Supporting Information

Weakly Stabilized Primary Borenium Cations and their Dicationic Dimers

Aleksandrs Prokofjevs, Jeff W. Kampf, Andrey Solovyev, Dennis P. Curran,* and Edwin Vedejs*

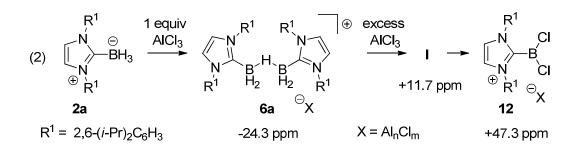
Table of Contents

General Remarks	
NHC Boranes	
Preparation of 2e	
NHC Borane activations with TiCl ₄ and AlCl ₃	
Amine Borane Activation with $Ph_3C^+ [B(C_6F_5)_4]^-$	
Activation of 13. Generation of 14, II, 15 and 16	
Activation of 17. Generation of 18 and 19	
Activation of 21. Generation of 22 and III. Quenching of III	S9
NHC Borane Activation with $Ph_3C^+[B(C_6F_5)_4]^-$.	
Activation of 2a and 2b. Generation of 6a and 6b	
Activation of 2c . Isolation of 6c	
Activation of 2b, 2d and 2e. Generation of IV, V, and 23	
Quenching Studies with 23. Preparation of 24	
Preparation and X-Ray Crystallography Details of 23 ([Al ₂ Br ₇] ⁻ Salt)	
Computational Studies	
References:	S24
NMR Spectra	

General Remarks

All reactions were performed at room temperature (unless otherwise stated), under an atmosphere of dry nitrogen, either in a glovebox, or using standard Schlenk techniques. Nuclear magnetic resonance experiments were performed at the following frequencies: ¹H 700 MHz or 400 MHz; ¹¹B and ¹¹B{¹H} 225 MHz, 128 MHz or 96 MHz; ¹³C{¹H} 176 MHz or 101 MHz; ¹⁹F 471 MHz or 376 MHz. All spectra were recorded in CDCl₃, *d*₅-PhBr, CD₂Cl₂ or CH₂Cl₂ and referenced to the ¹H signal of internal Me₄Si according to IUPAC recommendations,²² using a Ξ (referencing parameter) of 32.083974 for BF₃–OEt₂ (¹¹B), a Ξ of 25.145020 for Me₄Si (¹³C), and a Ξ of 94.094011 for CCl₃F (¹⁹F). When the internal Me₄Si reference could not be used, residual solvent peaks in ¹H NMR spectra were referenced instead. Hexanes, CH₂Cl₂, and THF were dried by passing through a column of activated alumina. Hexanes and CH₂Cl₂ were further dried by storing over activated 3Å molecular sieves in the glovebox. Commercially available NMR grade deuterated solvents (Cambridge Isotope Laboratories), as well as benzene and fluorobenzene were not distilled; instead they were simply dried over a large amount of activated 3Å molecular sieves in the glovebox. All other reagents were used as received from commercial suppliers, or prepared according to published procedures.²³

NHC Boranes


Preparation of 2e

A solution of LiN(SiMe₃)₂ (7.06 g, 42.2 mmol) in 20 mL of dry THF was cannulated into a slurry of thoroughly dried 1,3,4,5-tetramethylimidazolium iodide (9.68g, 38.4 mmol) in 20 mL of dry THF at -78 °C. After stirring at -78 °C for 1 h, neat Me₂S–BH₃ (4.3 mL, 42.2 mmol) was added dropwise, and the resulting mixture was allowed to warm up to rt. The resulting clear yellowish solution was stirred at rt for 1 h, during which time it developed a white precipitate. Following careful quenching with 100 mL of brine (frothing!) the reaction mixture was extracted with CH₂Cl₂ (1x70 mL, then 2x40 mL). The combined organic extracts were dried with MgSO₄, then filtered and concentrated. Crystallization of the resulting solid from hexanes/CHCl₃ mixture provided 4.94g (93%) of **2e** as an off-white crystalline solid in two crops. The product was additionally recrystallized from hexanes/CHCl₃ before use in sensitive electrophilic activations. The compound was identical to that reported previously according to NMR data.²⁴

¹H NMR (700 MHz, CDCl₃): δ 3.62 (s, 6H), 2.12 (s, 6H), 1.3-0.8 ppm (m, 3H). ¹¹B NMR (225 MHz, CDCl₃): δ -36.9 ppm (q, J = 86 Hz). ¹³C NMR (176 MHz, CDCl₃): δ 169.7-168.6 (m), 123.0, 32.4, 8.7 ppm. HRMS (EI+): m/z calculated for C₉H₂₂BNNa [M–H]⁺ 137.1250, found 137.1257 (+5 ppm).

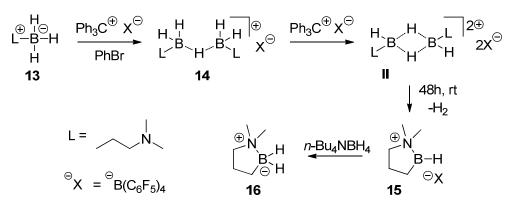
NHC Borane activations with TiCl₄ and AlCl₃

Generation of **6a** *with TiCl₄*: A solution of TiCl₄ (1 M in CH₂Cl₂, 0.1 mL, 0.1 mmol) was added to a solution of NHC–BH₃ **2a** (40.5 mg, 0.10 mmol) in CH₂Cl₂ (1 mL) at 0 °C. The vigorous evolution of H₂ gas was immediately observed. After 5 min, ¹¹B NMR analysis of the yellow crude mixture showed the complete conversion of **2a** to **6a**. The structure of the counterion was not established. No further reaction was observed with excess TiCl₄ (up to 5 equiv).

¹¹B NMR (128 MHz, CH₂Cl₂): δ –24.6 ppm (br s). ¹³C NMR (101 MHz, CH₂Cl₂): δ 144.6, 132.0, 130.8, 124.2, 124.1, 28.4, 25.1, 21.9 ppm.

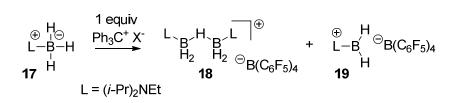
Generation of **6a** *with AlCl₃*: CD₂Cl₂ (0.5 mL) was added to a mixture of solid NHC–BH₃ **2a** (30 mg, 0.075 mmol) and AlCl₃ (10 mg, 0.075 mmol). Intense gas bubbling was observed. The ¹³C and ¹¹B NMR spectra of the light yellow reaction mixture were identical to those of **6a** obtained in the reaction with TiCl₄.

¹H NMR (400 MHz, CD₂Cl₂): δ 7.47 (br t, J = 7.2 Hz, 4H), 7.18 (br d, J = 6.0 Hz, 8H), 7.12 (s, 4H), 2.12 (br s, 8H), 1.02 (d, J = 4.4 Hz, 24H), 0.96 ppm (d, J = 4.4 Hz, 24H). ¹¹B NMR (128 MHz, CD₂Cl₂): δ -24.3 ppm (br s). ¹³C NMR (100 MHz, CD₂Cl₂): δ 144.8, 132.3, 131.0, 124.5, 124.3, 28.7, 25.3, 22.1 ppm.


Generation of I with AlCl₃: CH₂Cl₂ (0.5 mL) was added to a mixture of solid **2a** (30 mg, 0.075 mmol) and AlCl₃ (50 mg, 0.37 mmol). Intense gas bubbling was observed. ¹¹B NMR analysis of the light yellow reaction mixture showed a major signal at +11.7 ppm, tentatively assigned as dication I, but the identity of the anion was not established.

¹¹B NMR (128 MHz, CH₂Cl₂): δ +11.7 ppm (br s). ¹³C NMR (101 MHz, CH₂Cl₂): δ 143.8, 133.6, 129.7, 129.3, 125.7, 29.1, 24.5, 23.1 ppm.

Generation of 12: A solution of I in CH_2Cl_2 was prepared from 2a as described above. This solution was kept at rt overnight. The transformation was monitored by the ¹¹B NMR spectroscopy. The starting signal at +11 ppm slowly disappeared. After 24 h, the only signal in ¹¹B NMR (96 MHz, CH_2Cl_2) was a singlet at +47.3 ppm. The tentative structure of $[NHC-BCl_2]^+ X^-$ 12 was assigned. An attempt to grow crystals of 12 for the X-ray crystallographic analysis outside the glovebox resulted in the complete conversion of 12 to an imidazolium salt $[NHC-H]^+X^-$ after 12 days in solution at rt.


Amine Borane Activation with Ph₃C⁺ [B(C₆F₅)₄]⁻

Activation of 13. Generation of 14, II, 15 and 16

Every possible effort was made to protect the reaction mixture from exposure to air and moisture. The reaction was set up in a dry J. Young NMR tube under N₂ atmosphere in a glovebox. The NMR tube was dried in a heating oven at ca. 200 °C overnight, and the fitted Teflon valve was dried in a dessicator over Drierite. Commercial grade d_5 -PhBr (Cambridge Isotope Laboratories) was not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox. The reaction tube was charged with a solution of Ph₃C⁺ [B(C₆F₅)₄]⁻ (56.0 mg, 60.7 µmol) in 0.6 mL d_5 -PhBr. To this solution neat *n*-PrNMe₂–BH₃ (**13**) (5.5 mg, 54.5 µmol) was added in one portion. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min. Formation of **II** (δ +13.2 ppm) as a transient intermediate in addition to the expected **14** (δ –0.9 ppm) was evident from the ¹¹B NMR spectra taken after ca. 30 min following mixing of the reagents. After 48 h at rt the signals corresponding to **14** and **II** were almost entirely replaced by a peak at +67.4 ppm assigned as **15**. Formation of the known **16**²⁵ was established by NMR spectroscopy upon quenching the reaction mixture with excess *n*-Bu₄NBH₄.

Activation of 17. Generation of 18 and 19

Every possible effort was made to protect the reaction mixture from exposure to air and moisture. The reaction was set up in a dry J. Young NMR tube under N_2 atmosphere in a glovebox. The NMR tube

was dried in a heating oven at ca. 200 °C overnight, and the fitted Teflon valve was dried in a dessicator over Drierite. Commercial grade $(iPr)_2EtN-BH_3$ (17) was used without further purification. Commercial grade d_3 -PhBr (Cambridge Isotope Laboratories) was not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox. The reaction tube was charged with a solution of Ph₃C⁺ [B(C₆F₅)₄]⁻ (48.0 mg, 52.0 µmol) in 0.6 mL d_3 -PhBr. To this solution neat $(iPr)_2EtN-BH_3$ (17) (9.1 µL, 52.0 µmol) was added via a microsyringe in one portion. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min. Since primary borenium 19 is very unstable under the reaction conditions, all NMR spectra had to be acquired within the first 10 minutes following mixing the reagents to obtain reasonable quality data. The following NMR spectra were acquired: (1) ¹H NMR (ca. 3 sec total acquisition time) at 3 min counting from the moment of addition of 17 to the solution of 18 to 19 to 10 to

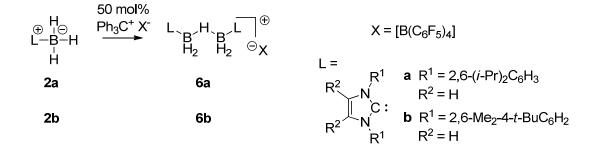
While overlaps in the ¹H spectrum did not allow to fully assign the peaks of the $(iPr)_2$ EtN fragment, observation of a broad signal at δ 5.2–4.3 ppm serves as a clear indication for the formation of a tricoordinate B-H species in the course of the reaction. To illustrate the reasoning behind this assignment, the ¹H NMR B–H signal of tricoordinate borenium **11** also appears as a broad peak around δ 5.2–4.3 ppm (in d₅-PhBr), while the B–H signals of other plausible species with larger coordination numbers at B appear noticeably upfield from that (cf. δ^{-1} H 3.5–2.7 ppm for dication III in d_5 -PhBr). Integration of the peaks at δ 5.2–4.3 ppm (BH₂ of **19**) and –2.8 (bridging H of **18**) in the ¹H spectrum suggests a ca. 3.9:1 molar ratio of 18 and 19. The molar ratio of 18 to 19 determined by the integration of peaks at δ -0.5 and +53.9 ppm, respectively, in the ¹¹B NMR is comparable (4.3:1), supporting the assignment of the peak at $\delta^{11}B$ +53.9 ppm as the primary borenium species. The ¹¹B NMR spectrum at that time also showed two minor peaks at δ +19.1 and +15.0 ppm whose intensity gradually increased along with the disappearance of 19. Monitoring the progress of the reaction over time suggests that these two peaks apparently correspond to some unidentified decomposition products. Aside from the integration, the gradual disappearance of the peak at $\delta^{11}B$ +53.9 ppm due to decomposition appears to parallel the disappearance of the broad peak at δ^{1} H 5.2–4.3 ppm, suggesting that the two peaks likely arise from the same compound. The spectral data summarized below lists only those peaks that can be reasonably assigned as arising from the cation of 19. The signals corresponding to Ph_3CH , Ph_3C^+ , **18** and $[B(C_6F_5)_4]^-$ counterion are omitted.

¹H NMR (700 MHz, *d*₅-PhBr): δ 5.2-4.3 ppm (br m, 2H). ¹¹B NMR (225 MHz, *d*₅-PhBr): δ +53.9 ppm.

