495,564 (11.02 Pages/Visit)	1,591,126 (35.38 Hits/Visit)	1419.05 GB (33091.23 KB/Visit)
Not viewed traffic *			1,656,859	2.499.751	213.72 GB

Jan 2012	Feb Mar /	Apr May Jun 012 2012 2012	Jul Aug 9 2012 2012 2	ep Oct Nov	Dec 2 2012
Month	Unique visitors	Number of visits	Pages	Hits	Bandwidth
Jan 2012	25,605	47,839	465,765	1,520,022	1205.78 GB
Feb 2012	22,924	44,459	480,035	1,574,978	1318.43 GB
Mar 2012	25,087	44,966	495,564	1,591,126	1419.05 GB
Apr 2012	0	0	0	0	0
May 2012	0	0	0	0	0
Jun 2012	0	0	0	0	0
Jul 2012	0	0	0	0	0
Aug 2012	0	0	0	0	0
Sep 2012	0	0	0	0	0
Oct 2012	0	0	0	0	0
Nov 2012	0	0	0	0	0
Dec 2012	0	0	0	0	0
		137,264	1,441,364	4,686,126	3943.26 GB

Supplementary Figure 6: An estimate of Fiji users based on wiki traffic. A screenshot of web-site traffic statistics generated using *awstats* tool for the month of March 2012. 25087 unique IP addresses visited the website http://fiji.sc over the period serving 1.4 terabyte of data.

Supplementary Figure 7: The future of Fiji as application layer of ImageJ2. (a) Fiji was always synchronized with the versions of ImageJ developed by Wayne Rasband to ensure backward compatibility. More recently Fiji was also synced with ImageJ2, a new project aiming at a complete redesign of the ImageJ core. Fiji contributed some of its advanced infrastructure plugins such as Updater and ImgLib to ImageJ2. (b) In the future Fiji will become an application oriented, outer layer of ImageJ2 using the powerful new ImageJ2 facilities while still maintaining backward compatibility with the classic ImageJ.

	Plugins
Analysis	
3D Objects Counter	Quantification of connected components in 3D
Analyze Skele- ton	Calculate statistics on skeletonized objects in bi- nary images
Colocalization	Calculate Pearson and Manders coefficients and
	make scatter plots for colocalization analysis
Coloc 2	Calculate Pearson, Manders and other colocal- ization coefficients and make scatter plots for colocalization analysis
Delaunay/Vorono	i Provide a triangulation or Voronoi diagram for a given set of points
Directionality	Quantify direction in images with oriented tex- tures
Exact Euclidean Distance	A linear-time exact algorithm for multi- dimensional Distance Transform
FlowJ	Optical flow analysis
IsoData Classi- fier	Histogram-based multi-level thresholding
Local Thickness	Quantification of linear structures' thickness in two or three dimensions
PIV Analyser	Particle Image Velocimetry, an optical flow algo- rithm
Shape Index Map	Local surface shape classification
Shape-based Averaging	Make averages of multiple images preserving shapes
Skeletonize 3D	Skeletonize 3D objects in binary image stacks
Surfaceness	Study the morphology of volumetric data con- taining surface-like structures
Temporal Color Coder	Color-coded maximum intensity projection of time series
ТороЈ	Analysis of surface topology
Tubeness	Enhance tube-like structures in volumetric data
Image transform	ation
3D Morphology	Morphological operations on 3D binary images
Anisotropic Dif- fusion	Edge-preserving blurring
Bilateral Filter	An edge-preserving Gaussian blur
Colour Decon-	Identification of fluorophores by color
volution Differentials	Differential operators
Dynamic	Make a kymograph along a line of interest, up-
Reslice	dated interactively
Extended Depth	Stack focusing, i.e. make in-focus images from
Field	stacks where each (x,y) coordinate is in focus in only one or two z slices

