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Exactly Solvable Model
In this section we provide the details of the derivation of the exact
rate equations (Eqs. 6 and 7 in themain text) for themany-particle
model described in the Theory section. In this model, an immobile
substrate with N sites is surrounded by M enzymes in volume V
diffusing with the diffusion coefficient D. The enzymes are con-
sidered as point particles that do not interact with each other. The
substrate can be in states S0; S1; . . . ; SN corresponding to the
number of modified sites. Instantaneous irreversible transitions
between the substrate states (site modification), Si → Si+1, occur
with the intrinsic rate constant κi when an enzyme and the sub-
strate are separated by the contact radius R. The enzymes do not
change in this model, so that their concentration [E] is a constant.
We are looking for the concentration of the substrate with i
modified sites, [Si(t)].
When diffusion is fast and the system is well mixed, kinetics of

Si is described by conventional rate equations. For a substrate
with two sites,

S0 +E����!κ0 S1 +E����!κ1 S2 +E;

the conventional rate equations are

d½S0�
dt

= − κ0½E�½S0�
d½S1�
dt

= κ0½E�½S0�− κ1½E�½S1�
d½S2�
dt

= κ1½E�½S1�:

[S1]

These equations can be written in matrix form as

d½SðtÞ�
dt

= −KCH ½E�½SðtÞ�; [S2]

where [S] is the vector of concentrations with components [S0(t)],
[S1(t)] and [S2(t)] and KCH is the rate matrix

KCH =

0
@ κ0 0 0

−κ0 κ1 0
0 −κ1 0

1
A: [S3]

The eigenvalues of this rate matrix are κ0, κ1, and 0.
For a substrate with N sites,

S0 +E����!κ0 S1 +E����!κ1
. . . ����!κN SN +E:

[S] in Eq. S2 is a vector with components [Si(t)], i= 0; . . . ;N and
KCH is the rate matrix whose only nonzero elements are
½KCH �ii = − ½KCH �i+1;i = κi, i= 0; 1; . . . ;N − 1, and ½KCH �NN = 0.
This matrix has eigenvalues κi, i= 0; . . . ;N − 1 and a zero eigen-
value, which is related to conservation of the concentration,PN

i=0½SiðtÞ�= ½Stot�.
To take the rate of finite diffusion into account, we consider the

probability distribution Piðr1; . . . ; rM ; tÞ that the substrate has
i sites modified and the enzymes are located at r1; r2; . . . ; rM at
time t. The substrate concentration is obtained by integrating the
distribution with respect to the positions of all of the enzymes

ðdrm = 4πr2mdrmÞ and taking the thermodynamic limit (i.e., M and
V increase in such a way that their ratio is a constant,M/V = [E]):

½SiðtÞ�=½Stot�= lim
M;V →∞
M=V = ½E�

Z
V

Pi   dr1 . . . drM : [S4]

Pi satisfies the diffusion equation, which depends on all enzyme
coordinates:

∂Pi

∂t
=D

XM
m= 1

∇2
rmPi: [S5]

The transitions between the substrate states are described by
boundary conditions obtained by equating the diffusive (left-hand
side) and reactive (right-hand side) fluxes at contact:

4πR2D
∂
∂rm

Pi = κiPi − κi−1Pi−1;  rm =R; [S6]

where κ−1 is set to zero in the boundary condition for P0. Here
the term with κi−1 in the right-hand side describes the increase in
Pi due to transitions i − 1→ i and the term with κi corresponds to
the decrease due to transitions i→ i + 1. Because we assume that
all enzymes are randomly distributed, the initial condition is
Piðt= 0Þ=V−M ½Sið0Þ�=½Stot�, which is consistent with Eq. S4.
It is convenient to write the above equations in matrix form for

the vector P with components P0;P1; . . . ;PN :

∂P
∂t

=D
XM
m= 1

∇2
rmP

4πR2D
∂
∂rm

P=KCHP;  rm =R:

[S7]

Initially, Pðt= 0Þ=V−M ½Sð0Þ�=½Stot�. Note that the same matrix,
KCH, enters the conventional kinetics rate equation, Eq. S2, and
the boundary condition in Eq. S7.
To solve the above equations, we first transform the vector P

with the matrix that diagonalizes the rate matrix KCH =
TΛCHT−1. Specifically, we let P = TP′. As the result we get a set
of uncoupled many-particle equations for Pi′:

∂P′
∂t

=D
XM
m= 1

∇2
rmP′

4πR2D
∂
∂rm

P′=ΛCHP′;  rm =R:

[S8]

The initial condition is P′ðt= 0Þ=V−Mp0, where we introduce for
convenience p0≡T−1Sð0Þ=Stot.
Eq. S8 is solved exactly the same way as in the Smoluchowski

approach. That is, because all enzymes are independent, it can be
shown by direct substitution into Eq. S8 that the solution for each
component Pi′ can be presented as a product of pair distributions
that describe the reaction of the substrate with one enzyme:

Pi′ðr1; . . . ; rM ; tÞ=p0i =V−M ∏
M

m= 1
giðrm; tÞ; [S9]
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where gi(r, t) satisfies the diffusion equation

∂
∂t
giðr; tÞ=D∇2

r gi: [S10]

The boundary condition is theCollins–Kimball radiation boundary
condition with the eigenvalue of KCH, λi = κi, as the intrinsic rate:

4πR2D
∂
∂r
giðr; tÞjr=R = λigiðR; tÞ: [S11]

Initially, giðr; 0Þ= 1. For the zero eigenvalue, giðr; tÞ= 1 for all times.
Now we substitute P = TP′ with P′ in Eq. S9 into Eq. S4 and

integrate it with respect to all rm. Using the equivalence of all
enzymes, we find that the vector of the substrate concentrations
is given by

½SðtÞ�=TFðtÞT−1½Sð0Þ�; [S12]

where

FijðtÞ= lim
M;V →∞
M=V = ½E�

 Z
V

giðr; tÞ drV

!M

δij: [S13]

In the next step we get the rate equations by differentiating Eq.
S12. Differentiating Fij(t) with respect to time and taking the
thermodynamic limit, we have

dFijðtÞ
dt

= lim
M;V →∞
M=V = ½E�

M
V

 Z
V

∂gi
∂t

dr

! Z
V

gi
dr
V

!M−1

  δij

= ½E�
 Z

V

∂gi
∂t

dr

!
FijðtÞ:

[S14]

Using the above equation in the time derivative of Eq. S12, we have

d½SðtÞ�
dt

= −KðtÞ½E�½SðtÞ�

KðtÞ=TΛðtÞT−1;

[S15]

where ΛðtÞ is a diagonal matrix with elements

kiðtÞ= −
Z

∂giðr; tÞ
∂t

4πr2dr: [S16]

Another expression for ki(t) can be obtained by integrating Eq.
S10 with respect to r and using the boundary condition in Eq.
S11. In this way we find that

kiðtÞ= κigiðR; tÞ: [S17]

The diffusion-influenced rate coefficient ki(t) can be found ana-
lytically by solving Eqs. S10 and S11. As a result, we get the well-
known expression for the time-dependent rate coefficient (1):

kiðtÞ= κigiðR; tÞ= κiðei + ð1− eiÞeτierfc ffiffiffiffi
τi

p Þ; [S18]

where i= 0; . . . ;N − 1, kN(t) = 0. Here τi =Dt=ðeiRÞ2 and ei is the
escape probability:

ei =
kD

κi + kD
; [S19]

where kD = 4πDR is the Smoluchowski’s diffusion-limited rate
constant.

The matrix Eq. S15 is exact for the model (Eq. 6 in the main
text). Solving this equation, we get the vector of the substrate
concentrations:

½SðtÞ�=Te−½E�
R t

0
Λðt′Þdt′T−1½Sð0Þ�; [S20]

where expð−½E� R t0 Λðt′Þdt′Þ is the diagonal matrix with the ele-
ments expð−½E� R t0 kiðt′Þdt′Þ on the diagonal.
For a substrate with two sites, the substrate concentrations

(assuming that initially the substrate is unmodified) are

½S0ðtÞ�=½Stot�= e
−½E�
Rt
0

k0ðt′Þdt′

½S1ðtÞ�=½Stot�= κ0
κ0 − κ1

�
e−½E�

R t

0
k1ðt′Þdt′ − e−½E�

R t

0
k0ðt′Þdt′

�
:

[S21]

The concentration of S2 is related to that of S0 and S1 by the
conservation condition:

½S2ðtÞ�= ½Stot�− ½S0ðtÞ�− ½S1ðtÞ�: [S22]

When diffusion is fast, kiðtÞ→ κi, and this solution reduces to the
conventional chemical kinetics result obtained by solving Eq. S1:

½S0ðtÞ�=½Stot�= e−½E�κ0 t

½S1ðtÞ�=½Stot�= κ0
κ0 − κ1

�
e−½E�κ1 t − e−½E�κ0 t

�
:

[S23]

At times longer than the diffusion time, t � R2=D, the rate co-
efficients approach their steady-state values, kiðtÞ→ κiei, and the
solution in Eq. S21 becomes

½S0ðtÞ�=½Stot�= e−½E�κ0e0 t

½S1ðtÞ�=½Stot�= κ0
κ0 − κ1

�
e−½E�κ1e1t − e−½E�κ0e0 t

�
:

[S24]

Note that Eq. S24 cannot be obtained from Eq. S23 by simply
replacing κ0 → κ0e0 and κ1 → κ1e1. However, Eq. S24 can be ob-
tained by solving the rate equations that correspond to the ki-
netic scheme with the additional connection between S0 and S2
(Fig. 2B in the main text):

d½S0�
dt

= − κ0e0½E�½S0�
d½S1�
dt

= κ0e0e1½E�½S0�− κ1e1½E�½S1�
d½S2�
dt

= κ1e1½E�½S1�+ κ0e0ð1− e1Þ½E�½S0�:

[S25]

