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Effect Coefficient and Effectiveness (Eff) Expressed as
Determinism and Degeneracy
The state-dependent effect coefficient ðs0Þ= effect  informationðs0Þ

log2ðnÞ
can be described as a function of two terms, the determinism
and degeneracy coefficient. To derive these two terms, the effect
information ðs0Þ, the distance between the effect repertoire
ðSF js0Þ and the unconstrained repertoire of effects UE, is split
into the distance between ðSF js0Þ and the uniform distribution U
with pðsUÞ= 1=n, and a residual term:
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where sF denotes a state of the system SF at t+1 with probability
pðsFÞ according to the unconstrained distribution of effects UE.
s0 is the present system state. The determinism coefficient is then
the left term in lines S5 and S6 divided by log2(n):
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the degeneracy coefficient the right term:
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as defined in the main article.
The effectiveness (Eff) of a system assesses the causal relations

in a system in a state-independent manner, irrespective of the
size of the system’s state space:
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where the effective information EI(S) is the average effect in-
formation of all system states s0, distributed according to UC, the
unconstrained repertoire of causes, which is identical to the uniform
distribution U; thus, here pðs0Þ= 1=n. EI(S) can then be divided in
the same way as the state-dependent effect information:
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The last equality is due to the fact that pðsFÞ is the probability of
state sF to occur at t+1 following UE, the unconstrained distribu-
tion of effects (future states) obtained by setting the system S at
t0 into all possible states s0 with equal probability pðs0Þ= 1=n.
Both, indeterminism and degeneracy at the micro level may

be indicative of causal emergence (Discussion, main text). Note
that, in previous work, it was suggested that a convergence of
two causes onto the same effect—an instance of degeneracy—may
actually disqualify the micro level from causation (1, 2) (although
see ref. 3).

Effective Information EI(S) Expressed in Terms of Cause and
Effect Information and Mutual Information MI
The effective information of a system, EI(S), can be obtained as
the expected value of the cause or effect information. Moreover,
EI(S) is identical to the mutual informationMIðUC;UEÞ : theMI
between the system S set to all possible counterfactuals (system
states) with equal probability (unconstrained repertoire of cau-
ses, UC) and the resulting distribution of system states at the next
time step (unconstrained repertoire of effects, UE). Note that EI
was originally introduced as a measure of causal influence of one
subset of a system over another (1), whereas here it captures the

1. Yablo S (1992) Mental causation. Philos Rev 101:245–280.
2. List C, Menzies P (2009) Non-reductive physicalism and the limits of the exclusion

principle. J Philos CVI(9):475–502.
3. Shapiro L, Sober E (2012) Against proportionality. Analysis 72:89–93.
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overall effectiveness of system S onto itself (see refs. 2 and 3 for
related measures).
In the following derivation, we start from the definition of

EI(S) as the average effect information of all system states s0 as
counterfactual causes [distributed according to UC with equal
probability pðs0Þ= 1=n for all system states]:
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Using Bayes’ rule and time invariance, we then show that the
average effect information is indeed equivalent to the mutual
information MIðUC;UEÞ and to the expected value of the cause
information, which is the average cause information of each
accessible state at t0, weighted by pðs0Þ according to UE :
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MI is originally a statistical measure of how much information
is shared between a source and a target (4). In the present

context, MI is applied between two time steps of a system that is
first perturbed into all counterfactuals (alternative states) with equal
probability and then observed at the next time step. Because of the
system perturbations, MI here is a causal measure. In other words,
EI(S) is the MI between the set of all possible causes UC and the
set of all their effects UE. Usually, however, MI is calculated for
observed distributions of system states and thus not a causal
measure, but a statistical measure of correlation.

Bounds of Cause and Effect Coefficients and Effectiveness
Eff(S)
In the following, we will show that the cause and effect coefficients,
as well as the effectiveness Eff(S), are bounded between 0 and 1
ð∈½0 . . . 1�Þ :
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The lower bound (0) is given by the fact that the Kullback–
Leibler divergence ðDKLÞ is always nonnegative (Gibbs’ inequality).
Because the cause and effect information are expressed in terms
of DKL and the state-independent effective information EI(S) is
just an average of the state-dependent values, neither of the three
coefficients can be negative. It thus remains to show that cause
and effect coefficients cannot exceed 1.
The cause information ðs0Þ is the DKL between the cause rep-

ertoire ðSPjs0Þ and UC, the unconstrained cause repertoire, which
is identical to the uniform distribution with pðsPÞ= 1=n  ∀sP. It
follows that
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X
sP∈UC

pðsPjs0Þlog2ðnÞ= log2ðnÞ; [S6]

and thus

1. Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31.
2. Ay N, Polani D (2008) Information flows in causal networks. Adv Complex Syst 11(1):

