Behar et al Supplemental Materials

Supplemental Material

Supplemental Tables

Table	Title	page
S1	Conceptual model: kinetic rate constants for conceptual model in Figure 1	2
S2	Virtual screen: kinetic rate constants for modules	3
S3	Virtual screen: parameter values for input functions	4
S4	Principles governing dynamic specificity	5
S5	NFκB Model: reactions, species, and paramerter values	6
S6	NFκB Model: IKK input functions	7
S7	NFκB Model: Biochemical and pharmacologic groupings of parameters	8

Supplemental Figures

Figure	Title	page
S1	Dose responses for the virtual screen	9
S2	Early-Late classification for the virtual screen	10
S3	Detailed Analysis of modules M3 and M4	11
S4	NFκB Model: effect of perturbations	13
S5	NFκB Model: Wiring diagram and parameters	14

Feedb	ack hub	TF2		
k1	0.125	k5a	0.014	
k2a	0.0066	k5b	0.0006	
k2b	0.75	TF1		
k3	0.07	k6	0.5	
k4	0.025	k7a	0.01	
km1	0.075	k7b	20	
km2b	0.015	k8	0.1	
km3	0.0025	k9	0.001	
km4	0.0025	km8	0.05	
Pertur	bation A	km9	0.05	
k1 0.01				
Perturb	ation FBR			
k4	0.00004			

Supplemental Table S1: Rate constants used to simulate the simple network model (See Figure 1). The names of the rate constants correspond to equations 1-5 in Methods.

	M		M5			
k1	0.0)85	R2	k1	0.075	R6
k2	0.085		R2	k2a	0.025	R6
km1	0	.1	Ν	k2i	5.0	R8
km2	0.	.1	Ν	k3	0.025	R8
	M	2		k4	0.01	R5
k1	0	.1	R2	km1	0.1	Ν
k2a	0.0	05	R2	km2	0.1	Ν
k3	0.0	04	R2	km3	0.1	Ν
km1	0.	.1	Ν	km4	0.1	Ν
km2	0.	.1	Ν		M6	
km3	0.	.1	Ν	k1	0.075	R5
	M3 -	M3'		k2a	0.025	R5
k1	0.075	0.125	R5	k2i	2.5	R5
k2a	0.025	0.01	R5	k3	0.025	R5
k2b	0.075	0.25	R7	k4	0.01	R2
k3	0.025	0.02	R5	km1	0.1	Ν
k4	0.01	0.01	R4	km2	0.1	Ν
km1	0.1	0.1	Ν	km3	0.1	Ν
km2	0.1	0.1	Ν	km4	0.1	Ν
km3	0.1	0.025	Ν		M7	
km4	0.1	0.025	Ν	k1	0.075	R6
	M4 -	M4'		k2a	0.01	R6
k1	0.075	0.25	R3	k2i	0.25	R6
k2a	0.025	0.05	R5	k3	0.25	R6
k2b	0.075	1.0	R4	k4	0.25	R6
k3	0.025	0.04	R3	km1	0.1	Ν
k4	0.01	0.04	R2	km2	0.1	Ν
km1	0.1	0.05	Ν	km3	0.1	Ν
km2	0.1	0.05	Ν	km4	0.1	Ν
km3	0.1	0.05	Ν	km2i	0.1	Ν
km4	0.1	0.05	Ν			

Supplemental Table S2: Rate constants for modules M1-7 used in the virtual screen (relate to Figure 2). The parameter names correspond to equations 10-25 in Methods. Multiplier range used to simulate perturbations are indicated next to each parameter $(R_n = 2^{-n} \text{ to } 2^n \text{ in } n/20 \text{ increments})$. Parameters indicated as N were not varied. Models M3' and M4' were used to generate Figure 4.

Behar et al Supplemental Materials

S	Function	sl	sb	sh	tr	td	tp1	tc	j	h
1	F1	0	0.005	1	0.5	0	10	0.5	NA	NA
2	F1	0	0.005	1	0.5	0	60	0.5	NA	NA
3	F1	0	0.005	1	0.5	0	180	5	NA	NA
4	F1	0	0.005	1	2.5	0	15	2.5	NA	NA
5	F1	0	0.005	1	10	0	15	300	NA	NA
6	F1	0	0.005	1	0.5	0	300	0.5	NA	NA
7	F2	0	0.005	NA	NA	0	NA	NA	0.01	9
8	F1	0	0.005	1	300	0	15	0.5	NA	NA
9	F1	0	0.005	1	180	0	15	0.5	NA	NA
10	F1	0	0.005	1	125	0	15	125	NA	NA

Supplemental Table S3: Parameters used to define the input functions S1-10 in the virtual screen. Parameter names correspond to equations 6-7 in Methods (F1 and F2, respectively). Parameters marked as NA do not apply to that particular function.

