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SUPPLEMENTAL METHODS

Viral Preparation, Infection & Knockdown. Lentivirus was produced by triple transfection of
HEK293T cells with plasmids CMVdRS8.7 (packaging), pMDG?2 (VSV-G envelope), and the viral vector
(pLCR-PGRN or pTRIPZ-PGRN), as previously described(1). In both cases, 24-48 hours after
transfection, viral supernatants were collected and supplemented with polybrene (4pg/ml, Sigma), spun
for 3 minutes at 3000 x g, and filtered through 0.45um sterile syringe filter to remove floating 293 cells or
debris. Clarified supernatants were concentrated by ultracentrifugation at 50,000g x 90 minutes at 4°C
and then re-suspended in Optimem (Invitrogen) supplemented with polybrene (Sigma) 4-8 ug/ml. Final
viral titers =1x 10%ml were obtained. To fabricate pLCR, the internal CMV promoter from
pPRIME(232)-CMV-dsRed-FF3(2) was excised and replaced with a promoter that exhibits high levels of
transcription and limited repression in hNPs, the CAG fusion promoter from plasmid pLVCT (3). The
resulting plasmid pLCR contained the CAG driving the dsRED2 reporter and miR30-based shRNA
targeting firefly luciferase, which was used as a negative control (pLCR-FF3). Hairpins against GRN
were designed cloned into either pLCR or pTRIPZ (Open Biosystems) using the “PCR-shagging” (4)
micro-RNA hairpin cloning protocol and then tested for their ability to achieve greater than 50%
knockdown of PGRN. Knockdown in TRIPZ-infected cells was induced by addition of doxycycline
(2ug/ml). APOA4 knockout mice were generated by homologous recombination, and maintained as

previously described, prior to harvesting of adult cortical tissues (5, 6).

Immunodetection. Immunoblotting and immunocytochemistry of whole-cell lysates or cultures was
performed by standard methods, essentially as previously decribed (7) (see Supplemental Methods) For
immunoblotting, rabbit anti-PGRN (Invitrogen) was used 1:500, goat anti-rabbit HRP (Sigma) 1:2000.
Mouse anti-Bactin (Sigma) was 1:50000, goat anti mouse secondary (Sigma) was 1:5000. For
immunocytochemistry, cells were fixed using 4% paraformaldehyde (Sigma). Antibodies used were
rabbit anti-activated CASP3 1:1000(Cell Signaling, Danvers, MA), mouse anti-TUJ1 1:1000(Covance,

Princeton, NJ) rabbit ant-GFAP 1:2000(Sigma), Alexa donkey anti-rabbit 488 1:1000(Invitrogen), Alexa



donkey anti-mouse 488 1:1000(Invitrogen), and Alexa goat anti-rabbit 647 1:1000(Invitrogen). Cells

were counterstained with DAPI and 6 high-power fields were counted per coverslip.

Reporter assays: For GRN reporter assays 293T cells (ATCC) were transfected with 50 ng of reporter
construct expressing Photinus pyralis (firefly) luciferase, 1 ng of Renilla luciferase plasmid (pRL-EF),
and 50 ng of pCMV-Tagd4a PGRN expression plasmid (Switchgear Genomics, Menlo park CA) using
FuGENE (Roche Applied Science) according to the manufacturer's instructions. Forty-eight hours later,
cells were lysed and analyzed using the dual luciferase reporter assay system (Promega) according to the
manufacturer's instructions and luminescence was read on a Synergy-2 Plate reader (Biotek). Co-
transfection of Renilla was used for transfection normalization, and values were additionally normalized
to cells transfected with a promoter-less luciferase construct. For canonical Wnt reporter assay hNPS
were infected with a lentivirus containing an enhanced TOP promoter (OTP) driving destabilized GFP
(dsGFP) (8, 9), or a similar promoter driving luciferase. The latter contains an SV40 promoter
constitutively driving red fluorescent protein (RFP), thereby allowing internal normalization and the
selection of stable reporter cells (10). Luminescence or fluorescence was quantified as above or as

previously described (1).
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Figure S1. Wnt1 differentially modulates Wnt pathway genes across time. Wnt1 changes expression of genes in both canonical and
non-canonical pathways. Color saturation is proportional to p-value (Magenta: Upregulated, Cyan: Downregulated).
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Fig. S2. Wnt1 induces significant early enrichment of genes involved in survival signaling, energy metabolism, and biosynthesis (anabolism). DAVID-identified KEGG pathways: (A) Apoptosis and (B) MAP
Kinase signaling & survival significantly enriched at 2 hours after Wnt1 application. (C) KEGG pathway: Oxidative Phosphorylation significantly enriched at 2 hours after Wnt1 application. (D) KEGG pathways
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modified Fisher exact test; p<0.05).
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Fig. S6. DTW identifies Wnt1 effects on cancer-related genes. The top 5% of Wnt1-specific genes, as ranked by DTW, were subjected to
GO-KEGG analysis, revealing significant KEGG enrichment of cancer-related genes.