Eqs. S21 and S23 (with κi replaced by κiei, i = 0, 1) and Eq. S24
were used in Fig. 2 (main text) to calculate the exact, scheme A,
and scheme B kinetics, respectively.
The above analysis can be extended to the reversible reaction

described by the scheme

Si +E�
κfi

κri
Si+1 +E: [S26]

Conventional rate equations of chemical kinetics for this reaction
is given by Eq. S2 with KCH containing forward and reverse rate
constants. For example, for n = 2 KCH is

KCH =

0
B@ κf0 −κr0 0

−κf0 κr0 + κf1 −κr1
0 −κf1 κr1

1
CA: [S27]
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The vector of probability distributions P(t) satisfies Eq. S7,
with the rate matrix KCH corresponding to the reaction in Eq.
S26. The modified rate equations are still given by Eq. S15 (and
the kinetics by Eq. S20) in which T is the matrix of eigenvectors
of KCH and ΛðtÞ is a diagonal matrix with elements

kiðtÞ= λi
�
ei + ð1− eiÞeτierfc ffiffiffiffi

τi
p 	

ei =
kD

λi + kD
;  τi =

Dt
R2e2i

;
[S28]

where λi are the eigenvalues of KCH.

Multisite Modification via Michaelis–Menten Mechanism
In this section we derive the rate equations for diffusion-influenced
multisite modification with the Michaelis–Menten mechanism.
For the modification of the substrate with two sites, our results
will correspond to the scheme in Fig. 3B (main text).
Let us start with the simplest binding reaction S+E⇌ SE,

where a substrate S and an enzyme E bind reversibly and form a
complex SE. The association occurs when the diffusing reactants
come in contact and is described by a partially reactive boundary
condition involving the intrinsic rate constant κa. The complex can
dissociate with the dissociation rate constant κd to form a contact
pair of S and E. The ordinary chemical kinetics rate equations for
this reaction (i.e., in the limit of fast diffusion) are

d½S�
dt

= − κa½E�½S�+ κd½SE�= d½E�
dt

= −
d½SE�
dt

: [S29]

The above equations assume that the enzymes and substrates are
well mixed and uncorrelated. The rate equations that do not use
that assumption involve the pair distribution function:

d½S�
dt

= − κaρðR; tÞ+ κd½SE�= d½E�
dt

= −
d½SE�
dt

; [S30]

where ρ(r, t) is the distribution function of pairs S and E separated
by r. When r→∞, the enzyme and substrate are uncorrelated, so
that ρðr; tÞ→ ½E�½S�. The boundary condition for ρ relates the dif-
fusion flux at r = R to the flux owing to association and dissocia-
tion. Because the flux at contact must be equal to the total rate of
the reaction, we have

4πR2D
∂
∂r
ρjr=R = κaρðR; tÞ− κd½SE�; [S31]

where D = DE + DS is the relative diffusion coefficient. The first
term in the right-hand side describes the enzyme–substrate pairs
that disappear owing to association and the second term corre-
sponds to the pairs formed when the complexes dissociate.
Eq. S30 and the boundary condition, Eq. S31, are formally exact

for themicroscopic model described above. To close the theory we
need the equation for ρ(r, t). The determination of the exact pair
distribution function is a complicated many-body problem. When
the enzyme and substrate are not in contact (r > R), this function
changes due to relative diffusion of the enzyme and substrate and
due to reaction with other molecules. There are various techni-
ques of approximating the pair distribution function. We use the
following arguments to find arguably the simplest approximation
valid at small concentrations. The pair distribution function
changes on various time scales. There are fast microscopic changes
on times comparable to the diffusion time, that is, the time during
which the molecule diffuses through the distance comparable to
the reaction radius. The distribution function also changes on
a slow macroscopic time scale, which corresponds to the reaction
rate. When these times are well separated (e.g., owing to small

reactant concentration), we can assume that on times longer that
the diffusion time the distribution function changes in time only
implicitly through the time-dependent concentrations. However,
the distribution function does change in space, reflecting the
spatial correlations that appear owing to diffusion. Thus, we as-
sume that

D∇2
r ρ= 0: [S32]

The above Eqs. S30–S32, with the requirement that ρ→ ½E�½S� as
r→∞ constitute the approximate theory that leads to the rate
equations with the steady-state rate constants. To show this, we
solve Eq. S32 subject to the boundary condition in Eq. S31. In
this way we find