Activation of 21. Generation of 22 and III. Quenching of III

$$\begin{array}{c} \overset{\oplus}{\mathbb{H}}_{L-B} & \overset{Ph_{3}C^{+}X^{-}}{\underbrace{50 \text{ mol}\%}} & \overset{L}{\mathbb{H}}_{B_{2}} \overset{B}{\mathbb{H}_{2}} \overset{L}{\mathbb{H}_{2}} \overset{\oplus}{\odot}_{X} & \overset{Ph_{3}C^{+}X^{-}}{\underbrace{50 \text{ mol}\%}} & \overset{H}{\mathbb{H}}_{L} \overset{A}{\mathbb{H}}_{H} \overset{L}{\mathbb{H}}_{H} \overset{2^{\oplus}}{\mathbb{H}}_{2X} \overset{2^{\oplus}}{\cong} \\ \textbf{21} & \textbf{22} & \textbf{III} \\ & L = Me_{3}N & X = [B(C_{6}F_{5})_{4}] & \textbf{III} \end{array}$$

Every possible effort was made to protect the reaction mixture from exposure to air and moisture. The reaction was set up in a dry J. Young NMR tube under N₂ atmosphere in a glovebox. The NMR tube was dried in a heating oven at ca. 200 °C overnight, and the fitted Teflon valve was dried in a dessicator over Drierite. Commercial grade Me₃N-BH₃ (21) (Aldrich) was used without further purification. Commercial grade d_5 -PhBr (Cambridge Isotope Laboratories) was not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox. The reaction tube was charged with a mixture of solid **21** (3.4 mg, 48.0 μ mol) and Ph₃C⁺ [B(C₆F₅)₄]⁻ (44.3 mg, 48.0 μ mol). The solid mixture was then dissolved by adding 0.6 mL of anhydrous d_5 -PhBr to the tube in one portion at rt. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min. After 2.5-3 h at rt a ca. 3:1 ratio of 22:III was reached as evidenced by ¹¹B NMR (peaks at δ -0.4 and +12.9 ppm, respectively). At this point only Ph_3CH , unreacted Ph_3C^+ , 22 and III were present in the reaction mixture according to ¹H NMR data. After 24h following mixing the reagents the molar ratio of 1:2.4 (22:III) was reached. At this point a minor peak (<5% of the combined intensity of the peaks assigned as III and 22) of an unidentified product at δ +4.8 ppm was also apparent in ¹¹B NMR. The spectral data summarized below are for the dication of **III** only. The signals corresponding to Ph₃CH, Ph_3C^+ , **22** and $[B(C_6F_5)_4]^-$ counterion are omitted.


¹H NMR (700 MHz, *d*₅-PhBr): δ 3.6-2.7 (br m, 2H), 2.08 ppm (s, 9H). ¹¹B NMR (225 MHz, *d*₅-PhBr): δ 12.9 ppm (unres m). ¹³C NMR (176 MHz, *d*₅-PhBr): δ 50.3 ppm.

The following quenching experiment (reaction of **III** with **21** to generate **22**) was performed as an additional consistency check confirming the stoichiometry of **III**. The reaction tube was charged with a mixture of solid **21** (7.4 mg, 0.102 mmol) and Ph_3C^+ [B(C₆F₅)₄]⁻ (93.9 mg, 0.102 mmol). The solid mixture was then dissolved by adding 0.6 mL of anhydrous d_5 -PhBr to the tube in one portion at rt. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was

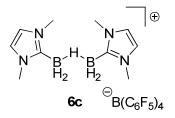
immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min. After 2 h at rt ca. 3:1 ratio of **22:III** was reached as evidenced by ¹¹B NMR (peaks at δ –0.4 and +12.9 ppm, respectively). At this point only Ph₃CH, unreacted Ph₃C⁺, **22** and **III** were present in the reaction mixture according to ¹H NMR data. The reaction tube was opened in the glovebox, and solid **21** (12.5 mg, 0.171 mmol) was added in one portion. The reaction tube was immediately sealed, and then shaken vigorously for ca. 1 min. According to the high quality ¹H and ¹¹B NMR spectra acquired shortly after the addition of **21**, the only species present in the reaction mixture at that time were Ph₃CH, excess **21** and **22** in a ca. 1:1.5 molar ratio, as well as [B(C₆F₅)₄]⁻ counterion. No other signals were detected.

NHC Borane Activation with $Ph_3C^+ [B(C_6F_5)_4]^-$

Activation of 2a and 2b. Generation of 6a and 6b

Every possible effort was made to protect the reaction mixtures from exposure to air and moisture. The reactions were set up in dry J. Young NMR tubes under N₂ atmosphere in a glovebox. The NMR tubes were dried in a heating oven at ca. 200 °C overnight, and the fitted Teflon valves were dried in a dessicator over Drierite. $Ph_3C^+[B(C_6F_5)_4]^-$ (Strem) was used without further purification. Commercial grade d_5 -PhBr and CD₂Cl₂ (Cambridge Isotope Laboratories) were not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox.

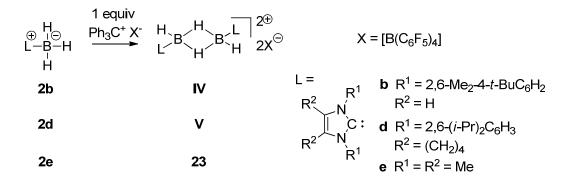
General Procedure. The reaction tube was charged with a mixture of solid NHC borane and Ph_3C^+ $[B(C_6F_5)_4]^-$. The solid mixture was then dissolved by adding 0.6 mL of solvent to the tube in one portion at rt. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min.


6a (in d_5 -PhBr): The reaction was performed in d_5 -PhBr solvent (0.6 mL). The following reagents were used: **2a** (27.4 mg, 68.1 µmol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (31.4 mg, 34.0 µmol). NMR assay shortly following the mixing of reagents indicated clean formation of H-bridged cation **6a** ([B(C₆F₅)₄]⁻ salt) along with Ph₃CH byproduct. ¹¹B NMR (225 MHz, d_5 -PhBr): δ –16.1 (s), –24.6 ppm (br s).

6a (in CD₂Cl₂): The reaction was performed in CD₂Cl₂ solvent (0.6 mL). The following reagents were used: **2a** (24.9 mg, 61.9 μ mol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (28.6 mg, 31.0 μ mol). NMR assay shortly following the mixing of reagents indicated clean formation of H-bridged cation **6a** ([B(C₆F₅)₄]⁻ salt) along with Ph₃CH byproduct. ¹¹B NMR (128 MHz, CD₂Cl₂): δ –16.7 (s), –24.6 ppm (br s).

6b: The reaction was performed in d_5 -PhBr solvent (0.6 mL). The following reagents were used: **2b** (25.0 mg, 62.1 μ mol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (28.7 mg, 31.1 μ mol). NMR assay shortly following the

mixing of reagents indicated clean formation of H-bridged cation **6b** ($[B(C_6F_5)_4]^-$ salt) along with Ph₃CH byproduct. ¹¹B NMR (225 MHz, *d*₅-PhBr): δ –16.1 (s), –24.6 ppm (br s).


Activation of 2c. Isolation of 6c

Every possible effort was made to protect the reaction mixture from exposure to air and moisture. The reaction was performed under N₂ atmosphere in a glovebox. Disposable glassware flame-dried at the glass softening temperature was used. Commercial grade $Ph_3C^+ [B(C_6F_5)_4]^-$ (Strem) was used without further purification. Commercial grade anhydrous benzene (Aldrich) was additionally dried with freshly activated molecular sieves in the glovebox. To a mixture of solid Ph_3C^+ [B(C₆F₅)₄]⁻ (0.461 g, 0.500 mmol) and 2c (0.115 g, 1.05 mmol) 2 mL of dry PhH was added at rt, which resulted in formation of a two-layer liquid. No substantial exotherm was observed, potentially due to the small scale of the reaction. After stirring for ca. 10 min at room temperature, the two-layer mixture was diluted with 2 mL of dry hexanes. The clear top layer contained triphenylmethane and was discarded, and the bottom layer of the crude product was washed with 4x2 mL of dry hexanes. The crude product crystallized on trituration with hexanes. Drying in the glovebox produced 0.437 g (97%) of 6c as a highly sensitive white solid. Layering a CH₂Cl₂ solution of the product with hexanes at room temperature produced single crystals suitable for X-ray crystallographic analysis. X-rav crystallography confirmed the proposed connectivity in the cation, although severe disorder did not allow to solve the structure fully.

¹H NMR (700 MHz, *d*₅-PhBr): δ 6.29 (s, 4H), 3.26 (s, 12H), 2.7-1.6 (br m, 4H), -2.2--3.8 ppm (br s, 1H). ¹¹B NMR (225 MHz, *d*₅-PhBr): δ -16.2 (s), -22.1 ppm (br m). ¹³C NMR (176 MHz, *d*₅-PhBr): δ 158.1-156.1 (br m), 149.7-147.5 (m), 139.4-137.5 (m), 137.5-135.5 (m), 125.2-123.7 (m), 121.7, 35.4 ppm. ¹⁹F NMR (471 MHz, *d*₅-PhBr): δ -131.8 (m), -162.0 (t, J = 20.9 Hz), -166.0 ppm (m).

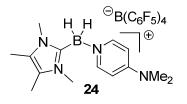
Activation of 2b, 2d and 2e. Generation of IV, V, and 23

Every possible effort was made to protect the reaction mixtures from exposure to air and moisture. The reactions were set up in dry J. Young NMR tubes under N₂ atmosphere in a glovebox. The NMR tubes were dried in a heating oven at ca. 200 °C overnight, and the fitted Teflon valves were dried in a dessicator over Drierite. $Ph_3C^+[B(C_6F_5)_4]^-$ (Strem) was used without further purification. Commercial grade d_5 -PhBr and CD_2Cl_2 (Cambridge Isotope Laboratories) were not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox.

General Procedure. The reaction tube was charged with a mixture of solid NHC borane and Ph_3C^+ $[B(C_6F_5)_4]^-$. The solid mixture was then dissolved by adding 0.6 mL of solvent to the tube in one portion at rt. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min.

IV (in d_5 -PhBr): The reaction was performed in d_5 -PhBr solvent (1.0 mL). The following reagents were used: **2b** (25.0 mg, 62.1 µmol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (57.3 mg, 62.1 µmol). Formation of dication IV was found to be somewhat slow. Thus, after ca. 1.5 h at rt following the mixing of reagents the reaction mixture was found to contain **6b** and IV ([B(C₆F₅)₄]⁻ salts) in a ca. 1:1.4 ratio, along with Ph₃CH byproduct and unreacted Ph₃C⁺. After 17 h at rt ¹¹B NMR assay indicated clean formation of IV. ¹¹B NMR (128 MHz, d_5 -PhBr): δ 11.9 (br s), -16.2 ppm (s).

IV (in CD₂Cl₂): The reaction was performed in CD₂Cl₂ solvent (0.6 mL). The following reagents were used: **2b** (30.8 mg, 76.5 μ mol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (66.8 mg, 72.4 μ mol). Formation of dication IV was found to be somewhat slow. Thus, after 15 min at rt following the mixing of reagents the reaction mixture was found to contain **6b** and IV ([B(C₆F₅)₄]⁻ salts) in a ca. 1.5:1 ratio, along with Ph₃CH


byproduct and unreacted Ph_3C^+ . After 26 h at rt ¹¹B NMR assay indicated clean formation of IV. ¹¹B NMR (225 MHz, CD₂Cl₂): δ 12.4 (br s), -16.7 ppm (s).

V (in d_5 -PhBr): The reaction was performed in d_5 -PhBr solvent (0.6 mL). The following reagents were used: **2d** (20.6 mg, 45.1 µmol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (41.6 mg, 45.1 µmol). NMR assay shortly following the mixing of reagents indicated clean formation of dication V ([B(C₆F₅)₄]⁻ salt) along with Ph₃CH byproduct. ¹¹B NMR (225 MHz, d_5 -PhBr): δ 8.0 (br s), -16.1 ppm (s).

V (in CD₂Cl₂): The reaction was performed in CD₂Cl₂ solvent (0.6 mL). The following reagents were used: **2d** (20.6 mg, 45.1 μ mol), Ph₃C⁺ [B(C₆F₅)₄]⁻ (46.8 mg, 50.7 μ mol). NMR assay shortly following the mixing of reagents indicated clean formation of dication V ([B(C₆F₅)₄]⁻ salt) along with Ph₃CH byproduct. Some unreacted Ph₃C⁺ was also observed. ¹¹B NMR (225 MHz, CD₂Cl₂): δ 9.9 (br s), -16.7 ppm (s).

23: The reaction was performed in CD_2Cl_2 solvent (0.6 mL). The following reagents were used: **2e** (9.9 mg, 71.7 µmol), Ph_3C^+ [B(C₆F₅)₄]⁻ (66.1 mg, 71.7 µmol). Addition of the solvent to the solid mixture produced a clear solution, which turned into a slush of fine crystals within ca. 1 min at rt. NMR assay shortly following the mixing of reagents indicated clean formation of dication **23** ([B(C₆F₅)₄]⁻ salt) along with Ph₃CH byproduct, although ¹³C NMR data could not be acquired due to very low solubility of the product, as well as its gradual conversion to [NHC–BCl₂]⁺ over time. ¹H NMR (700 MHz, CD₂Cl₂): δ 3.82 (s, 6H), 2.37 ppm (s, 6H). ¹¹B NMR (225 MHz, CD₂Cl₂): δ 10.6 (br s), -16.7 ppm (s).

Quenching Studies with 23. Preparation of 24

Quenching of 23 with 4-dimethylaminopyridine. Every possible effort was made to protect the reaction mixture from exposure to air and moisture. The reaction was set up in dry J. Young NMR tubes under N₂ atmosphere in a glovebox. The NMR tube was dried in a heating oven at ca. 200 °C overnight, and the fitted Teflon valve was dried in a dessicator over Drierite. $Ph_3C^+[B(C_6F_5)_4]^-$ (Strem) was used without further purification. Commercial grade d_5 -PhBr (Cambridge Isotope Laboratories) was not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox. The reaction

tube was charged with a mixture of solid **2e** (8.3 mg, 60.1 μ mol) and Ph₃C⁺ [B(C₆F₅)₄]⁻ (55.4 mg, 60.1 μ mol). The solid mixture was then dissolved by adding anhydrous *d*₅-PhBr (1.0 mL) to the tube in one portion at rt. No substantial exotherm was observed, potentially due to the small scale of the reaction. The tube was immediately sealed with the fitted Teflon valve, and then shaken vigorously for ca. 1 min. Formation of dication **23** [B(C₆F₅)₄]⁻ salt was evident from the formation of a fine crystalline precipitate in the reaction tube. Addition of excess DMAP (ca. 1.5 equiv) along with ca. 1 mL *d*₅-PhBr resulted in dissolution of the crystalline solid. ¹¹B NMR assay indicated clean formation of boronium salt **24** (δ –14.7 ppm, compared to an independently prepared sample).

