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Reagents and instruments:  

Unless otherwise stated, all the reagents for the synthesis of drug conjugates were obtained from 

Sigma-Aldrich (St. Louis, Missouri, USA) and used as received. 
1
H NMR spectra were recorded 

using a Varian 400 MHz spectrometer. High performance liquid chromatography–mass 

spectrometry (HPLC-MS) analysis was performed using a Waters (Milford, MA) LC-MS 

system. A Waters XTerra C18 5 µm column was used for HPLC-MS analysis (eluents: 0.1% 

trifluoroacetic acid (v/v) in water and acetonitrile). Fluorescence spectra were recorded in a 

TECAN microplate reader. High-resolution electrospray ionization (ESI) mass spectra were 

recorded using a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform mass spectrometer (FT-

ICR-MS) in the Department of Chemistry Instrumentation Facility at the Massachusetts Institute 

of Technology.  

 

Synthesis of PARPi-BODIPYc: 

The Carboxyl functionalized Caged BODIPY was synthesized by following a literature 

procedure.
1
 PARPi was synthesized according to a previously described procedure.

2, 3
 Carboxyl 

functionalized Caged BODIPY (2.8 mg, 4.96 μmol) and PARPi (1.8 mg, 4.96 μmol) were 

dissolved in dry DMF (500 μl). To this solution O-(Benzotriazol-1-yl)-N,N,N',N'-
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tetramethyluronium Hexafluorophosphate (HBTU, 3.8 mg, 10.02 μmol) and triehylamine (Et3N, 

2.07 μl, 14.89 μmol) were added. The reaction mixture was stirred at room temperature (RT) for 

~48 h. The reaction mixture was directly loaded onto a C18 reverse phase column for 

purification (eluents: 0.1% trifluoroacetic acid (v/v) in water and acetonitrile. gradient: 5% 

acetonitrile in water to 95% acetonitrile in water, v/v). The product isolated as brown solid. 

Yield: 2.95 mg, 65%. 
1
H NMR (400 MHz, CD3OD): 8.38 (m, 1H), 8.08 (d, 2H,

 
J = 8 Hz), 7.95 

(d, 1H,
 
J = 7.2 Hz), 7.84 (m, 2H), 7.72 (t, 1H, J = 8.2 Hz), 7.67 (m, 1H), 7.50 (m, 1H), 7.40 (d, 

1H, J = 8.4 Hz), 7.37 (m, 1H), 7.34 (m, 1H), 7.17 (t, 1H, J = 8.8 Hz), 6.10 (s, 2H), 5.50 (s, 2H), 

4.39 (s, 2H), 3.80-3.34 (m, 8H), 2.45 (s, 6H), 1.50 (s, 6H). LC-ESI-MS: found m/z = 893.38 [M 

− F]
+
, 911.35 [M − H]

− 
; calculated m/z = 893.30 [M − F]

+
, 911.29 [M − H]

−
. HRMS: [M-F]

+ 
m/z

 

calculated 893.3030 for C47H40BF2N8O8 found 893.3059. 

 

                         

Scheme S1. Synthetic scheme for the preparation of PARPi-BODIPYa. 

Synthesis of PARPi-BODIPYa: 

The Carboxyl functionalized activated BODIPY was synthesized by following a literature 

procedure.
1
 Carboxyl functionalized activated BODIPY (2.30 mg, 6 μmol) and PARPi (2.20 mg, 

6 μmol) were dissolved in dry DMF (500 μl). To this solution O-(Benzotriazol-1-yl)-N,N,N',N'-

tetramethyluronium Hexafluorophosphate (HBTU, 4.55 mg, 12 μmol) and triehylamine (Et3N, 

2.50 μl, 18 μmol) were added. The reaction mixture was stirred at room temperature (RT) for 

~24 h. The reaction mixture was directly loaded onto a C18 reverse phase column for 

purification (eluents: 0.1% trifluoroacetic acid (v/v) in water and acetonitrile. gradient: 5% 

acetonitrile in water to 95% acetonitrile in water, v/v). The product isolated as orange solid. 