A Biological Model C
GENE o
BIOLOGICAL EFFECTORS EXPRESSION (S) = Unobserved Original Images (Reference Only)
FUNCTION — :
Proliferation > CTNNB1 !
GSK3B
Survival
MAPK
Cell Fate
IGF1
Process
Outgrowth BDNF
Cell Adhesion > CADHERIN
PROCESS MANIFESTATION

Analytic Model
Hypothesis ICA Algorithms

Samples —»

o
3
& X

Microarray
Data

Fig. S7. Demonstration of robust blind source separation using parallel independent component analysis. (A) An illustration of the biological mixing model. In this example, many genes subserve a single
biological process and in turn, each gene is involved in one or more biologicial processes. As such, the observed expression for each gene is the sum of its contribution to each process, creating a matrix of
Genes x Biological Processes and (B) Analytic model that underlies the use of pICA. Expression data are cast as a matrix of Genes x Samples(arrays). Application of pICA to these data will unmix the latent
variable (biological processes). In practice, these “recovered” biological processes may be a single process. More commonly it is a metaprocess that comprises several coordinated cellular processes (e.g.
synapse formation and transmitter vesicle synthesis). (C) Visual demonstration of blind source separation using fastICA. The three reference images (top; highlighted in yellow) were randomly mixed to create
the “observed”images (middle; highlighted in red). These are analogous to experimentally-obtained microarray data, whereas the reference images can be thought of as the underlying biological processes.
We applied the fastICA algorithm, exactly as we applied it to our data in Fig. 3, to decompose these images into parallel independent components (bottom; highlighted in blue). Because the algorithm is
insensitive to sign, both the positive and negative component images are displayed. As shown, this approach recovers the original images with high fidelity, even with no prior knowledge of their content.



A B

HighMI  ModerateMI  LowMI Maximum Relevance-Minimum Redundancy (MRnet)

g Entropy H(X) = —Ep(x,)k)gz plx;)
J i-1
8 Redundant Relevant ]Mn}‘l(:;l::llation MI(X, Y) = H(X) + H(Y) - H(X, Y).
a By |
E Relevance (u ;) = 1(X ;;Y)
3 1
o Redundancy () == > I(X ;X))
JAUAA Y e e
Valles MRMR;(s;) =u; -,
Connection Wnt1-MRnet
Strength
Threshold

1Bit

0.5 Bit
~
S
o
2
—
[}
=z
4-’6011 ’E‘gdes 4668 Nodes
5051 Edges 8325 Edges
1.3 Bits
<
(%) s e
ge) N/’/““
e //—\\,
© e
5
W 02 Ny e T 2 N :;\.\ - "/ \/;w g .
/ oo e e \ \_\ =R e < ; T T ®
=/ & o8 =t SN o2 3 / 7 : N Re
NV & = —~— / g%
;// L l NS &5 S
/ ¥ e T &
- s . e /\ I [ \_4/'/- oL S 4 \
S ele JLoef, © ° Y p- S
yla o or o5 & p LY Jo v v¥¥ ° 7 2. L%
4 7 e 5> & ® P’ [ 5 2 B © 361 Nodes
° s é 315 Edges