17–41.
3. Korb KB, Nyberg EP, Hope L (2011) Causality in the Sciences, eds Illari P, Russo F,

Williamson J (Oxford Univ Press, Oxford), pp 628–652.
4. Cover TM, Thomas JA (2006) Elements of Information Theory (Wiley-Interscience,

Hoboken, NJ).
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Cause coefficientðs0Þ≤ 1: [S7]

The effect information ðs0Þ is the DKL between the effect rep-
ertoire ðSF js0Þ and UE, the unconstrained effect repertoire. UE is
in general not identical to the uniform distribution. However,

pðsFÞ=
X
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pðsF js0Þ · pðs0Þ; [S8]

where pðs0Þ= 1=n  ∀s0 and thus:
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Using Eq. S9, if follows that:

Effect informationðs0Þ=DKL
�ðSF js0Þ;UE�

=
X
sF∈UE

pðsF js0Þlog2
�
pðsF js0Þ
pðsFÞ

�
= [S10]

ðusing Eq:  S9Þ≤
X
sF∈UE

pðsF js0Þlog2
�
n · pðsFÞ
pðsFÞ

�
=
X
sF∈UE

pðsF js0Þlog2ðnÞ

[S11]

= log2ðnÞ; [S12]

and thus

Effect coefficientðs0Þ≤ 1: [S13]

Finally, because the effect coefficient ðs0Þ∈ ½0 . . . 1� ∀s0, also its
average over all system states, the state-independent effectiveness
Eff ðSÞ∈ ½0 . . . 1�.
Causal Reduction
To complement the examples of causal emergence in the main
text, we here provide an example in which causal reduction is
called for. In Fig. S1, a macro mechanism works as an XOR logic
gate (as an isolated part of a larger circuit board) with inputs X, Y,
and output Z (Fig. S1A). At the macro level, the system (XOR,X,
Y,Z) generates 2 bits of EI over one macro time step Tx (the XOR
operates after a “decision” period where it processes the input)
and Eff ðSMÞ= 0:5. The macro XOR gate is actually composed of
(supervenes upon) nine deterministic micro logic gates (COPY,
NOT, AND, OR). In this case, however, causal interactions are
stronger at the micro level and over a single micro time step tx
[EIðSMÞ= 7:43 bits and Eff ðSMÞ= 0:83 ]. Thus, CE = −5.43 bits,
corresponding to negative causal emergence, i.e., reduction. Note
that in this case the micro circuit is deterministic and minimally
degenerate (0.17), so the macro cannot offset the loss of effective
information due to its reduced size by a gain in determinism or a
reduction in degeneracy.
To demonstrate this case of causal reduction, we have assumed

that a deterministic micro circuit underlies the above macro
circuit. In general, however, real digital circuits are often built
frommany stochastic analog micro elements in a highly degenerate
manner, to compensate for noise at the lower level and to create
deterministic macro elements. In this way, digital circuits and other
engineered systems follow similar design principles as the more
physiological examples presented in the main text. Consequently,
there is the potential for either causal emergence or reduction
in digital circuits, depending on the underlying micro level, just as
in physiological systems.
More generally, the notion of causal reduction ðCE< 0Þ stands

in contrast to previous accounts of reduction that focused on the

relationship between scientific theories and whether or not they
are reducible to one another (1). In the present account based on
causal analysis, the focus is instead on the relationship between
micro and macro levels of mechanisms. This account reveals why
there is a bias in favor of reductionism in mechanistic scientific
explanations. The bias is understandable given that, everything
else being equal, the micro would always beat the macro: being
more detailed by definition, the micro has an inherent advantage
in how informative its causal mechanisms are. This inherent ad-
vantage is captured quantitatively in causal analysis because the
micro can benefit from both ΔIEff and ΔISize, whereas the macro
can only gain from ΔIEff .