Yield: 0.80 mg, 18%. 
1
H NMR (400 MHz, CDCl3): 10.07 (s, 1H), 8.45 (m, 1H), 7.77 (m, 2H), 
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7.71 (m, 1H), 7.50 (m, 1H), 7.45 (m, 1H), 7.32 (m, 2H), 7.20 (m, 1H), 7.05 (t, 1H, J = 8.6 Hz), 

5.99 (s, 2H), 4.27 (s, 2H), 3.80-3.04 (m, 8H), 2.53 (s, 6H), 1.50 (s, 6H). LC-ESI-MS: found m/z 

= 713.35 [M − F]
+
 and 731.30 [M − H]

− 
; calculated m/z = 713.29 [M − F]

+
 and 731.28 [M − 

H]
−
. HRMS: [M-F]

+ 
m/z

 
calculated 713.2859 for C40H36BF2N6O4 found 713.2853. 

 

HPLC-MS characterization of the photocleavage of PARPi-BODIPYc: 

 A 3.0 mM solution of caged 4-OHC in 1:1 (v/v) water:acetonitrile was used for the HPLC-MS 

study. The solution of the PARPi-BODIPYc was placed in a glass vial and irradiated at ~365 nm 

using a hand held UV lamp. Aliquot was taken after 10 min time interval and injected to the 

HPLC-MS machine for analysis. Prism 5 (GraphPad, La Jolla, CA) for Mac was used to plot the 

data. 

Fluorescence spectroscopy characterization of the photocleavage of PARPi-BODIPYc: 

 A 1 μM solution of PARPi-BODIPYc in 1:1 (v/v) water:acetonitrile was used for the 

fluorescence spectroscopic characterization of the photocleavage reaction. The solution of the 

PARPi-BODIPYc was placed in a 96 well black clear bottom microplate. The solution was then 

irradiated at ~365 nm using a hand held UV lamp. After light exposure, fluorescence spectra of 

the solution were recorded in a TECAN microplate reader. Time course of the photocleavage 

reaction was monitored by exposing the PARPi-BODIPYc solution to light for different 

durations, and subsequently recording the fluorescence spectra of the solution. Prism 5 

(GraphPad, La Jolla, CA) for Mac was used to plot the data. 

 

PARPi derivatives used for activity assay: 
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Supporting figure 1. Chemical structures of the unlabeled and labeled variants of PARPi used 

for the activity assay. 

 

Inhibitory potential and cell viability assays:   

The inhibitor potential of the PARPi derivatives was quantified using the commercially available 

HT Universal Colorimetric PARP Assay Kit (Trevigen, Gaithersburg, MD) in triplicate 

according to the manufacturers specifications.  Two-fold dilutions of PARPi derivatives were 

incubated with 0.5U of PARP high specific activity (HSA) enzyme for 10 minutes in histone-

coated 96-well plates; final concentrations of PARPi derivates ranged from 10 μM to 1 nM and 0 

nM PARPi was included in the assay as an activity control.  All reaction mixtures were adjusted 

to a final volume of 50 μL and a final concentration of 0.5% dimethyl sulfoxide (DMSO) in 

assay buffer.  PARP-1 activity was measured by absorbance at 450nm in each well using a Tecan 

Safire2 microplate reader (Tecan Group, Mannedorf, Switzerland). The half maximal inhibitor 

concentration values and associated 95% confidence intervals were computed in MATLAB by 

minimizing the sum of squared residuals between the measured absorbance and a three-

parameter sigmoidal dose response function.   To achieve this, the nonlinear regression function, 

nlpredci, was applied to the normalized and log-transformed absorbance data.  Toxicity profiles 

of the derivatives were assayed using 1X PrestoBlue Cell Viability Reagent (Life Technologies, 

Catalog #A-13261) after 120 h exposure to the PARPi derivatives; the viability assay was 

repeated for each derivate in triplicate.  The BRCA1-mutant breast cancer cell line, MDA-MB-

436, was cultured in RPMI 1640 medium supplemented with 10% Fetal Bovine Serum, L-

glutamine, 100 IU penicillin, and 100 μg/mL streptomycin at 37∘C and 5% CO2.  Cell viability 

assays were performed in a 96-well format and 2,000 cells were seeded per well 24 h prior to 

inhibitor administration.  The concentration of inhibitor was serially diluted from 10 μM to 1 nM 

and similarly, half maximal inhibitor concentration values were computed using MATLAB 
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according to a three-parameter sigmoidal dose response function. 