Fig. S 8. Overview of mutual information-based network inference and sensitivity to thresholding effects. (A) Graphical representation of the
operational definition of Mutual Information (MI), whereby the information shared between two variables X (Blue) and Y (Yellow) is the
amount of uncertainty about X that is reduced by knowing Y. As depicted, knowing the distribution of Y confines the possible values of X to
lie within the overlap of the distributions (the region in green). (B) Summary of the equations used to calculate the discrete information
theoretic quantities (Entropy, Mutual Information, Relevance and Redundancy) used to build and prune our maximum relevance-minimum
redundancy coexpression network. (C) Network architecture: Use of increasingly stringent edge weighting criteria (i.e. higher MI) causes a
loss of network cohesion while preserving a power law distribution of connectivity among gene islands. Dementia related genes (Magenta).
Wnt related genes (Green).
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Fig. S9. (Scalable version of Flg.2) Wnt1 modulates genes implicated in Wnt signaling and Alzheimer’s Disease. (A) KEGG pathway:
Graphical summary of the diversity of Wnt signaling-related genes (canonical and non-canonical), significantly enriched (FDR<5%)
at 2 hours after Wnt1 application (n=59 out of 151 KEGG Wnt genes). Significantly increased (Magenta) or decreased (Cyan) mRNA
abundance (t-test *p<0.05) (B) KEGG Alzheimer’s Disease pathways highlighting genes (Magenta) whose message was significantly
increased by Wnt1 at (a) t=2 hours and (t-test *p<0.05).
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FIG. S10. (Scalable version of Fig. 3) Unsupervised Parallel Independent Component Analysis (pICA) blindly separates gene expression
patterns by biological function. (A) Normalized, mean expression time course for the top ten genes in each ICA component, ranked by gene
loading. (B) GO enrichment via DAVID was performed on each independent component module, following thresholding at a gene-loading
level of 3.0. Colors delineate individual modules. Listed are the top non-redundant level-5 biological processes (129), Disease ontologies
(underlined) or KEGG pathways (boldface), with associated p-values (n.s. none significant, n= number of genes per module). (C) Overlapping
MiME interactome networks built using the top 20 odd ranked genes versus top 20 even ranked genes from ICM2 (Left: Top Odd vs Top
Even), or (Right: Bottom vs Top) networks built from the bottom 20 genes versus Top Even genes. The Top-Odd network recovered signifi-
cantly more Top-even genes (Green Circles; n=24) than did the Bottom network (Blue Circles; n=8). (D) Genes in each ICM were probed
against the Broad Molecular Signature database. The most highly enriched dataset is presented for each module, as well as a representative
sampling of other significantly enriched data sets.
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Fig. S11. (Scalable version of Fig. 4) Combined topological overlap-based clustering and dynamic Bayesian network construction links
Wnt1 signaling with changes in dementia-related genes. (A-B) WGCNA clustering of ICM2 genes: Wnt1-stimulated expression
time-courses for the genes comprising the ICM2 module were averaged, then subjected to TOM-WGCNA based clustering (A). This
produced four submodules (Mustard, Brown, Blue and Turquoise). (B) Submodule eigengenes, where singular value decomposition
was used to extract a characteristic first principle component eigengene for each submodule. Y-axis is eigengene expression. (C) GO
analysis reveals functional uniqueness of individual submodules. (D-E) Dynamic Bayesian Network (DBN) depicting causal relation-
ships, within each module. (D) Overview of the DBN network: Edge-color codes the original submodule. Node color indicates those
genes identified by DTW analysis (Red; n=23). Outlined Diamonds denote those genes whose expression was increased in the brains
of Alzheimer’s patients (n=20) (70). Delta-like 1 homolog (DLK1) forms the primary hub in this network. [Note: SORT1 (sortilin-1), like
DLK1, is a binding partner for progranulin (73).] (E) A more detailed view of the DLK1 hub and its associated genes, revealing a
significant overlap (hypergeometric p<0.001) with DTW identified genes and a strong enrichment for genes with increased message in
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Fig. S12. (Scalable version of Fig. 5) Wnt1 induces a gene expression architecture that correlates many well-known dementia genes with
Whnt-related signal transduction. (A-C) Microarray-based gene expression data was generated from Wnt1- treated or untreated hNPs,
followed at 7 seven time-points over 72 hours and repeated in triplicate. Displayed is the subset of the MINA-based network thresh-
olded at 1.1 bits. (A) Multiple Wnts cluster around COL25A1, an AD-related gene. (B) CTNNB1 (3-catenin) and CXCR4 hubs. (C) Neigh-
borhood containing a dense cluster of dementia [Magenta; presenilin (PSEN1), progranulin (GRN), APOA4, DR6 (Death Receptor-6)] and
Whnt transduction related genes . Nodes are color coded to reflect genes implicated in neural development (Orange), dementia
(Magenta), Wnt signaling (Cyan), or diseases distinct from dementia (Yellow). [Note: CCNT1 (cyclin-T1) is a binding partner of PGRN] (D)
Loss of APOA4 dysregulates dementia hub genes: gqPCR of hippocampal gene expression among wild type and APOA4 null mice
reveals significant changes in the expression of connected genes (Blue), relative to GAPDH, but not the other Wnt-dementia hub gene
COL25A1 (Orange). Values are fold changes in gene expression calculated using delta-delta Ct method (*P<0.05; n = 4, PCR-ANCOVA).
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