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Here, we describe the role of natural gas in the US economy, de-
scribe the details of our data-fitting procedures, provide additional
evidence concerning the correspondence of the dimensionless re-
covery factor (RF) and well production data, provide upper and
lower bounds on gas production from wells not yet showing in-
terference, demonstrate why production declines as the square root
of time early on and exponentially later, and tabulate the coefficient
κ for a variety of reservoir and well flowing pressures to demon-
strate how little it varies. In a separate spreadsheet (Dataset S1), we
provide tabulations of the dimensionless RF.

Impacts of Natural Gas Production in the United States
As shown in Fig. S1, the United States has managed to maintain
gas production at an essentially flat rate for 40 y after a 1974 peak
of gas production that closely followed the 1971 peak in oil
production. No other country has done the same. Novel technology,
most recently the massively hydrofractured horizontal wells in
shale plays, has played a crucial role in maintaining US gas
production at or slightly above its 1974 level. As a result of
plentiful gas production, US gas prices have recently been a
fraction of the typical world gas prices, injecting over half a
trillion current dollars into the US economy (Fig. S2). This
“second stimulus package” in the United States has been almost
invisible to the public.

Data Analysis and Fitting Procedure
We analyzed the 16,533 wells in our dataset for the Barnett Shale
through the following steps:

i) We eliminate all wells that have been recompleted, all ver-
tical wells, and all months from each well’s time history with
production of zero. At this point, 11,566 wells remain.

ii) We eliminate all wells with less than 18 mo of total pro-
duction. Now, 8,807 wells remain.

iii) For each well, we have a measurement of production per
day for a sample of days each month. We convert to produc-
tion per month by multiplying by 30.4.

iv) The first 3 to 4 mo of production are typically noisy and
sporadic, particularly because hydrofracturing water is still
being back-produced. Therefore, from the time series for
each well, we construct a slightly modified one. We label the
starting time of this new series 2.5 (mo), and we assign to it
the cumulative production of the first 4 mo. There is no
further processing: For each new nonzero gas volume pro-
duced in a given month, time increases by 1 mo and cumu-
lative production increases by the production of that month
until the data end.

v) We use the Levenberg–Marquardt least-squares minimiza-
tion (lmfit) Python package to find the values of the inter-
ference time τ and gas in place M that best fit our scaling
curve to the measured cumulative production. In particular,
we minimize the objective function mðtÞ−MRFðt=τÞ, where
mðtÞ is the measured cumulative production data. Although
the reservoir pressure pi is not the same for all wells in the
Barnett Shale, we make use only of the curve corresponding
to pi = 3;500 psi, pf = 500 psi in this paper. We also con-
ducted the analysis allowing pi to vary according to measured
pressure variations, but the difference was negligible.

vi) We had to guard against a number of artifacts that could
produce spurious agreement between well histories and the
scaling function. For wells with very short histories, fluctuations

in production could produce shapes that mimicked large
segments or small portions of the scaling curve. We elim-
inated these matches by requiring at least 18 mo of produc-
tion and requiring well histories to traverse a considerable
portion of the scaling function rather than running tangent to
it over a brief interval. In total, 513 wells were eliminated in
this way, leaving 8,294 wells. In no case did we eliminate any
well history because its fit to the scaling function was poor.
Our plots include all wells except for those whose history was
too short to include for the reasons we describe.

vii) An advantage of the lmfit package is that it includes careful
estimates of the uncertainty of parameters. We used the rou-
tine conf_interval to improve the estimates. Our scaling curve
RFð~tÞ is practically indistinguishable from a square root until
the argument ~t approaches 1. Thus, it is impossible to obtain
a useful estimate of the interference time and gas in place
unless interference has become visible. To select a quantitative
criterion, we found that the average uncertainty of the param-
eters τ andM wasmore than 20% unless the scaled age of the
well, tmax=τ, was greater than around 0.64. Accordingly, we
used the condition~tmax > 0:64 to divide wells into two groups.
Careful analysis of the magnitude of the objective function
as a function of the fitting parameters M and τ indicates
that these uncertainty estimates are somewhat too tight.
There is a narrow valley in τ-M space, where the function
varies very slowly on large scales but has relatively rapidly
varying local minima on shorter scales. The uncertainty esti-
mates could probably be improved and would become some-
what larger by taking into account these adjacent local
minima, but we have not yet done this.
We found a small number of wells with interference times
less than 1 y, probably because of the high-permeability chan-
nels leading to interactions of hydrofractures or hydrofrac-
ture branches that are very close to each other.