ρðrÞ= ½E�½S�−R
r
q
κa
�
κa½E�½S�− κd½SE�	; [S33]

where q= κa=ðκa + kDÞ is the capture probability and kD = 4πDR
is the diffusion-limited rate constant. Note that this pair distri-
bution function depends on time only through the macroscopic
concentrations [E(t)], [S(t)] and [SE(t)]. Substituting the above
equation into Eq. S30, we get

d½S�
dt

= − κae½E�½S�+ κde½SE�= d½E�
dt

= −
d½SE�
dt

; [S34]

where e= 1− q= kD=ðκa + kDÞ is the escape probability.
The resulting equation is the same as the conventional chemical

rate equation, Eq. S29, but with diffusion-influenced rate con-
stants, which are the original rate constants scaled by the escape
probability e.
This is the simplest theory that takes diffusion into account. The

theory is valid when the concentrations of S and E are small (the
volume fraction is much less than 1). The resulting rate equations
involve time-independent rate constants. This description is ap-
propriate for times longer than the diffusion time, R2/D, and be-
fore the power-law asymptotics sets in. When E’s are in excess and
do not change in time, the concentration of S obtained using Eq.
S34 approaches equilibrium exponentially with the exponent
ð½E�κa + κdÞe, where e= kD=ðκa + kDÞ. At short times the theory
may not be applicable; however, these times are not significant
if the relaxation time is longer than the diffusion time,
ð½E�κa + κdÞeR2=D � 1. The first term in this inequality, which is
less than ½E�kDR2=D= ½E�4πR3, is small when the volume fraction
is small, ½E�4πR3=3 � 1. The second term puts the following
constrains on the dissociation rate constant: κdeR2=D � 1. When
κa is comparable to kD, the dissociation time 1/κd must be longer
than the diffusion time R2/D.
The above theory can be systematically improved (2–6). If Eq.

S32 is replaced by the time-dependent diffusion equation for the
deviations δρðr; tÞ= ρðr; tÞ− ½E�½S�, ∂δρ=∂t=D∇2

r δρ, then the the-
ory becomes valid at short times (4). However, the resulting rate
equations involve memory kernels instead of rate constants. Even
more complex equations that account for three-particle correla-
tions give a better description at larger concentrations and the
exact (power-law) long-time asymptotics (4). These theories as
well as accurate many-particle stochastic simulations (7, 8) can be
used to establish the range of validity of Eq. S34more accurately.
Now we generalize the above theory to multisite modification.

A substrate with N sites is modified via the Michaelis–Menten
mechanism, converting S0 to SN ði= 0; 1; . . .N − 1Þ:

Si +E�
κai

κdi

SiE ���!κci Si+1 +E: [S35]

As before, we assume that association (with the rate constant κai ),
dissociation ðκdi Þ, and catalytic modification ðκci Þ are isotropic.
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The rate equations of the conventional chemical kinetics are
(κc−1, κ

a
N , and κdN are set to zero)

d½Si�
dt

= − κai ½E�½Si�+ κdi ½SiE�+ κci−1½Si−1E�

d½SiE�
dt

= κai ½E�½Si�− κdi ½SiE�− κci ½SiE�

d½E�
dt

=
XN−1

i= 0

d½Si�
dt

: [S36]

The theory that accounts for diffusion is obtained from the
conventional chemical rate equations by replacing the bimolecular
rate κai ½E�½Si�→ κai ρiðR; tÞ similar to Eq. S30:

d
dt
½Si�= − κai ρiðR; tÞ+ κdi ½SiE�+ κci−1½Si−1E�

d
dt
½SiE�= κai ρiðR; tÞ− κdi ½SiE�− κci ½SiE� [S37]

and the equation for E is the same as in Eq. S36. Here ρiðr; tÞ is
the pair distribution function for E and Si. As in the binding
reaction, we assume that ρiðr; tÞ depends on time only through
the macroscopic concentrations. Therefore, the distribution func-
tion satisfies the Laplace equation

D∇2
r ρi = 0 [S38]

with the boundary conditions

4πR2D
∂
∂r
ρijr=R = κai ρiðRÞ− κdi ½SiE�− κci−1½Si−1E� [S39a]

ρiðr→∞Þ= ½E�½Si�: [S39b]

Here D=DE +DSi is the relative diffusion coefficient assumed to
be independent of i. The first term in the right side of Eq. S39a
describes the depletion of the distribution function owing to
association of E and Si, the second term corresponds to the pairs
formed due to dissociation of the complex SiE, and the third
term describes pairs formed from Si−1E upon catalysis.
Eqs. S37–S39 specify the approximate theory for the diffusion-

influenced substrate modification via the Michaelis–Menten mech-
anism. The main assumptions (i.e., small concentrations so that
ρi is not affected by three-particle correlations and separation of
time scales so that ρi depends on time only implicitly via the con-
centrations) are made in Eq. S38.
To find the rate equations for the macroscopic concentrations,

we note that the solution of the Laplace equation for ρi is
ρiðrÞ= ½E�½Si�+ c=r. The constant c is then found from the
boundary condition, Eq. S39a:

ρiðrÞ= ½E�½Si�−R
r
qi
κai

�
κai ½E�½Si�− κd½SiE�− κci−1½Si−1E�

	
; [S40]

where qi = κai =ðκai + kDÞ is the capture probability for E and Si.
This capture probability is related to the escape probability by
ei = 1− qi. Then we substitute ρiðRÞ into Eq. S37 and rewrite the
term κci ½SiE� in the equation for ½SiE� as κci ðei+1 + qi+1Þ½SiE�. The
resulting rate equations are

d½Si�
dt

= − κai ei½E�½Si�+ κdi ei½SiE�+ κci−1ei½Si−1E� [S41a]

d½SiE�
dt

= κai ei½E�½Si�− κdi ei½SiE�− κci ei+1½SiE�+ κci−1qi½Si−1E�
− κci qi+1½SiE�: [S41b]