The following protocol was used to prepare the analytical sample of **24** from **6e**. A 4 mL scintillation vial was charged with a mixture of solid **2e** (34.0 mg, 0.246 mmol) and Ph_3C^+ [B(C₆F₅)₄]⁻ (0.113 g, 0.123 mmol). The solid mixture was then dissolved by adding anhydrous PhF (1.0 mL) to the vial in one portion at rt. The vial was capped, and then shaken vigorously for ca. 1 min. Complete consumption of the starting Ph_3C^+ [B(C₆F₅)₄]⁻ was evident from the rapid disappearance of the characteristic yellow color. To the resulting solution of **6e** solid DMAP (15.7 mg, 0.129 mmol) was added, and the mixture was shaken to accomplish full dissolution of the reagent. Addition of hexanes (2 mL) to the resulting solution precipitated a colorless oil, which was separated. The oil was dissolved in CH₂Cl₂ (1 mL), and the solid product was precipitated by adding 3 mL of hexanes. Separation of the solid by centrifugation, followed by two additional dissolution/precipitation cycles (1 mL CH₂Cl₂ + 3 mL hexanes in each precipitation) afforded 32.0 mg (28%) of the pure boronium salt. Alternatively, the boronium salt can be isolated in a nearly quantitative yield by concentrating the PhF solution after addition of DMAP, followed by repeated washing of the crude mixture with hexanes, although **2e** byproduct resulting from the cleavage of **6e** by DMAP could not be fully separated.

24: ¹H NMR (700 MHz, CHCl₃): δ 7.67-7.64 (m, 2H), 6.50-6.46 (m, 2H), 3.60 (s, 6H), 3.2-2.7 (br m, 2H), 3.06 (s, 6H), 2.14 ppm (s, 6H). ¹¹B NMR (225 MHz, CHCl₃): δ –14.7 ppm (br m), –16.7 ppm (s). ¹³C NMR (176 MHz, CHCl₃): δ 158.7-157.4 (br m), 155.3, 149.1-147.0 (m), 145.2, 139.1-137.1 (m), 137.1-135.0 (m), 126.0, 124.7-123.1 (m), 107.3, 39.3, 32.5, 8.4 ppm. ¹⁹F NMR (471 MHz, CHCl₃): δ –132.7 (m), –163.1 (t, J = 20.4 Hz), –167.0 ppm (m). HRMS (ES+): m/z calculated for C₁₄H₂₄BN₄⁺ [M]⁺ 259.2094, found 259.2094 (0 ppm).

Quenching of 23 *with n-Bu*₄*NBH*₄. A suspension of the finely divided crystalline dication 23 was generated as described above for the DMAP quenching experiment from 2e (8.3 mg, 60.1 μ mol) and Ph₃C⁺ [B(C₆F₅)₄]⁻ (55.4 mg, 60.1 μ mol) and anhydrous *d*₅-PhBr (0.6 mL) in an NMR tube. Addition

of excess n-Bu₄NBH₄ (23.2 mg, 90.2 μ mol) along with ca. 0.4 mL d_5 -PhBr resulted in dissolution of the crystalline solid. ¹H and ¹¹B NMR assay indicated clean formation of **2e** as the only product containing the NHC fragment.

Quenching of 23 with 2e. A suspension of the finely divided crystalline dication 23 was generated as described above for the DMAP quenching experiment from 2e (8.3 mg, 60.1 μ mol) and Ph₃C⁺ [B(C₆F₅)₄]⁻ (55.4 mg, 60.1 μ mol) and anhydrous *d*₅-PhBr (0.6 mL) in an NMR tube. Addition of an additional portion of solid 2e (8.3 mg, 60.1 μ mol) along with ca. 0.2 mL *d*₅-PhBr resulted in dissolution of the crystalline solids 2e and 23. ¹H and ¹¹B NMR assay indicated clean formation of **6e** as the only product containing the NHC fragment.

Preparation and X-Ray Crystallography Details of 23 ([Al₂Br₇]⁻ Salt)

This procedure describes preparation of crystalline [Al₂Br₇]⁻ salt of the dication for the X-ray crystallographic study. For other applications such as the quenching experiments, $[B(C_6F_5)_4]$ salts of 23 were generated *in situ* as described above. Every possible effort was made to protect the reaction mixture from exposure to air and moisture. The reaction was performed under N₂ atmosphere in a glovebox. Disposable glassware flame-dried at the glass softening temperature was used. Commercial grade Al₂Br₆ (Aldrich) and Ph₃CBr were used without further purification. Commercial grade fluorobenzene (Acros) was not distilled, but rather simply dried with freshly activated molecular sieves in the glovebox. The starting NHC borane 2e was prepared as described above, crystallized from hexanes/CHCl₃, and dried in high vacuum before transferring into the glovebox. In a dry 4 mL scintillation vial a mixture of solid Al₂Br₆ (96.0 mg, 0.180 mmol) and Ph₃CBr (58.2 mg, 0.180 mmol) was dissolved in 1 mL of dry PhF at rt. No substantial exotherm was observed, potentially due to the small scale of the reaction. The resulting intensively colored red-orange solution was allowed to stand at rt for 20 min, and then it was carefully layered with a solution of 2e (24.8 mg, 0.180 mmol) in 0.5 mL of dry PhF. On standing overnight at rt in the sealed vial the reaction mixture developed a substantial amount of X-ray quality crystalline material. The quality of the crystals was found to deteriorate quickly with time, prompting immediate crystallographic analysis as soon as the sufficient crystal size is reached. X-ray crystallographic study confirmed the proposed dicationic structure of 23.

A crystal of dimensions 0.14x0.10x0.10 mm was mounted on a Rigaku AFC10K Saturn 944+ CCDbased X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda = 1.54187$ Å) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the crystal. A total of 3750 images were collected with an oscillation width of 1.0° in ω . The exposure time was 2 sec. for the low angle images, 6 sec. for high angle. The integration of the data yielded a total of 26707 reflections to a maximum 20 value of 136.46° of which 3680 were independent and 3490 were greater than 2 σ (I). The final cell constants (Table 1) were based on the xyz centroids of 17391 reflections above 10 σ (I). Analysis of the data showed negligible decay during data collection; the data were processed with CrystalClear 2.0 and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/4) software package, using the space group P1 with Z = 2 for the formula C₁₄H₂₈B₂N₄Al₄Br₁₄. Full matrix least-squares refinement based on F² converged at R1 = 0.0371 and wR2 = 0.0909 [based on I > $2\sigma(I)$], R1 = 0.0394 and wR2 = 0.0926 for all data. Additional details are presented in Tables 1-5 and CIF file.

Sheldrick, G.M. SHELXTL, v. 2008/4; Bruker Analytical X-ray, Madison, WI, 2008. CrystalClear Expert 2.0 r12, Rigaku Americas and Rigaku Corporation (2011), Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan.

```
Table 1. Crystal data and structure refinement for 23.
Empirical formula
                                     C_{14}H_{28}Al_4B_2Br_{14}N_4
                                     1500.68
Formula weight
Temperature
                                     85(2) K
                                     1.54178 Å
Wavelength
Crystal system, space group
                                    Triclinic, P-1
Unit cell dimensions
                                     a = 9.4348(2) \text{ Å}, \alpha = 98.386(7)^{\circ}.
                                     b = 9.4885(2) \text{ Å}, \beta = 92.646(7)^{\circ}
                                     c = 11.5808(8) \text{ Å}, \gamma = 93.785(7)^{\circ}.
Volume
                                    1021.78(8) Å<sup>3</sup>
                                    1, 2.439 Mg/m<sup>3</sup>
Z, Calculated density
                                    17.238 \text{ mm}^{-1}
Absorption coefficient
F(000)
                                      692
                                     0.14 x 0.10 x 0.10 mm
Crystal size
Theta range for data collection
                                    4.70 to 68.23°.
Limiting indices
                                     -11<=h<=11, -11<=k<=11, -13<=1<=13
                                     26707 / 3680 [R(int) = 0.0745]
Reflections collected / unique
                                     98.2%
Completeness to theta = 68.23
Absorption correction
                                     Semi-empirical from equivalents
                                     0.2775 and 0.1964
Max. and min. transmission
Refinement method
                                     Full-matrix least-squares on F<sup>2</sup>
Data / restraints / parameters
                                     3680 / 0 / 184
Goodness-of-fit on F<sup>2</sup>
                                     1.085
Final R indices [I>2σ(I)]
                                    R1 = 0.0371, wR2 = 0.0909
                                    R1 = 0.0394, wR2 = 0.0927
R indices (all data)
Largest diff. peak and hole
                                    1.132 and -0.818 e·Å<sup>-3</sup>
```

Table 2. Atomic coordinates ($x\ 10^4)$ and equivalent isotropic displacement parameters (Å $^2\ x\ 10^3)$ for **23**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
Br(1)	697(1)	6078(1)	2111(1)	23(1)
Br(2)	2526(1)	3062(1)	493(1)	30(1)
Br(3)	3305(1)	4037(1)	3761(1)	21(1)
Br(4)	4648(1)	6274(1)	1535(1)	17(1)
Br(5)	4736(1)	10223(1)	1873(1)	27(1)
Br(6)	7610(1)	8378(1)	3280(1)	23(1)
Br(7)	3862(1)	8258(1)	4448(1)	23(1)
Al(1)	2656(1)	4816(2)	2071(1)	14(1)
Al(2)	5237(1)	8457(2)	2928(1)	14(1)
N(1)	1533(4)	-2114(5)	-1629(4)	22(1)
N(2)	22(4)	-1339(5)	-2789(4)	21(1)
C(1)	523(5)	-1161(6)	-1681(5)	26(1)
C(2)	1650(5)	-2883(5)	-2722(4)	17(1)
C(3)	690(5)	-2386(6)	-3448(4)	17(1)
C(4)	2367(7)	-2307(9)	-583(5)	42(2)
C(6)	365(6)	-2853(7)	-4731(5)	26(1)
C(7)	-1095(6)	-534(6)	-3295(6)	29(1)
C(11)	2662(6)	-3988(7)	-2960(6)	31(1)
B(1)	-9(7)	57(8)	-760(6)	31(2)

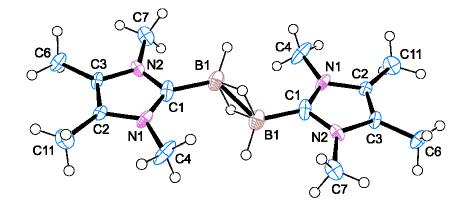
Table 3. Bond lengths $[{\rm \AA}]$ and angles $[^{\circ}]$ for ${\bf 23.}$

Br (1) -A1 (1) Br (2) -A1 (1) Br (3) -A1 (1) Br (4) -A1 (1) Br (4) -A1 (2) Br (5) -A1 (2) Br (5) -A1 (2) Br (7) -A1 (2) N (1) -C (1) N (1) -C (2) N (1) -C (2) N (1) -C (3) N (2) -C (3) N (2) -C (7) C (1) -B (1) C (2) -C (3) C (2) -C (3) C (2) -C (11) C (3) -C (6) C (4) -H (4A) C (4) -H (4B) C (4) -H (4B) C (4) -H (4B) C (6) -H (6C) C (7) -H (7A) C (7) -H (7A) C (7) -H (7B) C (7) -H (7A) C (11) -H (11A) C (11) -H (11C) B (1) -B (1) #1 B (1) -H (1B)	2.2662(16) 2.2778(14) 2.2635(16) 2.4178(14) 2.4479(14) 2.2742(17) 2.2656(14) 2.2564(14) 1.361(8) 1.379(6) 1.455(8) 1.330(8) 1.368(6) 1.489(8) 1.579(8) 1.360(8) 1.470(8) 1.499(7) 0.9800 0.
Al (1) -Br (4) -Al (2)	113.27(5)
Br (3) -Al (1) -Br (1)	115.82(6)
Br (3) -Al (1) -Br (2)	113.04(7)
Br (1) -Al (1) -Br (2)	111.26(6)

Br (3) -Al (1) -Br (4) Br (1) -Al (1) -Br (4) Br (2) -Al (1) -Br (4) Br (2) -Al (2) -Br (6) Br (7) -Al (2) -Br (5) Br (6) -Al (2) -Br (4) Br (6) -Al (2) -Br (4) Br (5) -Al (2) -Br (4) C (1) -N (1) -C (2) C (1) -N (1) -C (4) C (2) -N (1) -C (4) C (2) -N (1) -C (4) C (1) -N (2) -C (3) C (1) -N (2) -C (7) C (3) -N (2) -C (7) N (2) -C (1) -N (1) N (2) -C (1) -B (1) N (1) -C (1) -B (1) C (3) -C (2) -N (1) C (3) -C (2) -N (1) C (3) -C (2) -C (11) C (3) -C (2) -C (11) C (2) -C (3) -N (2) C (2) -C (3) -N (2) C (2) -C (3) -N (2) C (2) -C (3) -C (6) N (1) -C (4) -H (4A) N (1) -C (4) -H (4B) H (4A) -C (4) -H (4C) H (4A) -C (4) -H (4C) H (4A) -C (4) -H (4C) H (4A) -C (6) -H (6B) C (3) -C (6) -H (6B) H (6A) -C (6) -H (6C) H (6B) -C (6) -H (6C) H (6B) -C (7) -H (7B) H (7A) -C (7) -H (7B) H (7A) -C (7) -H (7C) H (7B) -C (7) -H (7C) H (7B) -C (7) -H (7L) H (7A) -C (1) -H (11B) H (11A) -C (11) -H (11C) H (11B)	107.72(6) 108.99(6) 98.44(5) 116.47(7) 115.56(6) 105.52(5) 102.09(6) 103.30(6) 109.8(4) 125.6(5) 124.6(5) 126.8(5) 126.8(5) 126.8(5) 126.8(5) 126.8(5) 126.2(4) 130.7(5) 123.1(5) 107.3(4) 128.7(5) 124.0(5) 109.5
H (11A) -C (11) -H (11B) C (2) -C (11) -H (11C) H (11A) -C (11) -H (11C)	109.5 109.5 109.5
, ,	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z