viii) For wells with ~tmax > 0:64 and ~tmin < 0:25, we estimate τ and
M. The result appears in Fig. 4. The interference times are
short as they must be; because such horizontal wells are, at
most, 14 y old and most are younger, it is impossible to detect
interference times of much more than 10 y, and the typical
measured interference time is only 5 y.

ix) For wells with ~tmax < 0:64, the estimates of τ and M are
too uncertain to be useful, but we can provide bounds.
The lower bound on τ is obtained from the observation
that interference would be visible if~tmax were greater than
0.64. Because it is not visible, one must have ~tmax = tmax=
τ< 0:64⇒ τ> tmax=0:64.

x) For wells that do not show interference, the constant K from
Eq. 6 can be determined from the data and the lower bound
on τ can be converted into a lower bound on M.

xi) A reasonable upper bound on M can be obtained from data
on the size of each well and the thickness of the mudrock
layer (1). The upper bound on M can be converted into an
upper bound on τ using Eq. 6.

Additional Checks on RF
We provide two additional checks on the scaling function for-
malism. First, we check whether production rates for wells showing
evidence of interference do indeed decline exponentially. Evidence
is provided in Fig. S3. Although rates are very noisy, with many
months where production drops by a large factor and recovers,
as well as occasional excursions above the predicted curve, overall
rates decline in accord with the predicted exponential.
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Second, we check in Fig. S4 whether the measurement of the
original gas in place M obtained from the scaling formalism is
bounded above by estimates obtained from data on the extent of
the well. The two measurements are coming from separate data
sources, so the comparison is a strong test of both data integrity
and the sense of our formalism. The estimated gas in place of
virtually every well lies below the upper bound. In addition, the
information coming from the scaling formalism is not redundant
because the measurement of M obtained in this way is usually
considerably less than the upper bound.

Upper and Lower Bounds on Gas Production from Wells in
Square Root Phase
Fig. S5 provides four additional pieces of information for the wells
that show no evidence of interference. In the Fig. S5 (Upper Left),
we provide a lower bound on the interference time τ. This lower
bound is obtained by noting that interference becomes evident
when ~t reaches 0.64, so if interference is not evident, the in-
terference time τ must be at least 1.6 times larger than the
current life of the well. From this estimate one obtains a lower
bound on the gas in place for each well, since Eq. 6 and the
known value of K for each well turns a lower bound on τ into
a lower bound onM (Fig. S5, Upper Right). Fig. S5 (Lower Right)
displays an upper bound on the original gas in place M obtained
by using the measured thickness of the mudstone source rock of
each well, and the length of the well. From the upper bound on
M one obtains through Eq. 6 an upper bound on τ, shown in the
lower left. This bound on τ is not very tight. There is a peak at
around 30 y, but a long tail stretching into the hundreds of years.
We think it is impossible that wells will last this long before
beginning to interfere, but they are simply too young to provide
evidence that interference will occur any sooner.

Asymptotic Analysis of Gas Production at Early Times
For a domain bounded on two sides, as in Fig. 1, the diffusion
equation (Eq. 21) must be solved numerically. However, if the
boundary conditions are changed so that ~m vanishes at x= 0 and
~m→ ~mi as x→∞, then as pointed out by Crank and Henry (2),
this equation possesses an exact similarity solution.
To find this solution, let
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This equation is of the first order in ∂ ~m=∂η, and the solution is
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This equation appears at first to be an explicit expression in closed
form, but because αðηÞ is, in fact, α½mðηÞ�, it is actually an integral
equation whose solution must be determined self-consistently.

An important result that can nevertheless be obtained from
it is that
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Thus, mass transport due to this similarity solution has the exact
property of decaying in time as 1=

ffiffi
t

p
. The coefficient of the decay

can only be determined through integrals over the complete spatial
solution. Cumulative production is given by the time integral, and
goes as

ffiffi
t

p
.

For any given initial condition, solutions of the diffusion
equation (Eq. 21) in a semiinfinite space tend toward the solu-
tion given in Eq. S4. This is why, after an early transient period,
decline of production as 1=

ffiffi
t

p
and growth of cumulative pro-

duction as
ffiffi
t

p
are universal for a time. This solution persists until

the onset of interference between consecutive hydrofractures.

