Supporting Information

Wang et al. 10.1073/pnas.1316792110

Fig. S1. Background-subtracted Li K-edge electron energy loss spectroscopy (EELS) spectrum from 1.1-V lithiation-treated MoS₂ nanofilm on MPGC after ethanol cleaning. (*Inset*) Red circle is the position where the EELS spectrum was obtained.

Fig. S2. Characterization of 0.8-V lithiated MoS₂. (*A*) Deep Li discharge process and the Li reaction with ethanol or water exfoliate MoS₂ which could destroy the bonds between the active material and the substrate. Scale bar, 10 nm. (*B*) Polarization curves of bare MPGC electrode, Pt wire, and MoS₂ on MPGC lithiated to 1.2, 1.1, and 0.8 V vs. Li⁺/Li. The 0.8-V MoS₂ shows degraded HER activity.

Fig. S3. SEM images of pristine and 1.1-V lithiation-treated MoS₂. (*A*) SEM image of pristine MoS₂ with pinholes formed during the sulfurization process due to the roughness of the substrate. (*B*) SEM image of 1.1-V lithiation-treated MoS₂ shows that the original pinholes were opened up during the lithiation and Li-ethanol reaction process. The nanofilm around the pinholes was easier to be peeled off but still maintain the electric contact with the substrate. Scale bar, 2 µm.

Fig. S4. XPS spectra of pristine and Li electrochemically intercalated MoS₂. S $2p_{1/2}$ and $2p_{3/2}$ peaks of pristine MoS₂ are located at 163.1 and 162.0 eV, respectively. The peaks have no obvious shift when MoS₂ is discharged to 1.8 and 1.5 V vs. Li⁺/Li. Additional peaks emerge when 2H (green line) to 1T (orange line) MoS₂ phase transition happens. The 1T S $2p_{1/2}$ and $2p_{3/2}$ peaks are shifted toward 0.8 eV lower binding energies.

Fig. S5. Nyquist plots of impedance spectroscopy analysis of the electrochemical cells setup, where $1-cm^2$ bare MPGC and pristine and 1.1-V lithiation-treated MoS₂ nanofilms on it were used as working electrodes. The measurement was performed at -0.2 V vs. RHE. The series resistances are 1.51Ω for MPGC electrode, 1.68 Ω for MoS₂ electrode, and 1.53Ω for 1.1-V lithiation-treated MoS₂. The series resistance primarily comes from wiring and the electrolyte, whereas the resistance of MoS₂ nanofilm is negligible.

Fig. S6. Characterizations of ALD MoS_2 and lithiated ALD MoS_2 . (A) TEM image of ALD MoS_2 synthesized on SiO_2 -Si substrate for sample preparation. The surface is covered by the edges, showing the same structure with MoS_2 converted from Mo illustrated in Fig. 2. Scale bar, 5 nm. (*B*) Raman spectrum of ALD MoS_2 on CFP. (*C*) Tafel plots of pristine and lithiated ALD MoS_2 on CFP and Pt wire, with Tafel slopes of 98, 44, and 30 mV per decade, respectively. (*D*) Stable cathodic currents around 10 and 20 mA/cm² were observed for at least 5 h when constant voltages at 175 and 190 mV vs. RHE (iR-corrected) were applied on 0.7-V lithiation-treated ALD MoS_2 catalyst on CFP.

Fig. 57. XPS spectra of 1.1-V lithiated MoS₂ before and after electrochemical cycling in acid environment. The ratios of 2H to 1T MoS₂ before and after cycling are 0.86 and 0.78, showing no obvious change. The 1T phase MoS₂ is stable during the hydrogen evolution process.

Fig. S8. Auger element mapping of ALD MoO₃ on CFP. (A) SEM image of CFP. (B and C) SEM images of ALD MoO₃ on CFP. (D and E) Auger electron microscopy element mapping at the same area in (C) for O and Mo, respectively. (A and B) Scale bar, 20 μ m. (C–E) Scale bar, 10 μ m.

Table S1.	Inductively coupled plasma mass spectroscopy results
of lithiatio	n-treated MoS ₂ on CFP after different processes

Materials	Li:Mo atomic ratio, %
1. MoS ₂ on CFP after lithiation process	287.0
2. Lithiated MoS ₂ on CFP after ethanol cleaning	16.5
3. Lithiation-treated MoS ₂ after 1,000 cycles	8.6

 MoS_2 was synthesized on carbon fiber paper and lithiated to 0.7 V vs. Li⁺/Li. Sample 1 was prepared after the catalyst was discharged to 0.7 V and washed in diethyl carbonate in the glovebox to remove the electrolyte. Sample 2 was made after the lithiated MoS_2 was washed by ethanol. Sample 3 was taken after 1,000 CV cycles in $H_2SO_4.$

<