In these equations, the terms corresponding to the conventional
rate equations in Eq. S36 are multiplied by the escape probabil-
ities. Two additional terms with the capture probabilities qi in
the right-hand side of Eq. S41b correspond to the new reaction
channels in the reaction scheme between complexes, Si−1E→ SiE
and SiE→ Si+1E.
The above equations correspond to the kinetic scheme where

the adjacent bound complexes are connected. The rate constant
of the new reaction channel is equal to the catalytic rate constant
multiplied by the corresponding probability that an enzyme and
a substrate bind starting from contact (the capture probability).
For the two-site modification, the above equations are (κa2, κ

d
2, κ

c
−1,

q2 are zero and e2 = 1)

d½S0�
dt

= − κa0e0½S0�½E�+ κd0e0½S0E�
d½S1�
dt

= − κa1e1½S1�½E�+ κd1e1½S1E�+ κc0e1½S0E�
d½S2�
dt

= κc1½S1E�
d½S0E�
dt

= κa0e0½S0�½E�−
�
κd0e0 + κc0

	½S0E�
d½S1E�
dt

= κa1e1½S1�½E�−
�
κd1e1 + κc1

	½S1E�+ κc0ð1− e1Þ½S0E�
d½E�
dt

= − κa0e0½S0�½E�+
�
κd0e0 + κc0e1

	½S0E�
−κa1e1½S1�½E�+

�
κd1e1 + κc1

	½S1E�: [S42]

The total concentrations of S and E do not change, so that

½S0�+ ½S1�+ ½S2�+ ½S0E�+ ½S1E�= ½Stot�
½E�+ ½S0E�+ ½S1E�= ½Etot�; [S43]

where [Stot] and [Etot] are the total concentrations of the sub-
strates and enzymes. These equations correspond to the kinetic
scheme in Fig. 3B in the main text. When e0 = e1 = 1, they cor-
respond to the ordinary kinetic scheme in Fig. 3A.

Diffusion-Modified Rate Equations for the Dual Phosphorylation–
Dephosphorylation Cycle. The diffusion-modified kinetic scheme
in Fig. 3 B and C for dual cycle with distributive mechanism is
equivalent to the following set of reactions:

S0 +E�
κa0e0

κd0e0
S0E ���!κc0e1 S1 +E

S1 +E�
κa1e1

κd1e1
S1E ���!κc1 S2 +E

S2 +F�
κa2e2

κd2e2
S2F ���!κc2e3 S1 +F

S1 +F�
κa3e3

κd3e3
S1F ���!κc3 S0 +F

S0E ����!κc0ð1− e1Þ
S1E

S2F ����!κc2ð1− e3Þ
S1F: [S44]
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Here the escape probabilities are ei = kD=ðκai + kDÞ, i= 0; 1; 2; 3.
When all escape probabilities are equal to 1, we recover the ordi-
nary kinetic scheme with intrinsic rate constants, which do not take
diffusion into account. The last two reaction channels, S0E→ S1E
and S2F→ S1F, disappear.
These reactions correspond to the following rate equations:

d½S0�
dt

= − κa0e0½S0�½E�+ κd0e0½S0E�+ κc3½S1F�
d½S1�
dt

= − κa1e1½S1�½E�+ κd1e1½S1E�+ κc0e1½S0E�

−κa3e3½S1�½F�+ κd3e3½S1F�+ κc2e3½S2F�
d½S2�
dt

= − κa2e2½S2�½F�+ κd2e2½S2F�+ κc1½S1E�
d½S0E�
dt

= κa0e0½S0�½E�−
�
κd0e0 + κc0

	½S0E�
d½S1E�
dt

= κa1e1½S1�½E�−
�
κd1e1 + κc1

	½S1E�+ κc0ð1− e1Þ½S0E�
d½S2F�
dt

= κa2e2½S2�½F�−
�
κd2e2 + κc2

	½S2F�
d½S1F�
dt

= κa3e3½S1�½F�−
�
κd3e3 + κc3

	½S1F�+ κc2ð1− e3Þ½S2F�
d½E�
dt

= − κa0e0½S0�½E�+
�
κd0e0 + κc0e1

	½S0E�
−κa1e1½S1�½E�+

�
κd1e1 + κc1

	½S1E�
d½F�
dt

= − κa2e2½S2�½F�+
�
κd2e2 + κc2e3

	½S2F�
−κa3e3½S1�½F�+

�
κd3e3 + κc3

	½S1F�: [S45]

The total concentrations of the substrate S, kinase E and phos-
photase F do not change, so that

½S0�+ ½S1�+ ½S2�+ ½S0E�+ ½S1E�+ ½S1F�+ ½S2F�= ½Stot�
½E�+ ½S0E�+ ½S1E�= ½Etot�
½F�+ ½S1F�+ ½S2F�= ½Stot�: [S46]

These equations are solved numerically to obtain the data shown
in Fig. 4 in the main text.