 

Photoactivation and imaging: 

The construction of pTag-H2B-Apple has previously been reported;
3
 this vector was transfected 

in HT1080 cells using the X-tremeGENE HP transfection reagent (Roche, Basel, Switzerland), 

followed by selection in 500 μg/mL G418.  Single clones were screened for H2B-Appple 

expression by fluorescence microscopy and cells were maintained in minimum essential medium 

supplemented with 10% fetal bovine serum, 100 IU penicillin, 100 μg/mL streptomycin, 2 mM 

L-glutamine, nonessential amino acids and 100 μg/mL G418.  300,000 cells were plated per 

35mm dish in phenol red-free medium and allowed to attach for 48 h.  The cells were incubated 

at with PARPi-BODIPYc for 1 h at 37℃ prior to imaging; no washout steps were necessary.   

Imaging was performed on a DeltaVision microscope (Applied Precision Instruments, Issaquah, 

WA) with a 20x objective; pre- and post-activation images were acquired with 4x zoom; and 

single cells were activated at 10x zoom with just 6 scans from the 405 nm laser at full power.  

Time-lapse microscopy was performed to trace drug activation and loss in single cells.  To 

validate nuclear localization of BODIPY fluorescence after substrate washout, cells were 

incubated with PARPi-BODIPYc conjugate for 1h and subsequently, were washed twice with 

phenol red-free media. Three hours after inhibitor washout, single cells were activated as 

previously described using the 405 nm laser. Nuclear co-localization was observed by overlaying 

nuclear Apple fluorescence with BODIPY fluorescence using ImageJ software.   
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Supporting figure 2. Cell viability of MDA-MB-436 cells (breast cancer) after 120 h exposure 

to unlabeled and labeled variants of PARPi (● PARPi, ▪PARPi-BODIPY Fl, ◆ PARPi-BODIPYc, 

○ PARPi-BODIPYa).  Corresponding IC50 values are included in the legend. 

                               

Supporting figure 3. Change in fluorescence intensity during repetitive signal acquisition from 

PARP-BODIPYa. A 1 μM solution of PARPi-BODIPYa in 1:1 (v/v) water:acetonitrile was 

excited at 470 nm for 100 times (every 15 sec interval) and the fluorescence intensity was 

measured at 519 nm. Fluorescence intensity was normalized against fluorescence at t=0 sec. A 

minimal decrease in fluorescence was observed over time, indicating good photostablity of the 

fluorescent derivatives.    
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Supporting figure 4. Population kinetics of activated drug efflux acquired at three sampling 

frequencies (reported as the mean +/-SEM of 9-11 cells per condition). No significant differences 

were observed between the population efflux slopes (p=0.26) for frames sampled every 12, 30 

and 60s, indicating negligible photobleaching effects. Relative fluorescence values were 

computed as a fraction of the maximum signal achieved after photo activation. Single cells were 

segmented using an active contour algorithm developed in MATLAB.   
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Supporting figure 5. HPLC analysis coupled with evaporative light scattering detection (ELSD) 

and absorbance detection of the a) caged derivative (PARPi-BODIPYc) and b) the fluorescent 

derivative (PARPi-BODIPYa) of PARPi. A single peak (both in ELSD and absorbance based 

detection) was observed in the HPLC chromatogram of the respective compound, indicating the 

high purity of the synthesized compounds. 

a)

b)
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Figure 6. HRMS spectra of PARPi-BODIPYc. HRMS: [M-F]
+ 

m/z
 
calculated 893.3030 for 

C47H40BF2N8O8 found 893.3059. 
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Figure 7. HRMS spectra of PARPi-BODIPYa. HRMS: [M-F]
+ 

m/z
 
calculated 713.2859 for 

C40H36BF2N6O4 found 713.2853. 
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