Causal Emergence in a System with Causally Heterogeneous
Elements
Although the examples in the main text (with the exception of
Fig. 6) all have macro elements with underlying unconnected and
causally equivalent micro elements, this is not a necessity for
causal emergence. In Fig. S2A, the six micro elements are fully
interconnected and causally heterogeneous. The elements are
structured into two groups {ABC, DEF} due to different intra-
group and intergroup mechanisms: within each group, if the sum of
intragroup connections Σ(intra) = 0, all elements stay 0 (inactive)
the next time step. However, if the sum of intergroup connections
Σ(inter) = 3 (synchronous activity from the other group), all ele-
ments turn 1, unless they are all 0, in which case they become
spontaneously active (1) with probabilities: p(A/D) = 0.45; p(B/
E) = 0.5; p(C/F) = 0.55. Because the micro transition proba-
bility matrix (TPM) is noisy, EIðSmÞ= 1:13 bits and
Eff ðSmÞ= 0:19 (Fig. S2B). The optimal macro grouping SM (Fig.
S2C) has a more deterministic TPM (Fig. S2D),
EIðSMÞ= 1:84 bits and Eff ðSMÞ= 0:58. Thus, the macro super-
sedes the micro [CE(S) = 0.72 bits] despite its reduced reper-
toire size, because it counteracts noise by responding almost
deterministically to synchronous activity over intergroup con-
nections.
The neural-like system of Fig. 6 in the main text has equivalent

spatial properties to the example system of Fig. S2 (fully con-
nected, causally heterogeneous elements, sensitive to differences
in intraconnections and interconnections). In addition, it has the
same temporal properties as the system shown in Fig. 5 (main text),
with second-order Markov mechanisms at the micro level. The
system’s states space at the micro level thus contains 218 states,
which prohibited an exhaustive search for the optimal macro level.
Nevertheless, the spatiotemporally emergent macro grouping
shown in Fig. 6B (main text) is assumed to be the optimal macro
grouping based on the results obtained from the examples of
Fig. S2 and Fig. 5 (main text).

Applicability—Network Motifs as Indicators of Emergence
Measuring EI exhaustively, across all micro/macro levels, is not
feasible for large systems. This is because, assuming N binary
elements, BN − 1 (Nth Bell number) possible groupings of those
micro elements into macro elements exist, each of which entails
∏k

j=1ðBmðjÞ+1 − 1Þ possible groupings of micro into macro states,
where k is the number of macro elements with mð jÞ micro ele-
ments each. The number of EI computations to determine the
spatiotemporal grain with maximal EI thus increases dramatically
with N (N = 1, 1; N = 2, 5; N = 3, 27; N= 4, 180 computations,
etc.) if calculated exhaustively.
In large, complex networks where an exhaustive causal analysis is

unfeasible, overrepresented network motifs could already indicate
whether the network as a whole is biased toward emergence or
reduction. For example, the two most common network motifs

1. Nagel E (1961) The structure of science: problems in the logic of scientific explanation
(Harcourt, Brace & World, New York).
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shared by the gene networks in Escherichia coli and the brain
of Caenorhabditis elegans are the feedforward loop and the bifan
(1). Both these network motifs mimic in their connectivity
precisely the micro element groups that made up the optimal
(winning) macro elements in our chosen examples. In Fig. 2 (main
text), the first spatial example, the macro elements are bifans,
whereas in Fig. 6 (main text), the first temporal example, the

macro elements are feedforward loops. These are perhaps the
simplest possible functionally relevant macro elements. Both
the bifan and the feedforward loop show causal convergence
(degeneracy) in either space or time. A greater than random
prevalence of these or similar network motifs, paired with some
amount of intrinsic noise in the system, may indicate that the
system operates at a macro level.

1. Milo R, et al. (2002) Network motifs: Simple building blocks of complex networks.
Science 298(5594):824–827.

Fig. S1. Causal reduction. (A) A part of a larger circuit is presented, which performs a macro XOR logic function over its inputs X, Y, and outputs to Z. (B) At the
micro level, the XOR consists of nine deterministic logic gates. The system is deterministic at both the micro and the macro level. Moreover, the degeneracy
coefficient at the micro level is lower than at the macro level. Therefore, in this case, the micro beats the macro, leading to causal reduction. CE(S) = −5.43 bits.

Fig. S2. Causal emergence in a system with differentiated connectivity. (A) Micro system Sm with six elements. Regular and rounded arrows indicate in-
tergroup and intragroup connections, respectively. (B) Noisy micro-level TPM. (C) Macro system SM. Each macro element receives inputs from itself and the
other macro element. (D) More deterministic macro-level TPM. CE(S) = 0.72 bits.
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