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Circular Differential Scattering 

1. Calculations 

All calculations are based on the analytical model first proposed by Bustamante et al. (1). We correct a small error that 
appears in their final expression for the circular differential scattering intensity(in Ref. (1)). We extend the calculations 
and also consider helical scatterers of finite thickness. Results from the corrected single helical scatterer (Ref. (1)) as well 
as the thick helix are shown.  

The circular differential scattering intensity (CDSI) is defined as (2): 
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where  ��,��, 
� are the intensities of the scattered light propagating in the direction defined by the polar angles ��, 
� for 
left (l) or right (r) circularly polarized light incident upon the sample. In general, scattering can be modeled by consider-
ing a finite object to consist of point polarizabilities �� arranged in space. The scattered field at position r’ is then given 
by: 
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where the electric field amplitude of the incident field is �*. The wave vector of the scattered radiation is � 2, -. 	!" , and Δ! � ! � !*. By expressing all quantities used in Eq.( 2 ) in terms of a well-defined space-fixed and a scatterer-fixed coor-
dinate systems it is possible to find an analytical expression for the rotationally averaged scattering intensity (averaging 
over all possible orientations of the scatterer). The isotropic differential scattering intensity ��� for a scatterer of arbitrary 
shape is then (1, 3): 
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here r’ is the distance between the scattering volume and the detector, and  :�) � H�) � ��H:" �) is the distance between the 

polarizabilities 4�  and 46 with principle axes 78� and  78). The functions j1 and j2 are the spherical Bessel functions of the first 

kind of, respectively, first and second order. Their argument is defined by: 
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Fig. SI-1: a) Depicted is a thin helix, pitch P and radius a, composed of uniaxial point polarizabilities (red dots). b) Shows a multi 
helix stack with the same pitch, but increasing radius. The direction of the principal axes is indicated by the arrows. See text for 
details.  
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Similarly, an expression for the total scatted intensity TSI can be derived (see (1)). A number of simplifications can be 
made if the helical geometry is expressed in terms of the radius a and pitch P,	and if the uniaxial point polarizabilities are 
evenly spaced along the helix with their principle directors aligned tangential to the helix (as seen in Fig. SI-1a). We can 
then write �� and 78� as a function of a	 and P: 
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( 5 ) 

 

here RS is the angular distance between subsequent polarizabilities i and i+1 in radians. Using Equation ( 5 ) and   R�6 � �= � Q�RS	 we can write: 
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where 

_�6 � H:�)H� � 4N� sin� R�62 � <U	R�62, A�	
 

Due to the helical symmetry we can replace the double summation by ∑ �i � ��j�@�k@ , where N is the total number of polar-
izabilities. 
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 This gives the following expression for the differential scattering intensity of a thin helix: 
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In order to model chiral colloids with a finite thickness, i.e. an inner and outer radius (ain, aout), we consider a stack of nh 
concentric “thin” helices with the same pitch but increasing radius (N�m n N n Nopq�(Fig. SI-1b). The CDIS value for the 
colloid is either calculated by independently simulating each thin helix using Eq.( 7 ) or by summing a helix stack. For the 
latter approach Eq. ( 7 ) has to be slightly modified. First, we define the radius as a function of the index	Q, the number of 
turns �, the number of polarizabilities per turn rs and the number of helix r\: 
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Here z{| is the floor function giving the greatest integer less than or equal to	{. Next we use NtQu and Eq.( 5 ) to redefine 
the following parameters: 
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Finally using the equations above we can express the spatially averaged differential intensity for the multi-helix stack: 
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(10) 

 

 

 

In Fig. SI-2 both models are compared and CDSI intensities are computed for a variety of helix geometries. 
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Fig SI-2: Calculation of �� for a single helix a) with increasing radius. The sum of these signals (black line) is shown on the right 
and compared to a multi helix composed of the same single helices.  

 

 

Fig. SI-3: Calculation of ��	 for a single helix with increasing pitch (left) and radius (right). It can be seen that the difference in 
the scattering intensities is sensitive to small changes in the geometrical parameters of the helix. 
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2. Geometrical parameters of measured samples 

The geometrical parameters of the measured samples shown in the main text (Fig. 3) have been determined from SEM 
images.  The results are shown in Tab. SI-4.   

Table SI-4. Geometrical Parameters of measured Colloids 

Sample dbead dhelix i dhelix o lhelix ltotal #t p 

left-handed 
helix 

0.43 � 0.03 0.23 � 0.02 0.35 � 0.04 1.386 � 0.008 1.832 � 0.003 5 0.277 � 0.002 

right-handed 
helix 

0.31 � 0.02 0.212 � 0.011 0.34 � 0.02 1.323 � 0.011 1.630 � 0.006 5 0.265 � 0.002 

achiral rod 
 

0.33 � 0.02 ------------------ --------------- ----------------- 2.314 � 0.004 -- ------------------ 

Geometrical parameters of the colloids which have been used for the calculations. Diameter of bead (dbead), inner diameter of 
helix (dhelix i), outer diameter of helix (dhelix o), length of helix (lhelix), total length of colloid (ltotal), number of turns (#t), pitch of 
helix (p).  

 

3. Control measurement of racemic mixture 

In Fig. SI-5 we also measured a racemic mixture of the aqueous solutions of the left- and right handed helices.  As ex-
pected the CDIS signal almost vanishes whereas the TSI signal does not change significantly. Moreover, the CDIS signal of 
the racemate is in good agreement with the mean value of the signals for both helices, which is also shown for comparis-
sion. 

 

Fig. SI-4:  a) Total Scattered Intensity (TSI) and b) Circular differential scattering signal (CDSI) for a racemic mixture of the left- 
and right handed helices. The CDIS values for the enantioclean solutions are also shown as well as the mean value of these 
signals. 

 

Chiral separation 

1. Video 1 

Video 1 shows the separation of a racemic mixture of right- (red tracks) and left-handed (green tracks) particles in a mag-
netic field of 20 Gauss rotating at a frequency of 20 Hz, over a time interval of 30 s, played at 3x speed. The scale bar is 20 
µm. 

 

Notes 

The Table of Contents graphic was in part drawn with the free web application “DIY molecules”.4  
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