		Response					
		Out-of-Equilibrium	Quasi-equilibrium	Steady-State			
Perturbations that affect	Time-scale	Affected if the change in the balance of internal and stimulus-related time scales is substantial.	Typically affected with simple perturbations because of their collateral effects on dose responses. Change in the kinetics may delay them but otherwise leave the amplitude unaffected.	<u>Not affected</u>			
	Dose- response	Not affected unless the areas of the dose response curves that bound the response are changed significantly.	Typically affected.	Typically affected unless the change in the shape of the curve does not alter the equilibrium level of the signaling species.			

Supplemental Table S4: Principles governing dynamic effects of simple perturbations

(relate to Figure 3). How a simple perturbation affects out-of-equilibrium, quasiequilibrium dynamics, or steady state depends on whether the primarily effect is on time-scales or dose-response surfaces. Complex perturbations (involving multimple reacions) allow for more selective control See attached spreadsheet file.

Supplemental Table S5. Reactions and Rate Constants for the NFkB model (relate to

Figure 5 and 6). The 73 reactions that make up the system are listed, with addition details. Two RNA synthesis reactions (69,70) also have a hill coefficient of 3, to represent transcriptional nonlinearity (cooperative binding). The parameter ID number correspond to the diagram in Figure S5 and Table S7.

Min	TNFc	TNFp	LPS	LPS-TNF
0	1	1	1	1
5	59.38	59.38	1.5	3
10	100	100	2	4
15	64.57	64.57	2.5	5
20	50.15	50.15	3	5
25	35.73	35.73	3.5	5
30	30	21.3	4	5
35	30	19.66	4.5	5
40	30	18.03	5	5
45	30	16.39	5.5	5
50	30	14.16	6	4.33
55	30	11.93	6.5	3.67
60	30	9.7	7	3.00
65	30	8.25	7.5	2.67
70	30	6.8	8	2.33
75	30	5.35	8.5	2.00
80	30	3.9	9	1.67
85	30	2.45	9.5	1.33
90	30	1	10	1
95	30	1	10.5	1
100	30	1	11	1
105	30	1	11.5	1
110	30	1	12	1
115	30	1	12.5	1
120	30	1	13	1
125	30	1	14	1
130	30	1	15	1
135	30	1	16	1
140	30	1	17	1
145	30	1	18	1
150	30	1	19	1
155	30	1	20	1
160	30	1	21	1
165	30	1	22	1
170	30	1	23	1
175	30	1	24	1
180	30	1	25	1

Supplemental Table S6: IKK Profiles for the NF_KB simulations (relate to Figures 5 and 6). The figures shown are percentages, and represent the percent of total IKK which is phosphorylated and thus active. LPS-TNF was derived from measurements of IKK activity in TNF ko cells (Werner et al., 2005) and used for simulations in Figure 6.

Devenetor #	Description	Grouping			
Parameter #	Description	biochem.	pharm.		
8,10,12,13,14,15	Association IkB-NFkB	b1			
16,23,28	Dissociation IkBα-NFkB	b6			
18,25,29	Dissociation IkBβ-NFkB	b7			
20,27,30	Dissociation IkBE-NFkB	b8			
7,9,11	Association IKK-IkB	b26			
17,22	Dissociation IKK-IkBα	b29			
19,24	Dissociation IKK-IkBβ	b30			
21,26	Dissociation IKK-IkB	b31			
1,3,5	Association IKKIkB+NFkB	b27			
2,4,6	Association IkBNFkB+IKK	b28			
37	Export NFkB	b14			
44	Import NFkB	b13			
31,32,33	Export IkB-NFkB	b11			
38,39,40	Import IkB-NFkB	b9			
34,35,36	Export IkB	b12			
41,42,43	Import IkB	b10			
54,55,56	Degradation IkB	b4	MG132		
46,48,50	Degradation IkB-NFkB	b2	MG132		
45,47,49	Degradation IKK-IkB	b5	MG132		
51,52,53	Degrad. IKK-NFkB-lkB	b3	MG132		
63		b15	CHX		
64	IkB Protein synthesis	b16	CHX		
65		b17	CHX		
66		b23			
67	IkB RNA degradation	b24			
68		b25			
71		b20	TSA		
72	IkB RNA synthesis	b21	TSA		
73		b22	TSA		
69	NF-kB responsive	b18	PDTC		
70	RNA synthesis	b19	PDTC		

Supplemental Table S7: NF_KB model: Biochemical & Pharmacological Grouping (relate to Figures 5 and 6). Related biochemical parameters identified as biochemical groups b1-b31. Selected pharmacologic agents affect the indicated parameters, defining the pharmacologic groupings. The parameter number corresponds to the labels in Figure S5.