Asymptotic Analysis of Gas Production at Late Times
When one waits sufficiently long, pressure drops everywhere in
the reservoir until it hovers just above the well flowing pressure. In
this late-time regime, the hydraulic diffusivity αðpÞ can be re-
placed by the constant α≡ αðpf Þ. With the simplification that the
hydraulic diffusivity α is constant and the interference time τ and
scaled time ~t are defined in terms of α, Eq. 21 can be solved
exactly with the same boundary conditions as before, and the
result is
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The relative importance of the three terms in Eq. S6 is plotted in
Fig. S5. We make two points about the result.

i) If the only goal is to provide an accurate account of the long-
time behavior, this computation shows self-consistently that
the decline rate is exponential just so long as the limit of α as
p→ pf is well defined.

ii) One can instead use the computation as an approximate an-
alytical description of the entire decline process. In this case,
instead of using α= αðpf Þ, one should use α= αðpÞ; that is, one
should use a hydraulic diffusivity characteristic of the av-
erage pressure in the reservoir. The resulting approximation
has the property of leading to a decline curve that goes as
1=

ffiffi
t

p
at early times, and declining exponentially at late times

just like the exact solution (Fig. S6). However, this approxi-
mation leads to errors on the order of 50%. No matter how
one tunes a constant α, one cannot get both the coefficient of
the original 1=

ffiffi
t

p
decline and the total gas recovered right.

Tabulation of κ
Table S1 extracts the coefficient κ, describing the initial rise in
cumulative production as κ

ffiffi
~t

p
from the dimensionless RF for a

variety of reservoir and well flowing pressures. The main lesson is
that it varies rather little and can safely be taken to assume a
nominal value of 0.645 across the Barnett Shale.

1. Fu Q, et al. (2013) Log-based thickness and porosity mapping of the Barnett Shale play,
Fort Worth Basin, Texas: A proxy for reservoir quality assessment. AAPG Bull, in press.

2. Crank J, Henry ME (1949) Diffusion in media with variable properties. Transactions of
the Faraday Society 45:636–650.
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Fig. S1. In the United States, gas production doubled about 10-fold, growing by a factor of ∼1,000. Natural gas production, associated with the fundamental
Hubbert oil peak in the United States, peaked in 1974. However, a second “fundamental” gas cycle has been created by producing new gas (increasingly deep
offshore, from Alaska, tight gas sands, coal-bed methane, and now shales) resources in the United States. As a result, after growing at 7% per year until 1974
(red line), gas production has remained flat over the past 40 y (blue line). Recently, gas production in the United States has actually been increasing, mostly due
to shale gas production. Note that 1 exaJoule (EJ) ≈ 1 trillion standard cubic feet (Tscf) of gas. Data source: US Department of Energy, Energy Information
Administration.

Fig. S2. Because of shale gas production, natural gas prices in the United States have plummeted to one-fourth of the Russian gas price. This plot subtracts
the cumulative amount the United States has actually spent on natural gas from the amount it would have spent at world (Russian) prices. Since 1991, domestic
gas production in the United States has delivered $560 billion US dollars (blue line) ($250 billion in constant 1983 US dollars, red line) to the US economy. Cheap
natural gas has led to a decrease of US CO2 emissions, increased employment, and a renaissance of steel production and manufacturing. Cheap reliable energy
is fundamental to a healthy economy, but very few people recognize this truism. Natural gas prices are from the Index Mundi (www.indexmundi.com/
commodities/). The consumer price index is from the US Census Bureau.
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Fig. S3. Production rate for all qualifying horizontal wells in the Barnett Shale shows evidence of interference.

Fig. S4. Original gas in place is computed by fitting M to well production data compared for each well, with an upper bound obtained from data on the
dimensions of the well.

Patzek et al. www.pnas.org/cgi/content/short/1313380110 4 of 6

www.pnas.org/cgi/content/short/1313380110


Fig. S5. Bounds on the interference time τ and the original mass of gas in place M for the wells from Fig. 3B in the square root phase.

Fig. S6. Relative importance of the three-term rate approximation in Eq. S6, summed to form the black curve. Note that for ~t ≤ 0:2, production declines as the
square root of time (red curve). For ~t ≥ 1, the production rate decline is exponential (pink and blue curves). For 0:2≤~t < 1, there is a transition from the square
root of time decline to the exponential decline. This plot was obtained from linear analysis. For nonlinear cases, it turns out that when the time to interference,
τ, is referenced to the initial reservoir conditions, similar values of ~t govern transitions between production decline regimes.
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Table S1. Scaling factor κ

pf = 500 pf = 400

pi κ κ

2,000 0.650 0.671
2,500 0.663 0.672
3,000 0.661 0.671
3,500 0.645 0.653
4,000 0.634 0.642
4,500 0.633 0.641

For scaled times ~t < 0:2, cumulative production increases as
ffiffiffi
t

p
. The di-

mensionless RF ≈ κ
ffiffiffi
~t

p
and this table display values of κ for various initial

and well flowing pressures for a reservoir temperature of 190 °F. There is
no simple expression for κ, but it does not vary much.

Other Supporting Information Files

Dataset S1 (XLS)
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