Table 4. Anisotropic displacement parameters (Å² x 10³) for **23**. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2]


	U11	U22	U33	U23	U13	U12
Br(1)	11(1)	35(1)	24(1)	7(1)	6(1)	3(1)
Br(2)	35(1)	27(1)	23(1)	-11(1)	12(1)	-17(1)
Br(3)	19(1)	27(1)	19(1)	7(1)	5(1)	0(1)
Br(4)	12(1)	22(1)	14(1)	-2(1)	5(1)	-7(1)

- (-)	0.0.4.1	0.4.(4.)	04.443	0 (1)	0 (1)	a (a)
Br(5)	26(1)	24(1)	31(1)	9(1)	0(1)	-1(1)
Br(6)	8(1)	32(1)	27(1)	-4(1)	-2(1)	-3(1)
Br(7)	20(1)	26(1)	20(1)	-5(1)	9(1)	-8(1)
Al(1)	10(1)	18(1)	14(1)	-1(1)	4(1)	-4(1)
Al(2)	8(1)	18(1)	16(1)	2(1)	1(1)	-2(1)
N(1)	15(2)	38(3)	13(2)	4(2)	2(2)	-10(2)
N(2)	14(2)	15(2)	32(3)	-1(2)	9(2)	-2(2)
C(1)	17(2)	31(3)	24(3)	-9(2)	8(2)	-12(2)
C(2)	11(2)	21(3)	17(2)	3(2)	5(2)	-8(2)
C(3)	8(2)	26(3)	17(2)	-2(2)	7(2)	-6(2)
C(4)	28(3)	82(5)	15(3)	13(3)	-2(2)	-4(3)
C(6)	17(2)	46(4)	16(3)	6(2)	2(2)	1(2)
C(7)	18(3)	27(3)	41(3)	-1(3)	4(2)	1(2)
C(11)	19(3)	34(3)	39(3)	3(3)	-1(2)	7(2)
B(1)	24(3)	42(4)	26(3)	1(3)	8(3)	-2(3)

Table 5. Hydrogen coordinates (x $10^4)$ and isotropic displacement parameters $({\rm \AA}^2~x~10^3)$ for ${\bf 23.}$

	Х	У	Z	U(eq)
Н(4А)	2689	-1371	-141	63
н(4В)	3195	-2835	-807	63
H(4C)	1780	-2845	-96	63
H(6A)	986	-3600	-5017	40
Н(6В)	527	-2035	-5149	40
H(6C)	-631	-3229	-4866	40
H(7A)	-1989	-694	-2918	44
Н(7В)	-1237	-867	-4137	44
H(7C)	-795	487	-3163	44
H(11A)	2553	-4408	-3787	46
H(11B)	2473	-4735	-2473	46
H(11C)	3635	-3559	-2779	46
H(1A)	-810(60)	-520(60)	-100(50)	26(16)
H(1B)	-540(80)	1070(80)	-1060(60)	40(20)

Figure 1. ORTEP plot of 23 (Al₂Br₇⁻ salt, the counterions have been omitted for clarity)

Computational Studies

The consistency of the observed ¹¹B NMR chemical shifts to the proposed structures was verified by performing GIAO (Gauge-Independent Atomic Orbital) calculations. All calculations were performed using Gaussian 09, Revision A.02 suite of computational programs.²⁶ Ultrafine integration grids (int=ultrafine) and tight optimization criteria (opt=tight) were used. No exhaustive conformational search was performed, and the optimized structures were confirmed to be the local minima by performing frequency calculations. All calculations were performed the at M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p) level of theory²⁷ using SMD solvation model.²⁸ The following reference compounds were used to estimate ¹¹B NMR chemical shifts: 11 (δ +69.5 ppm in d_5 -PhBr, δ +71.1 ppm in CD₂Cl₂) for **19** and the hypothetical primary borenium **4e**, and B₂H₆ (δ +17.4 ppm in CH_2Cl_2) for 23.

B₂H₆ (M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p), SMD solvation (CH₂Cl₂)):

E = -53.258787B isotropic shielding 84.9

11 (M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p), SMD solvation (CH₂Cl₂)):

E = -433.807690 B isotropic shielding 15.1

СССННННСССННСНННННИСННННС	$\begin{array}{c} 1.687883000\\ 1.749451000\\ 0.329175000\\ 2.490892000\\ 1.756127000\\ 0.245964000\\ 0.029853000\\ -1.430061000\\ -1.724728000\\ -2.568793000\\ -2.568793000\\ -1.807773000\\ -0.778433000\\ -2.660375000\\ -1.287291000\\ -2.350185000\\ -2.318595000\\ -3.493425000\\ -2.318595000\\ -3.671642000\\ -0.626484000\\ 2.774800000\\ 3.783313000\\ 2.755014000\\ 2.578026000\\ 2.578026000\\ 2.578026000\\ 2.062740000\\ \end{array}$	$\begin{array}{c} -1.104964000\\ 0.119444000\\ 0.175215000\\ -1.141745000\\ -2.040749000\\ -0.516945000\\ 1.174156000\\ 0.799551000\\ -1.195410000\\ 1.071962000\\ 0.416190000\\ 1.652473000\\ -0.196556000\\ -1.946058000\\ -1.684717000\\ 1.952971000\\ 1.262548000\\ 0.008509000\\ -0.601531000\\ -0.319118000\\ -0.319118000\\ -0.33376000\\ -0.112423000\\ 0.832116000\\ 0.933206000\\ 1.374409000\\ \end{array}$	$\begin{array}{c} -0.764647000\\ 0.176936000\\ 0.772629000\\ -1.505647000\\ -0.176792000\\ 1.614809000\\ 1.099444000\\ 0.933632000\\ 0.264544000\\ 0.06407600\\ 0.1.884283000\\ -1.117937000\\ 0.940899000\\ 0.924195000\\ 0.924195000\\ 0.586427000\\ 0.586427000\\ 0.586427000\\ 0.99881000\\ 1.958542000\\ 0.99881000\\ 1.958542000\\ 0.99881000\\ 1.299469000\\ 0.881338000\\ 1.971426000\\ 1.891709000\\ -0.646643000\\ \end{array}$
Н	1.975017000	2.278346000	-0.034766000
Н	3.085401000	1.319208000	-1.033467000
Н	1.395954000	1.476778000	-1.510806000
B H	0.240329000 -0.302411000	-1.099608000 -1.585482000	-1.297509000 -2.230006000
п	-0.302411000	-1.383482000	-2.230006000

23 (M06-2X/6-311++G(3df,2p)//M06-2X/6-31+G(d,p), SMD solvation (CH₂Cl₂)):

E = -818.712504 B isotropic shielding 91.5

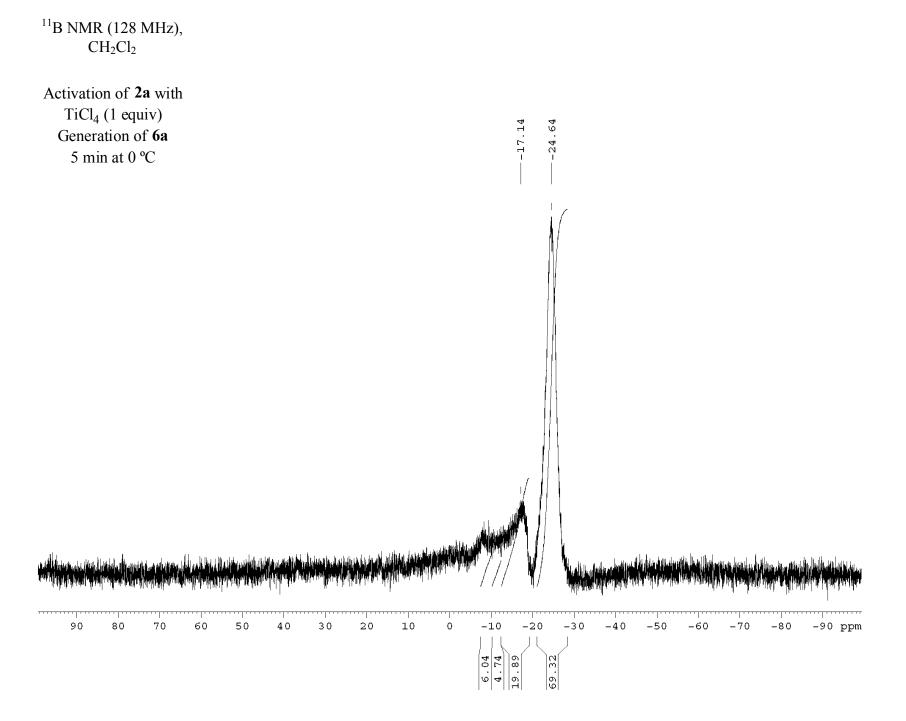
С	-4.343101000	0.685543000	0.071752000
С	-4.193218000	-0.676879000	0.107315000
С	-2.156080000	0.240158000	0.256312000
N	-3.077931000 -2.839743000	1.220341000 -0.922587000	0.172974000 0.221859000
N	-2.839/43000	-0.922587000 -2.274968000	0.221859000
C C	-2.282337000	2.659638000	0.135215000
В	-0.606057000	0.516974000	0.360107000
C	4.343101000	-0.685543000	-0.071753000
C	4.193218000	0.676879000	-0.107314000
C	2.156080000	-0.240158000	-0.256312000
Ň	3.077931000	-1.220341000	-0.172976000
N	2.839743000	0.922587000	-0.221857000
С	2.282337000	2.274968000	-0.282795000
С	2.827869000	-2.659638000	-0.135218000
В	0.606057000	-0.516974000	-0.360107000
С	5.559327000	-1.536172000	0.042968000
С	5.210249000	1.762492000	-0.047348000
С	-5.210249000	-1.762492000	0.047350000
С	-5.559326000	1.536172000	-0.042971000
H	3.102357000	-3.046681000	0.847829000
H	1.775407000	-2.852977000	-0.323170000
H	3.430345000	-3.144817000	-0.904049000
H	5.732890000	-2.104435000	-0.876143000
H	6.433047000	-0.910869000	0.229385000
H H	5.463280000 6.196677000	-2.247228000 1.328145000	0.868877000 0.119609000
н Н	5.242297000	2.328914000	-0.983397000
Н	4.996740000	2.458009000	0.769449000
H	1.388742000	2.280842000	-0.903855000
H	2.048238000	2.625674000	0.723957000
Н	3.022620000	2.931306000	-0.737021000
Н	-1.775405000	2.852977000	0.323165000
Н	-3.102357000	3.046679000	-0.847833000
Н	-3.430343000	3.144818000	0.904045000
Н	-6.433047000	0.910869000	-0.229386000
Н	-5.732889000	2.104437000	0.876139000
Н	-5.463279000	2.247227000	-0.868881000
Н	-5.242298000	-2.328912000	0.983400000
Н	-6.196677000	-1.328144000	-0.119607000
H	-4.996740000	-2.458010000	-0.769445000
H	-2.048241000 -1.388741000	-2.625677000 -2.280841000	-0.723953000 0.903858000
H			
H H	-3.022620000 0.061003000	-2.931305000 -0.483190000	0.737028000 0.858420000
н Н	0.242839000	-1.508042000	-0.894259000
н Н	-0.242839000	1.508042000	0.894259000
н Н	-0.061003000	0.483190000	-0.858420000
11	0.001003000	0.403130000	0.000420000

References:

(22) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795.

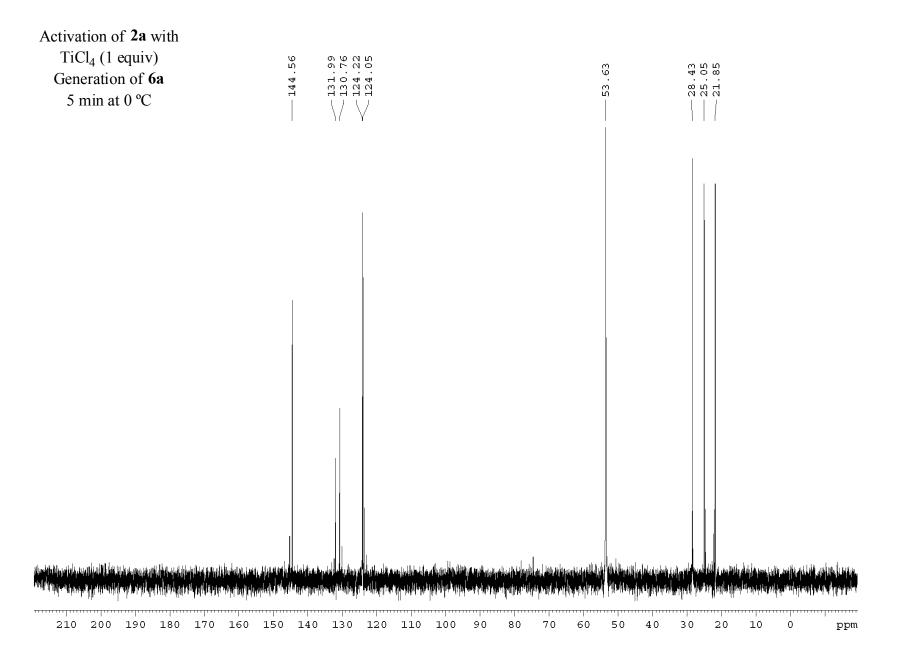
(23) Makhlouf Brahmi, M.; Monot, J.; Desage-El Murr, M.; Curran, D. P.; Fensterbank, L.; Lacôte, E.; Malacria, M. J. Org. Chem. 2010, 75, 6983.

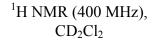
(24) Kuhn, N.; Henkel, G.; Kratz, T.; Kreutzberg, J.; Boese, R.; Maulitz, A. H. Chem. Ber. 1993, 126, 2041.