Simple Neurite	Semi-interactive segmentation of fiber-like struc-
Tracer	tures, as well as analysis of the resulting data.
Snakuscule	Circular active contours
Statistical Re-	Automatic Region Merging based on a statistical
gion Merging	test of the intensity differences
Trainable	Advanced machine learning technique to extract
Segmenta-	a segmentation model from example segmenta-
tion/Weka	tions
Segmentation	
Registration	
bUnwarpJ	Automatic bijctive elastic registration of 2D im- ages
Align images by	Rigid registration according to line selections in
a common line	two images marking the same structure
Moving Least	Landmark-based registration, interpolating the
Squares	transformation as rigidly as possible
Register Virtual	Register unaligned slices of one stack, with min-
Stack Slices	imal memory requirements
Rigid Registra-	Automatic and manual rigid registration of two 3D
tion	images
SPIM Registra-	Register multiple 3D images of the same sample,
tion	recorded from different angles
StackReg	Automatic 3D alignment of two image stacks
TurboReg	Automatic 2D alignment of two images
VIB Protocol	The Virtual Insect Protocol aims to facilitate
	anatomical studies from multiple samples
Stitching	
MosaicJ	Semi-automatic stitching of 2D image mosaics
Stitching 2D/3D	Automatic stitching of 3D image mosaics
Annotation	
Arrow Tool	Draw and adjust arrows
Series Labeler	Versatile time stamper
Stack Manipula-	Reorder, recombine, interleave stacks and other
tion	stack-specific operations
Sync Win	Track current mouse coordinates in other images
Visualization	1
3D/4D Viewer	Using Java3D for hardware-accelerated 3D/4D
	display of images
Dichromcay	Simulating color blindness
Interactive 3D	Interactively display a 2D image as a height field
Surface Plot	
Multi Kymo-	Kymographs (intensity over time plots) from
graph	stacks and line selections
Panorama	Visualize panorama images in a pannable view
equirectangular	
Listan	
view	

Script Editor	A versatile editor helping to write scripts
guage	
"script" lan-	classes as if they were scripts
Java as a	For rapid prototyping, Fiji can treat simple Java
ples	can be adjusted to one's own needs
Scripting Exam-	Fiji comes with a large number of examples that
JRuby, Jython	
jure, Javascript,	commands
Beanshell, Clo-	Support for scripting and interactive evaluation of
Scripting	
SVG Reader	Render SVG into a raster image
Reader	
Reconstruct	Import Reconstruct projects as TrakEM2 projects
PDF Writer	Make a .pdf file from one or more images
PDF Reader	Render a PDF document into an image stack
Nrrd Reader	Reader for the Nearly Raw Raster Data format
Reader/Toolbox	Zeiss
LSM	Special-purpose I/O for the file format used by
Export EPS	Write images as .eps files for publication
IPLab Reader	Import files in the IPLab format
	graph
DM3 Reader	Import files produced by the Gatan Digital Micro-
Reader/Writer	
DF3	Load and save files in the Povray texture format
Reader/Writer	Biorad's software
Biorad	Load and save images in the format written by
	monly used by microscope vendors' software
Bio-Formats	Read/write support for 100 file formats com-
Reader/Writer	files
Animated GIF	Load and save image stacks as animated GIF
Reader/Writer	
Analyze	Load and save files in the Analyze file format
Reader/Writer	
Amira	Load and save 3D images in the Amira file format
Input/output	
	celeration
Volume Viewer	Volume rendering without requiring hardware ac-
	ing, and more
	convenient data inspection, basic particle track-
View 5D	Display up to 5D volumetric datasets, offering
Video Editing	Basic video editing tools for editing screencasts
Magenta	ages
Replace Red by	A tool to fix color blind-unfriendly red/green im-
	casts

Automatic class	Make it possible to run plugins compiled for Java
version transla-	1.6 on older Java versions (e.g. on MacOSX ver-
tor	sions prior to 10.6)
Bug Submitter	Provide an easy and convenient way to submit a
	bug report
Context help	Open the Fiji Wiki page corresponding to a given
	menu item
Fiji Updater	Effortless and user-friendly way to stay up-to-
	date
IJ Robot	Automate mouse clicks and keyboard presses
Multiple Image	Batch process images in a directory output to an-
Processor	other directory
Upload Sample	Allow users to upload large sample images for
Image	use by the Fiji developers
Interoperability	
Miji	Provide a user-friendly way to use Fiji from within
	Matlab
Miscellaneous	
ImageJ/ImageJA	A custom ImageJ version that frequently con-
	tains cutting edge features which are then inte-
	grated into ImageJ
QuickPALM	Software support for Photo-Activated Light Mi-
	croscopy (superresolution microscopy)
RandomJ	Generate artificial noise adhering to given pa-
	rameters
Thread killer	Stop runaway processes
TrakEM2	Work with large mosaics, e.g. obtained via EM
	(segmentation, stitching, registration and much
	more)
Developing Fiji	
Eclipse Net-	Fiji has support for popular development environ-
beans IntelliJ	ments
support	
Tutorial Maker	A very fast way to make tutorials in Fiji and up-
	load them to the Fiji Wiki
	-

Table 1: Overview of Fiji plugins The table list all plugins currently provided by the Fiji Updater system together with a short description. Plugins developed specifically for Fiji are highlighted in blue (77 of 111 total). The remaining plugins are inherited or selected from ImageJ.