Finite Reactivation Time. In this section we consider the case in
which the enzyme becomes inactive right after modifying the
substrate. The inactive enzyme ðE⋆Þ reactivates with the rate
constant k⋆:

Si +E�
κai

κdi

SiE���!κci Si+1 +E⋆

E⋆���!k⋆ E: [S47]

The theory that accounts for diffusion in this model involves time-
dependent memory kernels instead of rate constants because pair
association depends both on diffusion and enzyme reactivation.
However, at times longer than both the diffusion time, R2=D,
and the reactivation time, 1=k⋆, it is possible to get the rate
equations with the time-independent rate constants. The reacti-
vation time is assumed to be much shorter than the concentra-
tion relaxation, and the concentration of inactive enzymes, E⋆, is
assumed to be much less than the total enzyme concentration.
At times longer than the reactivation time, both the ordinary

chemical kinetics rate equations and the diffusion-modified rate

equations are the same as those with instantaneous reactivation
(Eqs. S36 and S37, respectively). However, the pair distribution
function of Si and E, ρi, is now coupled with the distribution
function ρ⋆i of Si and the inactive enzyme E⋆. The pairs with the
inactive enzyme convert to those with the active enzyme, so that
the equations for ρi and ρ⋆i are

D∇2
r ρi + k⋆ρ⋆i = 0

D∇2
r ρ

⋆
i − k⋆ρ⋆i = 0:

[S48]

The boundary conditions describe the pairs that disappear (posi-
tive terms) and are formed (negative terms) at contact:

4πR2D
∂
∂r
ρijr=R = κai ρiðR; tÞ− κdi ½SiE�

4πR2D
∂
∂r
ρ⋆i jr=R = − κci−1½Si−1E�

[S49]

when r→∞, ρi → ½E�½Si� and ρ⋆i → 0.
Eqs. S37, S48, and S49 include the effect of diffusion on the

substrate modification when the enzyme reactivation time is fi-
nite. We now further rearrange these coupled equations to get
the rate equations that involve only macroscopic concentrations.
As can be verified by substitution, the solution of Eqs. S48 and
S49 for the pair distributions can be written as�

ρiðrÞ
ρ⋆i ðrÞ

�
=
� ½E�½Si�

0

�
+
�
f11ðrÞ f12ðrÞ
f21ðrÞ f22ðrÞ

��
κdi ½SiE�− κai ½E�½Si�

κci−1½Si−1E�
�

[S50]

if we require fβαðrÞ to satisfy

D∇2
r f1α + k⋆f2α = 0

D∇2
r f2α − k⋆f2α = 0

[S51]

with the boundary condition

4πR2D
∂
∂r
f1αjr=R = κai f1α − δ1α

4πR2D
∂
∂r
f2αjr=R = − δ2α;

[S52]

where δβα is 1 when α = β and 0 otherwise. When r→∞, fβα → 0.
Unlike Eqs. S48 and S49, the equations for f’s do not involve
concentrations and depend only on the parameters of an isolated
pair. From Eq. S50, the pair distribution that enters Eq. S37 is

κai ρiðRÞ= κai ei½E�½Si�+ κdi qi½SiE�+ κci−1q
⋆
i ½Si−1E�; [S53]

where qi, ei, and q⋆i are defined as

qi = 1− ei = κai f11ðRÞ
q⋆i = κai f12ðRÞ: [S54]

Substituting κai ρiðRÞ in Eq. S53 into Eq. S37, we get the diffu-
sion-modified rate equations (the equation for [E] is the same as
that in Eq. S37):

d½Si�
dt

= − κai ei½E�½Si�+ κdi ei½SiE�+ κci−1e
⋆
i ½Si−1E� [S55a]

d½SiE�
dt

= κai ei½E�½Si�− κdi ei½SiE�− κci e
⋆
i+1½SiE�+ κci−1q

⋆
i ½Si−1E�

− κci q
⋆
i+1½SiE�: [S55b]
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These equations are the sought-for rate equations that involve
only macroscopic concentrations.
To understand the meaning of qi, ei, and q⋆i , consider the

irreversible binding of a single enzyme and a single substrate,
which are initially separated by the contact radius R. If the
enzyme is initially in the inactive state, it first converts to the
active state and then binds to the substrate. Let B(tj1) (or B
(tj2)) be the probability that the enzyme and substrate are
bound at time t, given that initially the enzyme is in the active
(or inactive) state in contact with the substrate. At long times,
B(tj1) and B(tj2) tend to the capture probabilities for the en-
zyme that is initially in the active and inactive states, re-
spectively.
The probabilities B(tjα) increase owing to binding. The rate of

the increase is

dBðtjαÞ
dt

= κai G1αðR; tjRÞ: [S56]

Here Gβαðr; tjr′Þ is the time-dependent probability density for an
enzyme to be in r in state β at time t provided it was initially in r′
in state α. The states α and β refer to the active (α, β = 1) and
inactive (α, β = 2) states of the enzyme. When the enzyme is in
state 1, it can bind to the substrate with the intrinsic rate constant
κai . This probability density satisfies the following equation:

∂
∂t
G1α =D∇2

r G1α + k⋆G2α

∂
∂t
G2α =D∇2

r G2α − k⋆G2α [S57]

with the partially absorbing boundary condition for the enzyme
in the active state and reflecting for the enzyme in the inac-
tive state:

4πR2D
∂
∂r
G1αjr=R = κai G1α

4πR2D
∂
∂r
G2αjr=R = 0: [S58]

Initially, Gβαðt= 0Þ= δðr− r′Þ=4πr2 when α = β and 0 otherwise.
Solving Eq. S56, we have the probability to be bound at time t:

BðtjαÞ= κai

Z t

0

G1αðR; t′jRÞdt′: [S59]

In the next step we are going to relate the probabilities B(tjα) to
the quantities in Eq. S54. First, let us note that the probability
density Gβα is related to fβα by

fβαðrÞ=
Z∞
0

Gβαðr; tjRÞdt: [S60]

This relation can be verified by integrating both sides of Eq. S57
forGβαðr; tjRÞ with respect to t from 0 to∞, usingGβαðt→∞Þ= 0.
The resulting equation is the same as Eq. S51, except for the term
with the delta function, δðr− r′Þ=4πr2 = δðr−RÞ=4πR2, which
comes from the initial condition. This term is 0 when r > R and
contributes to the boundary condition, which becomes exactly the
same as in Eq. S52.
Using the above relation, Eq. S60, in Eq. S54 and comparing

the result with Eq. S59, we find that

qi = κai

Z∞
0

G11ðR; tjRÞdt= lim
t→∞

Bðtj1Þ

q⋆i = κai

Z∞
0

G12ðR; tjRÞdt= lim
t→∞

Bðtj2Þ:
[S61]

Thus, qi and q⋆i are the long-time limit of the probabilities that
the enzyme and substrate are bound (i.e., the capture proba-
bilities) given that they are initially in contact. qi is the capture
probability for the enzyme that is initially in the active state,
and q⋆i is the capture probability for the enzyme that is initially
in the inactive state.
The explicit expressions for the capture probabilities in Eq. S54

are found by solving Eq. S51 with the boundary condition in Eq. S52.
The solution is f11ðrÞ= c11=r, f22ðrÞ= c22   expð−

ffiffiffiffiffiffiffiffiffiffiffi
k⋆=D

p ðr−RÞÞ=r,
f12ðrÞ= c12=r− f22ðrÞ, where cβα are constants. Because the enzyme
cannot convert from the active to inactive state in the course of the
irreversible reaction, f21ðrÞ= 0. The constants cβα are found from
the boundary condition. The expressions for f11 and f12 are

f11ðrÞ= 1
4πDr

kD
κai + kD

f12ðrÞ= 1
4πDr

1
1+

ffiffiffiffiffiffiffiffiffi
k⋆τd

p
�
1+

ffiffiffiffiffiffiffiffiffi
k⋆τd

p kD
κai + kD

− e−
ffiffiffiffiffiffiffiffi
k⋆=D

p
ðr−RÞ

�
;

[S62]

where τd =R2=D is the diffusion time. Substituting these into Eq.
S54, we find the capture probabilities

qi =
κai

kD + κai
= 1− ei

q⋆i =
ffiffiffiffiffiffiffiffiffi
k⋆τd

p

1+
ffiffiffiffiffiffiffiffiffi
k⋆τd

p ·
κai

kD + κai
= 1− e⋆i :

[S63]

To understand the capture probability for the enzyme that is ini-
tially in the inactive state, q⋆i , note that the enzyme is first reac-
tivated, being still around the substrate, and then binds with the
substrate. Therefore, the corresponding capture probability is
a product of two factors: (i) the probability that the enzyme is
reactivated and comes to contact with the substrate and (ii) the
probability that the enzyme in the active state in contact with the
substrate is “captured.” The second factor is the same as qi. To
find the first factor (with the square roots), one has to solve the
same problem as for q⋆i , but in the limit of perfectly absorbing
sphere ðκai →∞Þ. The capture probabilities are related to the
escape probabilities ei = 1− qi and e⋆i = 1− q⋆i . The latter is given
in Eq. 10 in the main text.
The rate equations in Eq. S55 are applicable for the modifi-

cation of substrates with many sites. They are the same as Eq.
S41 for the modification with instantaneous reactivation, except
the escape and capture probabilities multiplying the catalytic
rate are replaced by e⋆ and q⋆, corresponding to the enzyme that
is initially in the inactive state. The rate equations correspond to
the kinetic scheme where adjacent bound states are connected.
The rate constants of the new connections Si−1E→ SiE are pro-
portional to the capture probabilities q⋆i for the enzyme that is in
the inactive state initially. When the reactivation time is much
longer than the diffusion time, q⋆i → 0. In this case the only effect
of diffusion is to rescale the association and dissociation rate
constants with corresponding escape probabilities, ei, whereas the
catalytic rate constants are unmodified and no new reaction
channels appear in the kinetic scheme.