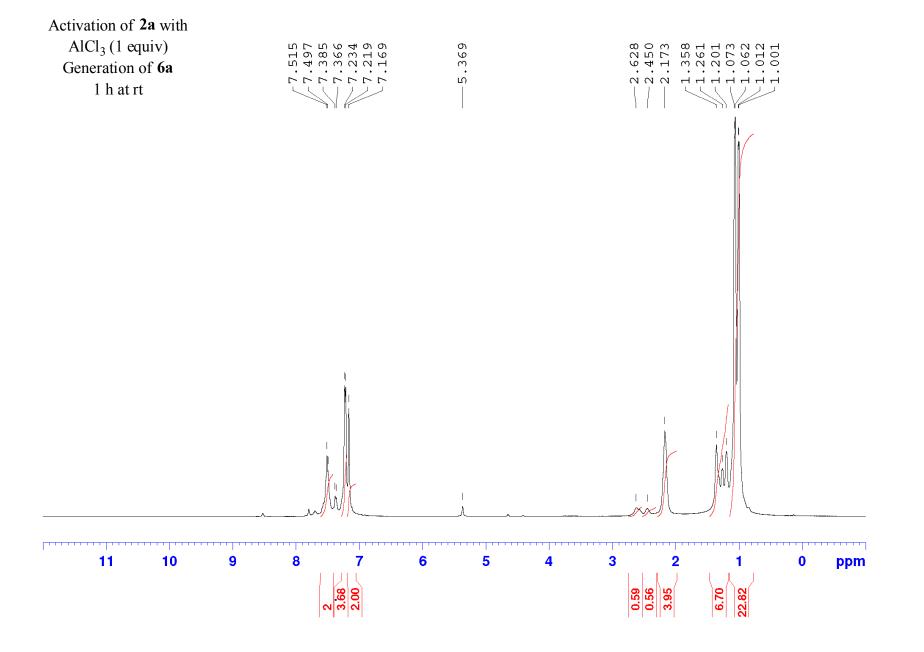

(25) Le Toumelin, J.-B.; Baboulène, M. New J. Chem. 1999, 111.

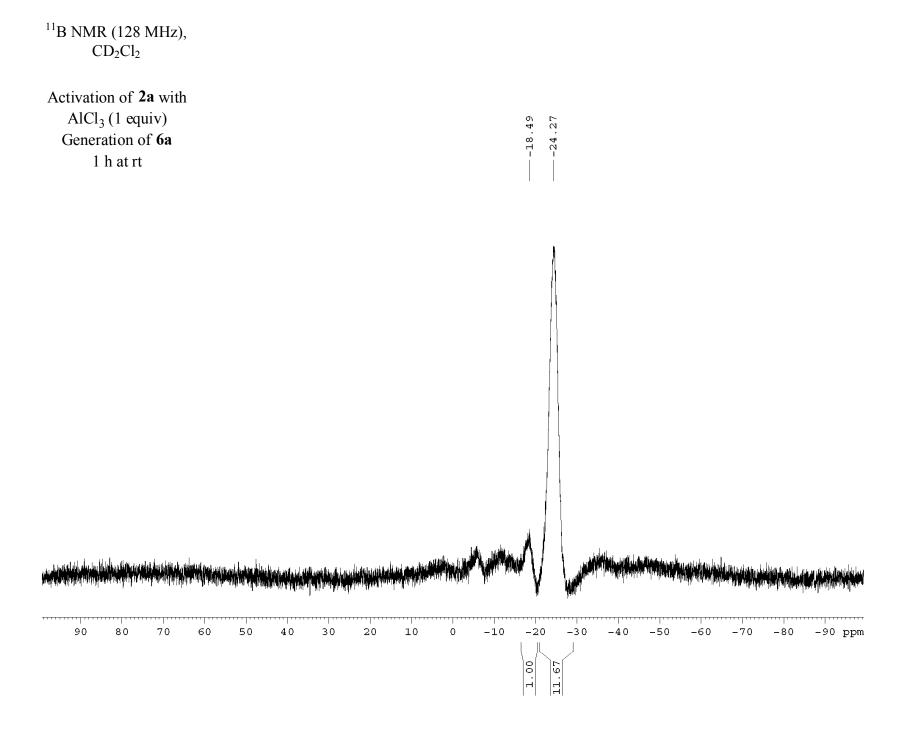
(26) Gaussian 09, Revision A.02. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(27) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

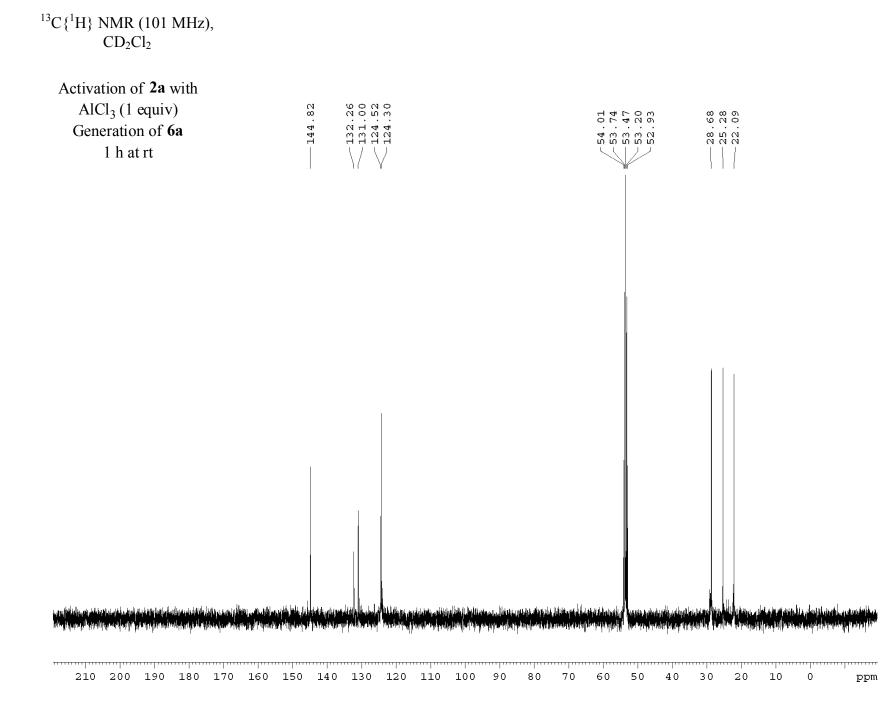

(28) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.

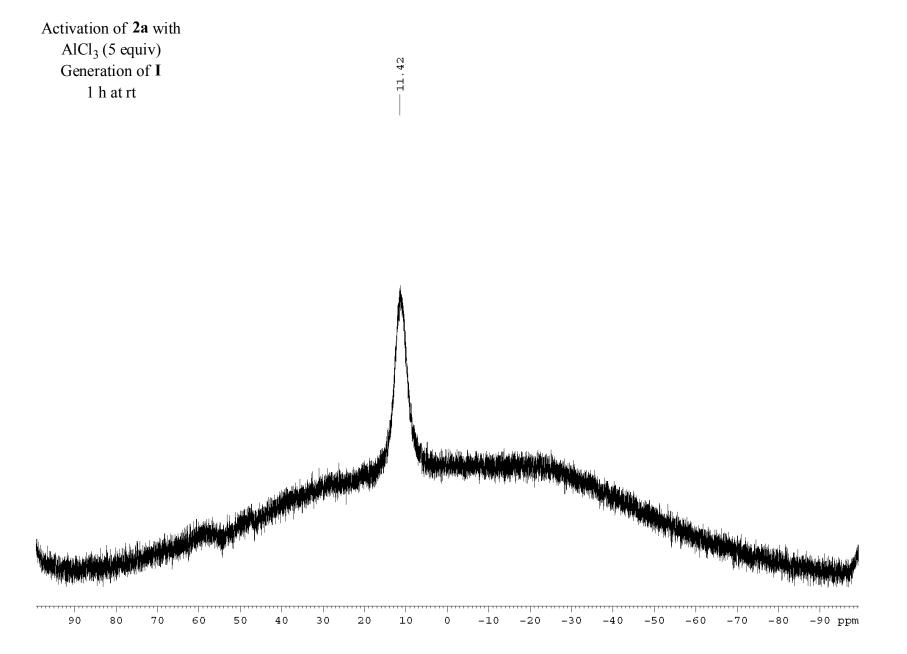

NMR Spectra

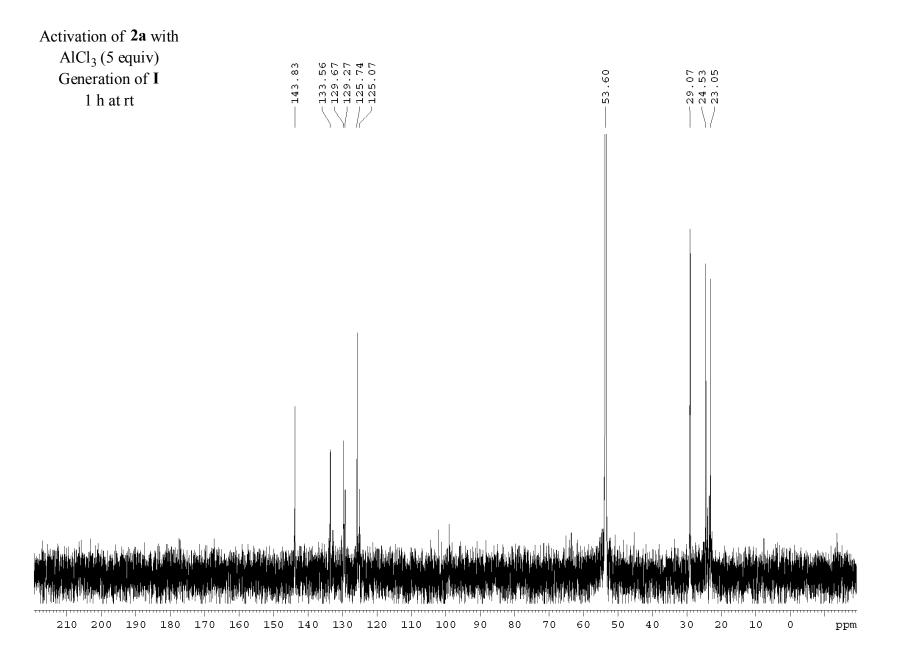


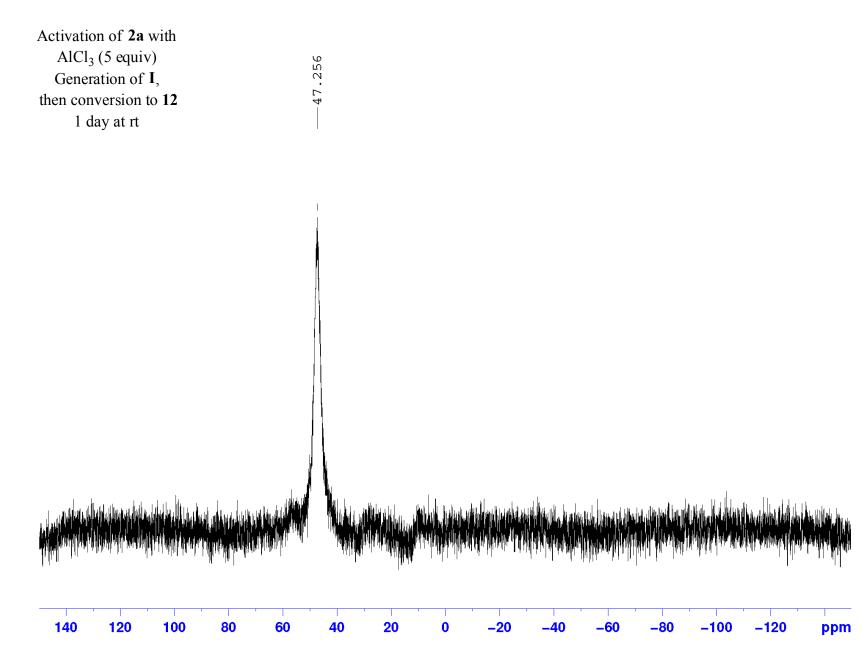

S26

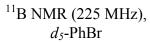
$^{13}C{^{1}H}$ NMR (101 MHz), CH₂Cl₂



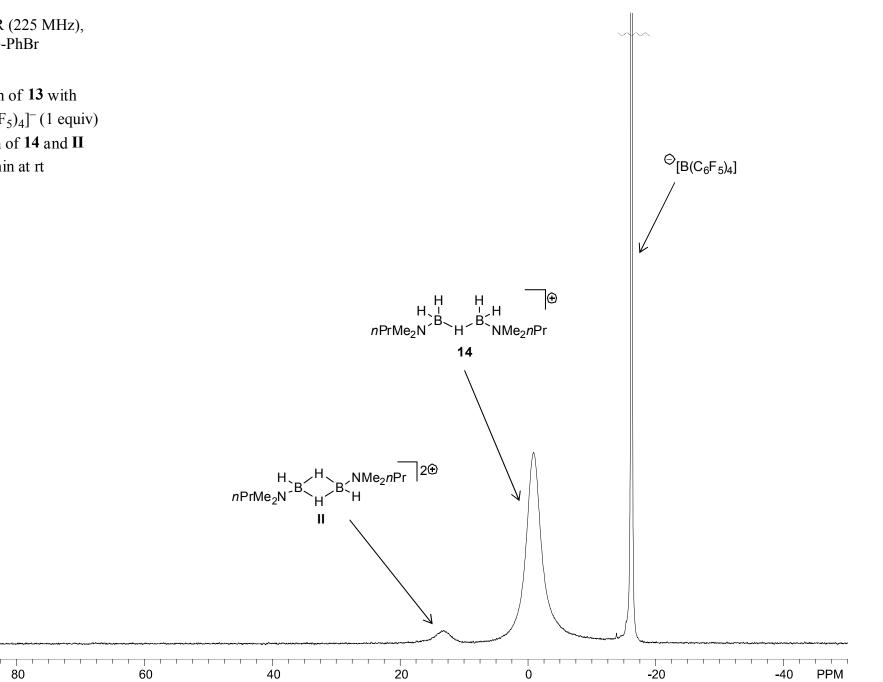


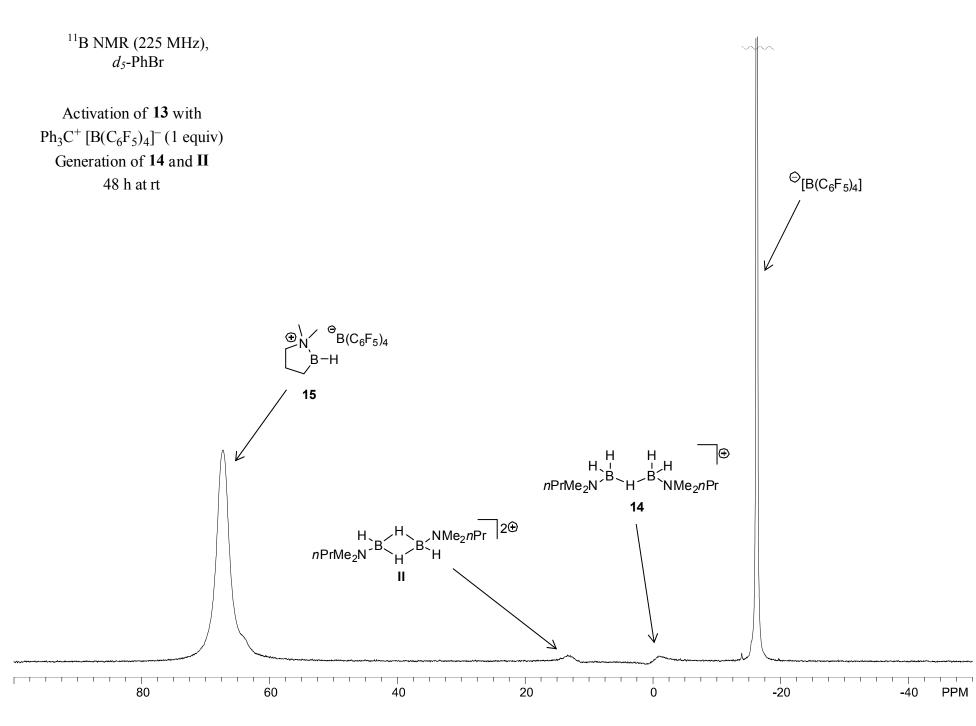

S29

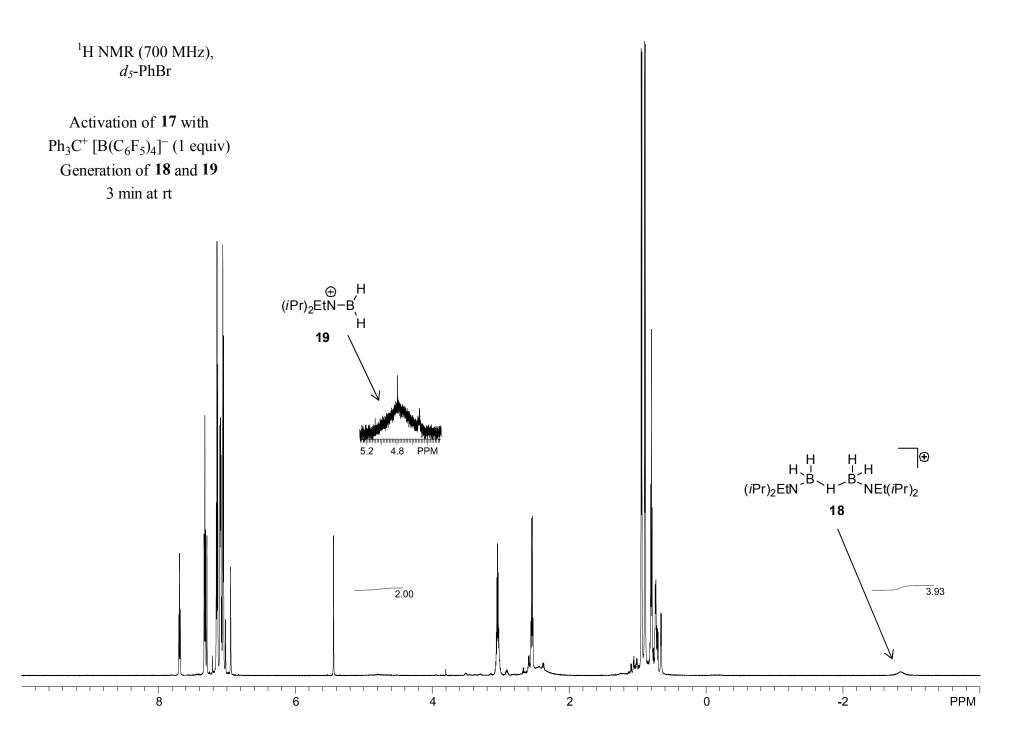

¹¹B NMR (128 MHz), CH₂Cl₂

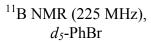


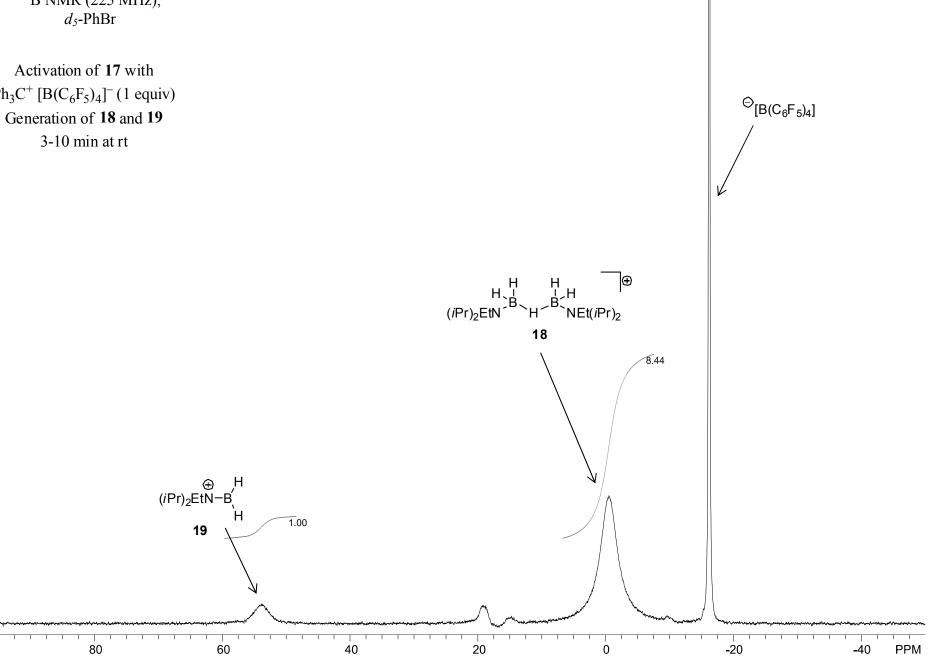
 $^{13}C{}^{1}H$ NMR (101 MHz), CH₂Cl₂



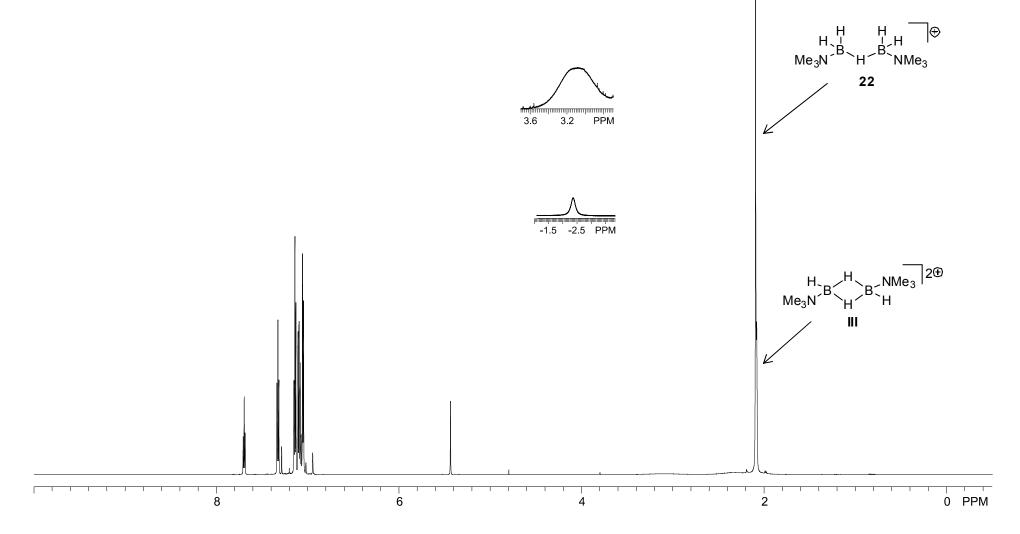

¹¹B NMR (96 MHz), CH₂Cl₂



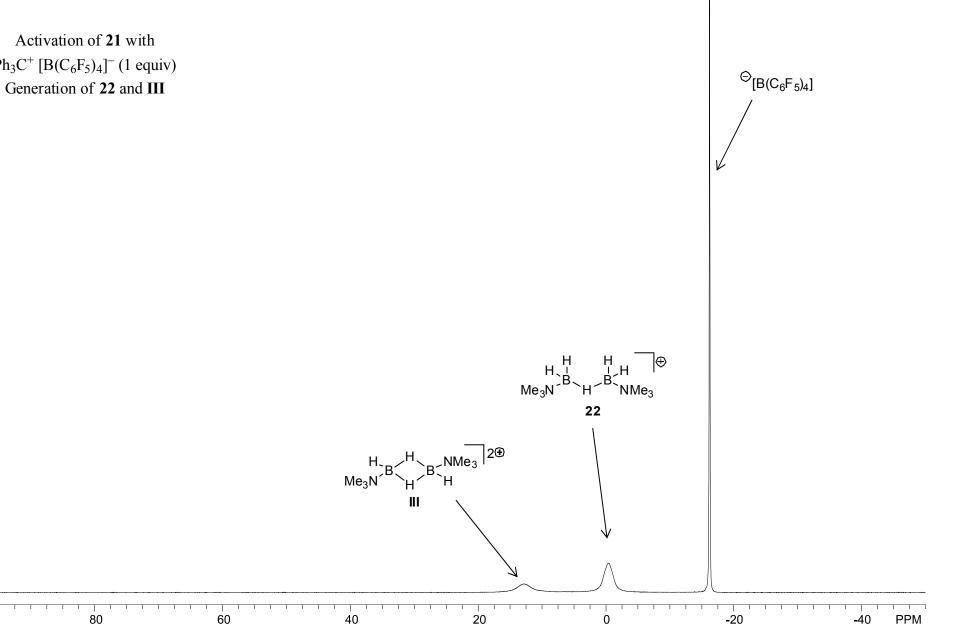

Activation of 13 with $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of 14 and II 30 min at rt



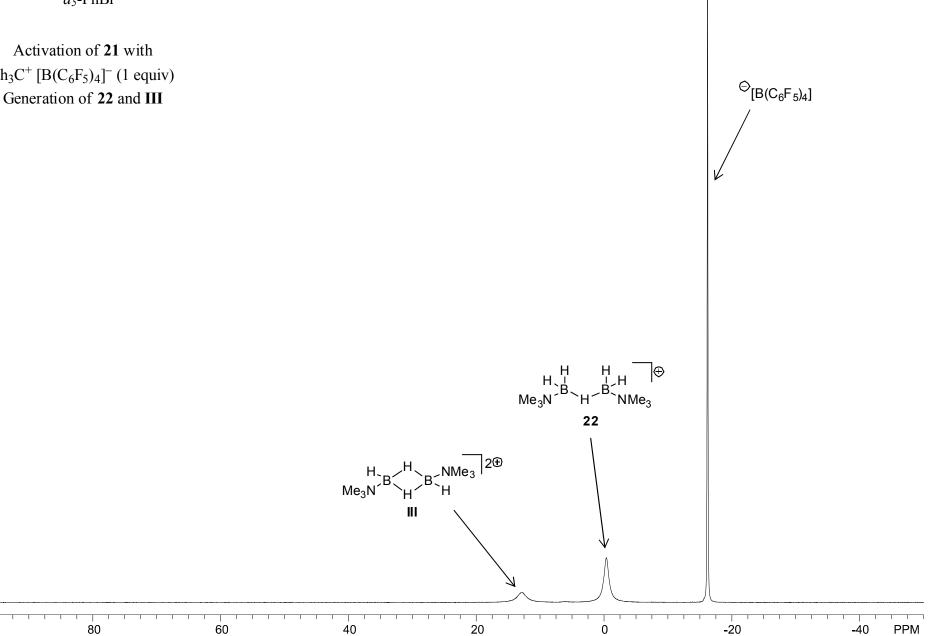
S35

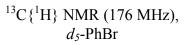


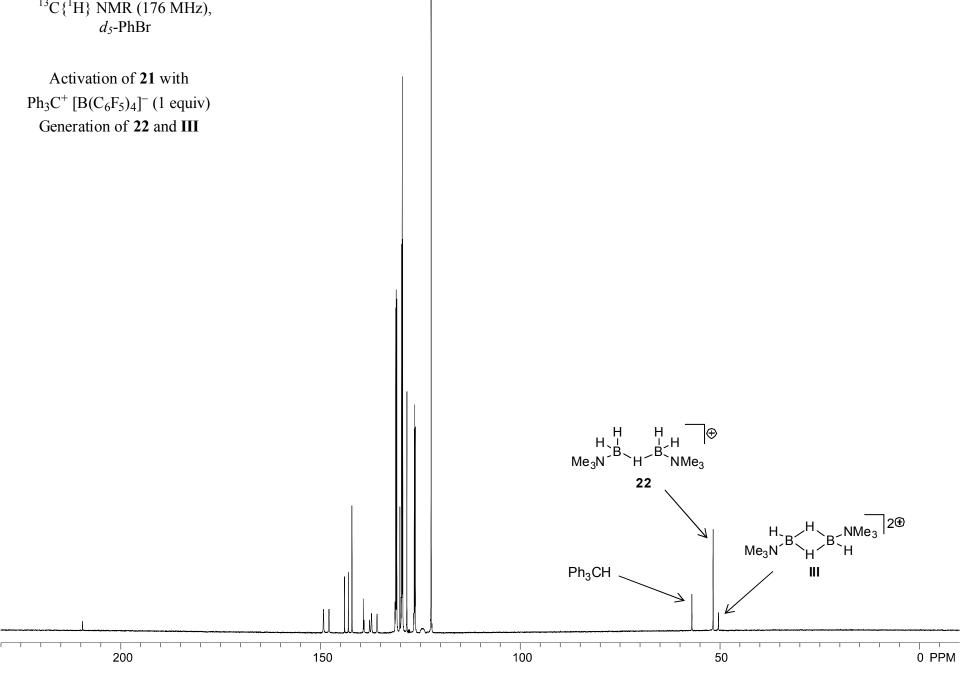
 $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of 18 and 19