Gopich and Szabo www.pnas.org/cgi/content/short/1319943110 6 of 8

www.pnas.org/cgi/content/short/1319943110


For the substrate with two sites, the rate equations, Eq. S55, are
(since κa2, κ

d
2, κ

c
−1, q

⋆
2 are zero and e⋆2 = 1)

d½S0�
dt

= − κa0e0½S0�½E�+ κd0e0½S0E�
d½S1�
dt

= − κa1e1½S1�½E�+ κd1e1½S1E�+ κc0e
⋆
1 ½S0E�

d½S2�
dt

= κc1½S1E�
d½S0E�
dt

= κa0e0½S0�½E�−
�
κd0e0 + κc0

	½S0E�
d½S1E�
dt

= κa1e1½S1�½E�−
�
κd1e1 + κc1

	½S1E�+ κc0q
⋆
1 ½S0E�

d½E�
dt

= − κa0e0½S0�½E�+
�
κd0e0 + κc0e

⋆
1

	½S0E�
−κa1e1½S1�½E�+

�
κd1e1 + κc1

	½S1E�: [S64]

The total concentrations of S and E conserve, so that

½S0�+ ½S1�+ ½S2�+ ½S0E�+ ½S1E�= ½Stot�
½E�+ ½S0E�+ ½S1E�= ½Etot�: [S65]

These equations correspond to the following set of reactions:

S0 +E�
κa0e0

κd0e0
S0E ���!κc0e

⋆
1 S1 +E

S1 +E�
κa1e1

κd1e1
S1E ���!κc1 S2 +E

S0E �����!κc0ð1− e⋆1Þ S1E: [S66]

These reactions are the same as those in the kinetic scheme in Fig.
3B (main text), except the escape and capture probabilities that
multiply κc0 are replaced by e⋆1 and q⋆1 = 1− e⋆1.
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Fig. S1. Five-site modification using exactly solvable model. (A) Kinetic scheme corresponding to the conventional chemical kinetics. (B) Kinetic scheme in A
with the rate constants replaced by the diffusion-influenced ones with the escape probabilities ei = kD=ðκi + kDÞ. (C) Diffusion-modified kinetic scheme with new
reaction channels between the species. The rate constants are scaled with the escape, ei , and capture, qi = 1− ei , probabilities. (D) Kinetics of six states. The
kinetics corresponding to schemes in B (black lines) and C (dashed blue lines) are compared with the exact solution (red lines) from Eq. S20. Initially, the
substrate is unmodified. κi = ð5− iÞkD, i= 0, . . . ,5, R = 1, D = 1, ½Stot �= 1, τ−1 = ½E�kD=2, ½E�4πR3=3= 0:01.
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Fig. S2. Effect of enzyme concentration on the kinetics of a simple model of dual modification S0 +E→ S1 + E→ S2 + E. Kinetics predicted by the scheme in
Fig. 2B (main text) (dashed blue lines, Eq. S24) is compared with the exact kinetics (red lines, Eq. S21) at various enzyme concentrations. Time is normalized
to τ= ðκ0e0½E�Þ−1. Parameters are the same as in Fig. 2 (main text), except the apparent volume fraction v½E�= 0:001, 0.1, and 0.5; v = 4πR3=3.
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Fig. S3. Steady-state input–output relations in a double phosphorylation cycle. (A) Kinetic scheme describing double phosphorylation by a kinase E and
dephosphorylation by a phosphotase F. After modification, E and F are in the inactive state (E* and F*) and reactivate with the relaxation rate kp. For simplicity,
the phosphorylation rate constants are the same as those for dephosphorylation. (B) Diffusion-modified kinetic scheme, valid when ½E� � ½E⋆�, with the rate
constants scaled by the escape probabilities, ei = kD=ðκai + kDÞ, i = 0, 1 and ep1 = 1− βκa1=ððκa1 + kDÞ, β=

ffiffiffiffiffiffiffiffiffiffi
kpτd

p
=ð1+

ffiffiffiffiffiffiffiffiffiffi
kpτd

p
Þ, kD = 4πRD, τd =R2=D. Additional re-

action channels (red) connect the bound complexes and appear owing to diffusion when the enzyme reactivation is fast. (C) Steady-state population of doubly
phosphorylated substrate as a function of the ratio of kinase and phosphotase concentrations for fast enzyme reactivation for various diffusion coefficients.
The reactivation time is ln 2=kp = 1  μs. The steady-state concentrations are calculated according to the scheme (B). The parameters are the same as in ref. 1.
κa0 = 0:027  nM−1s−1, κa1 = 0:056  nM−1s−1, κd0 = 1:35  s−1, kd

1 = 1:73  s−1, kc
0 = 1:5s−1, kc

1 = 15s−1, R=5nm, ½Etot �+ ½Ftot �= 100  nM, ½Stot �= 200  nM. (D) The same as C for
slow enzyme reactivation (the reactivation time ln 2=kp =10 ms).
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