¹H NMR (700 MHz), *d*₅-PhBr

Activation of **21** with $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of **22** and **III**

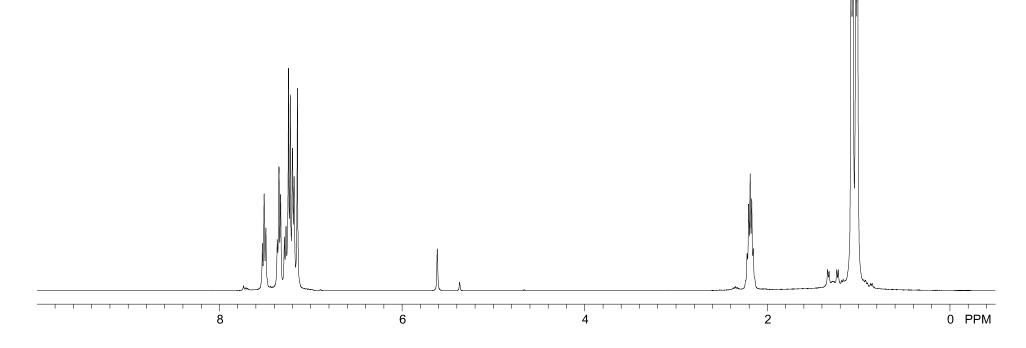

¹¹B NMR (225 MHz), d5-PhBr


 $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$

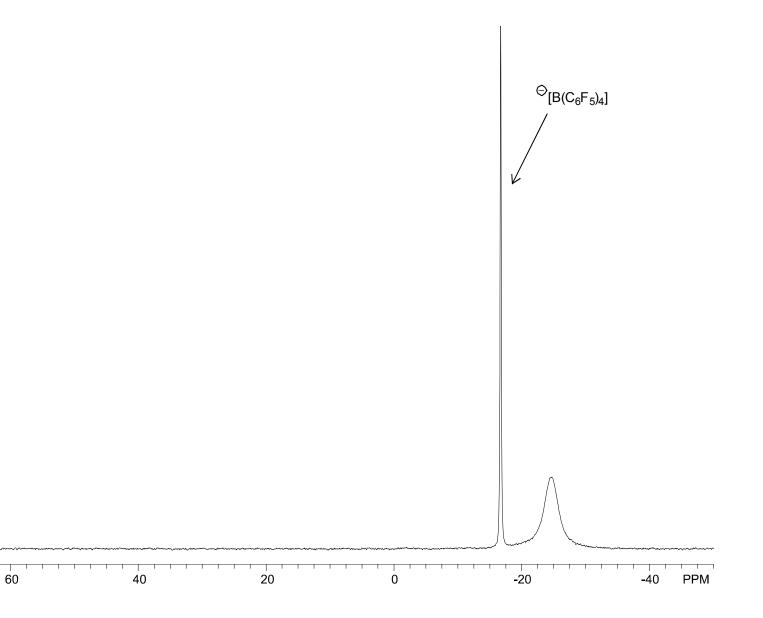


$^{11}B{}^{1}H} NMR (225 MHz),$ d5-PhBr

 $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of 22 and III

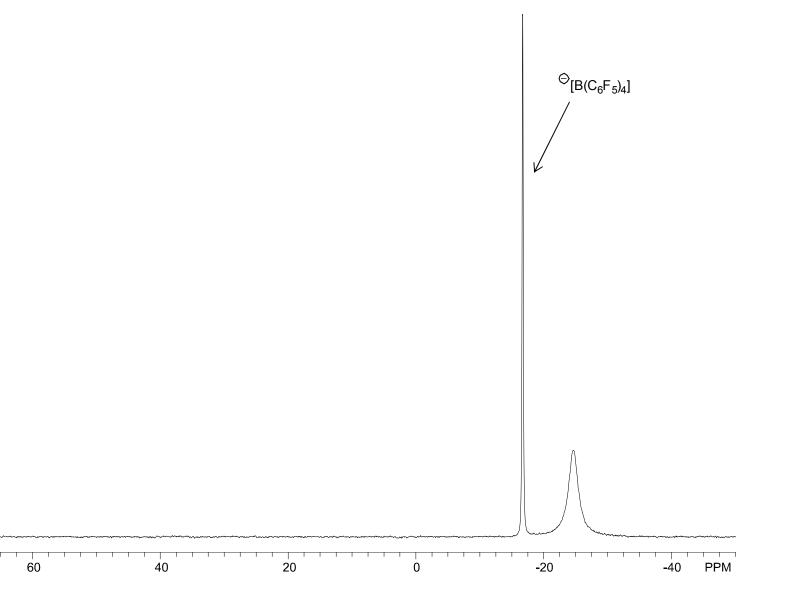


¹H NMR (400 MHz), CD₂Cl₂

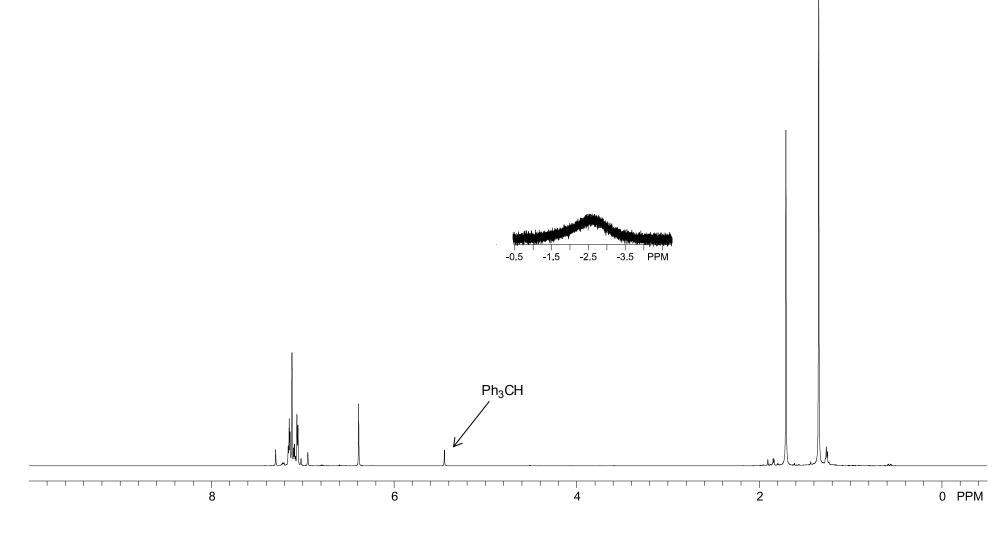

Activation of 2a with Ph₃C⁺ [B(C₆F₅)₄]⁻ (0.5 equiv) Generation of 6a

¹¹B NMR (128 MHz), CD₂Cl₂

Activation of 2a with Ph₃C⁺ [B(C₆F₅)₄]⁻ (0.5 equiv) Generation of 6a


80

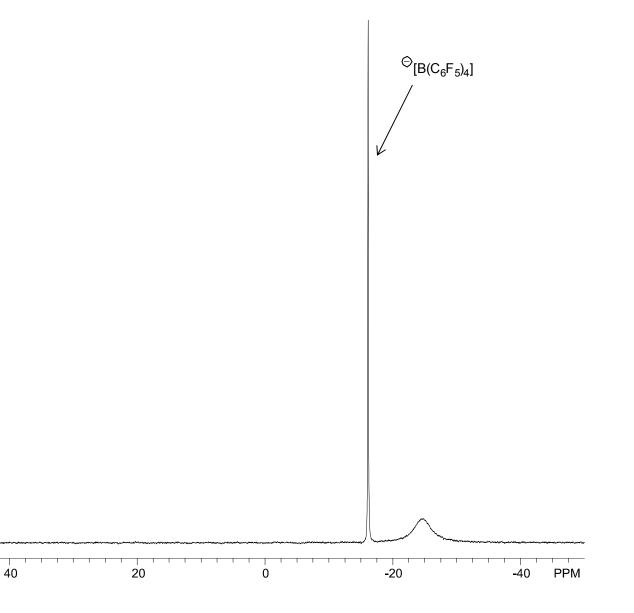
 ${}^{11}B\{{}^{1}H\} NMR (128 MHz), \\ CD_2Cl_2$


Activation of 2a with Ph₃C⁺ [B(C₆F₅)₄]⁻ (0.5 equiv) Generation of 6a

80

¹H NMR (700 MHz), *d*₅-PhBr

Activation of **2b** with $Ph_3C^+ [B(C_6F_5)_4]^- (0.5 \text{ equiv})$ Generation of **6b**

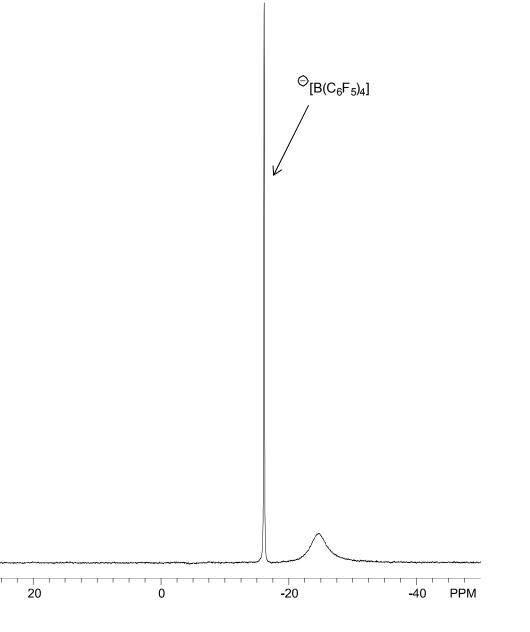


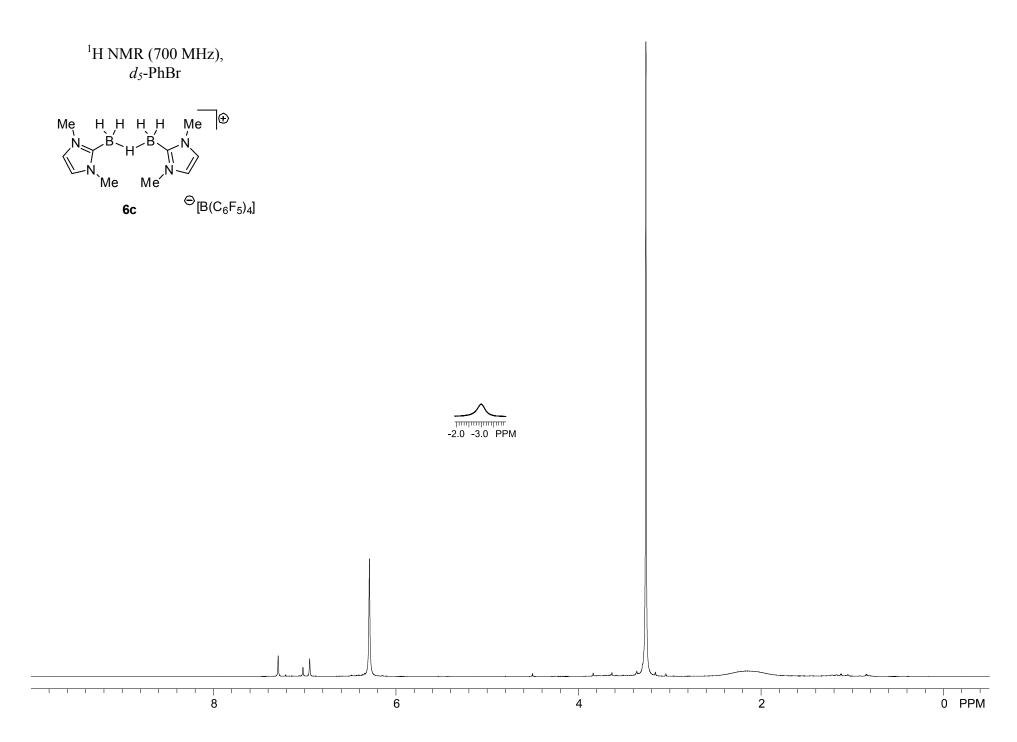
¹¹B NMR (225 MHz), *d*₅-PhBr

Activation of 2b with $Ph_3C^+ [B(C_6F_5)_4]^- (0.5 \text{ equiv})$ Generation of 6b

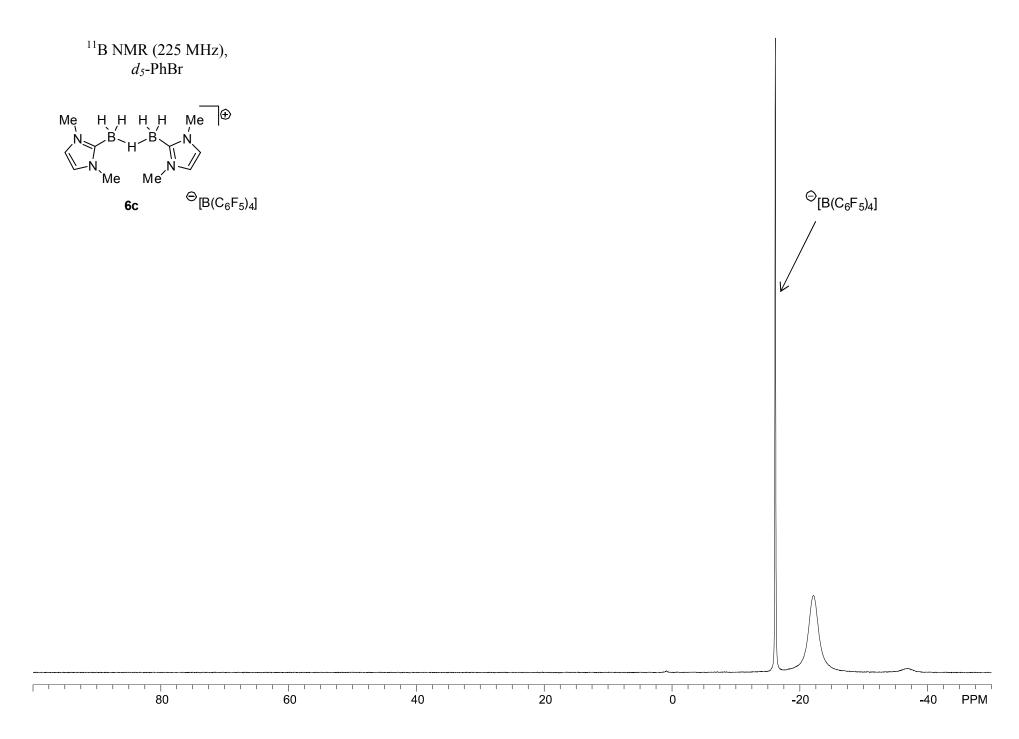
80

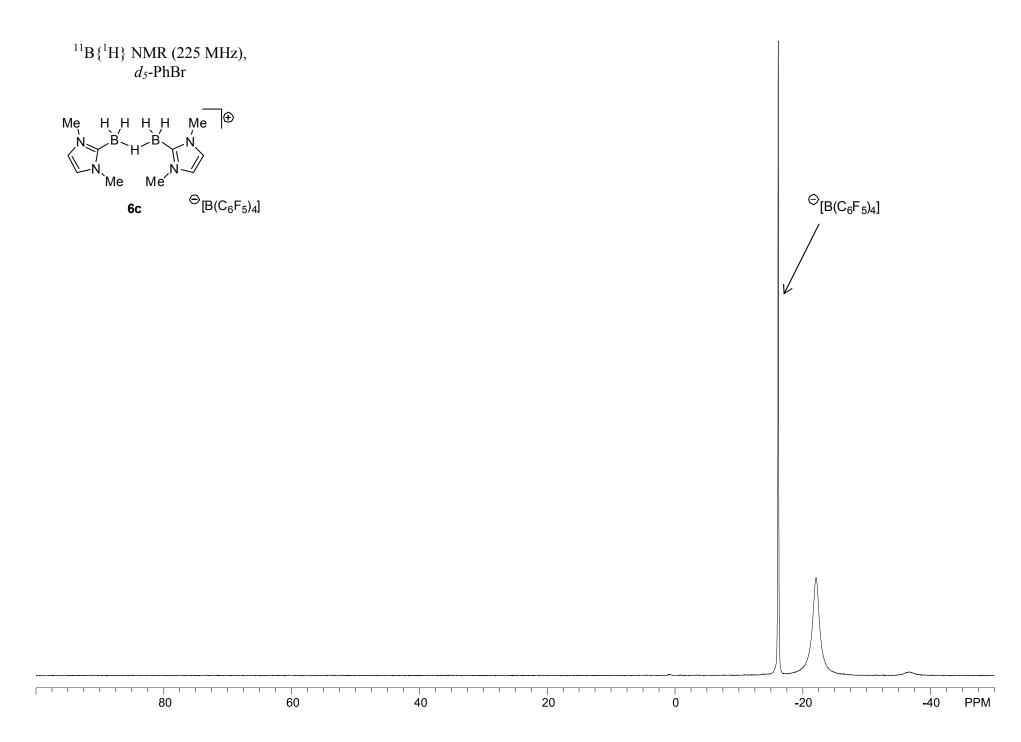
60

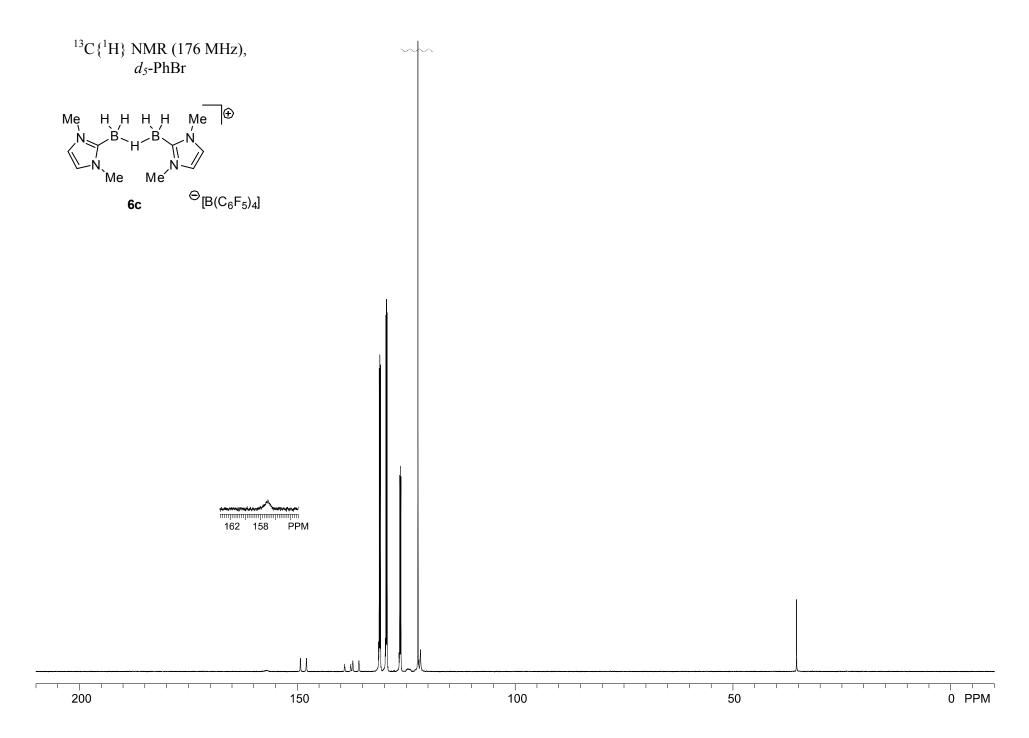

¹¹B{¹H} NMR (225 MHz), d_5 -PhBr

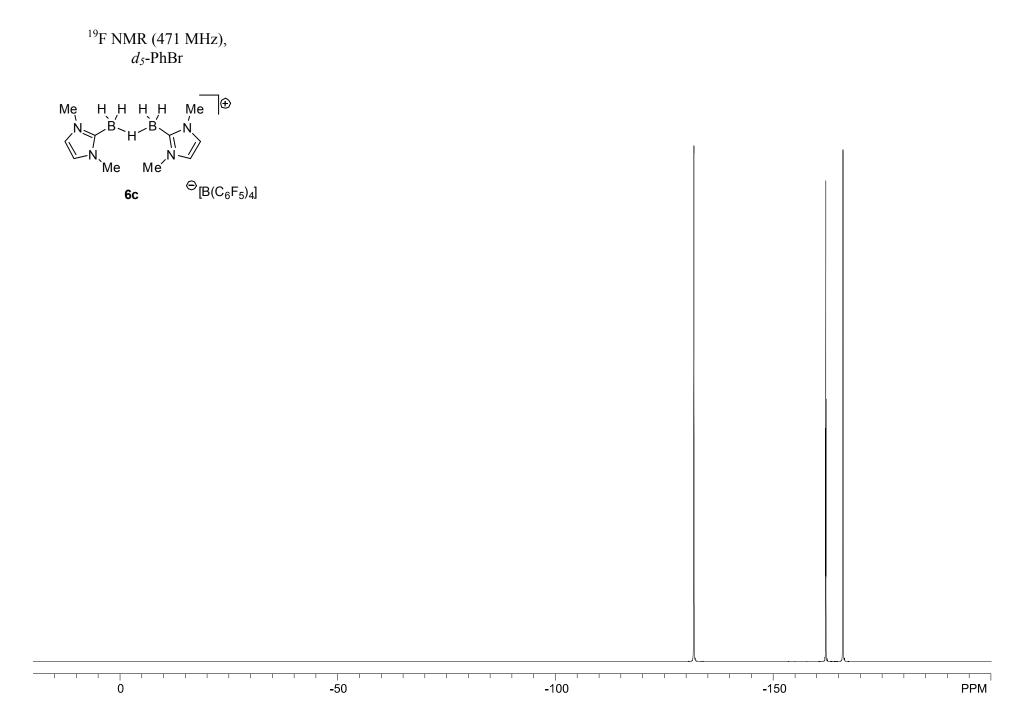

Activation of 2b with $Ph_3C^+ [B(C_6F_5)_4]^- (0.5 \text{ equiv})$ Generation of 6b

80

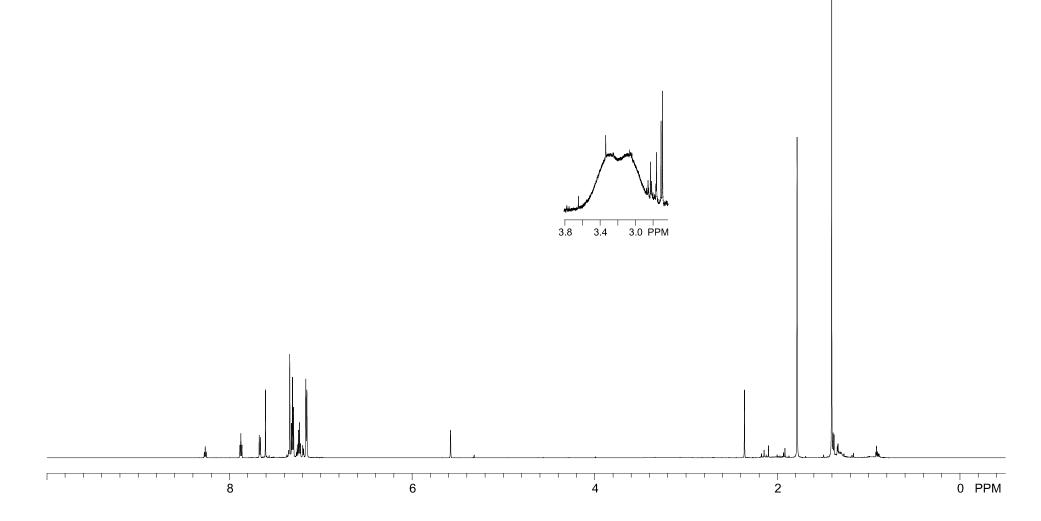

60


40

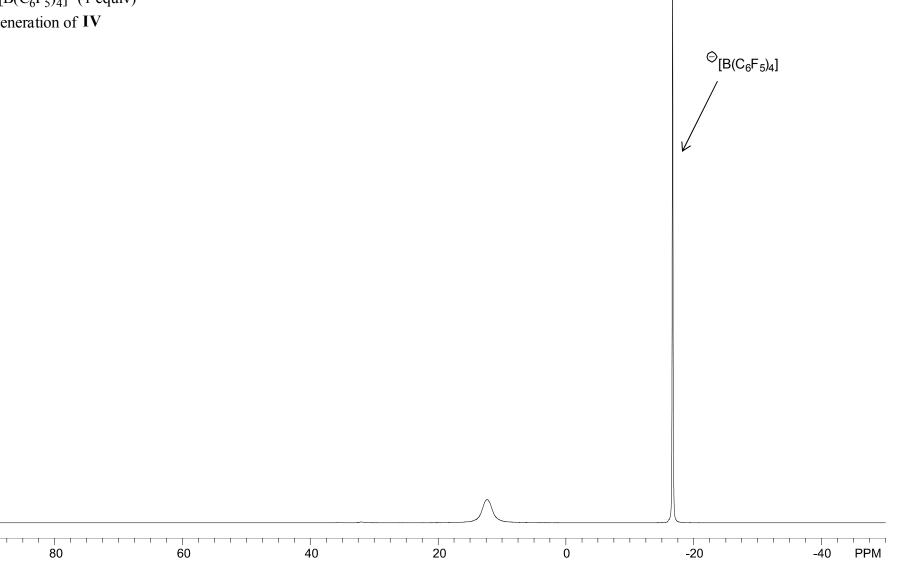




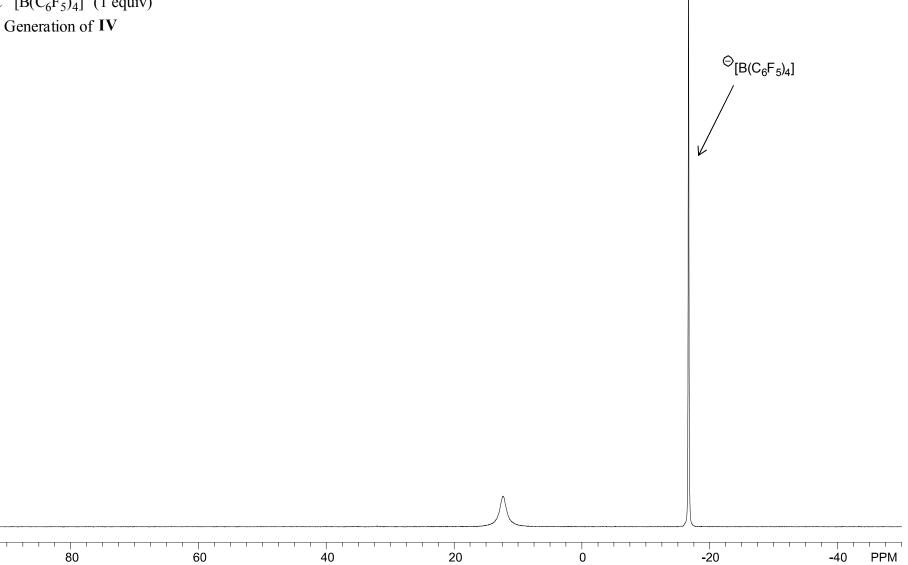
S48



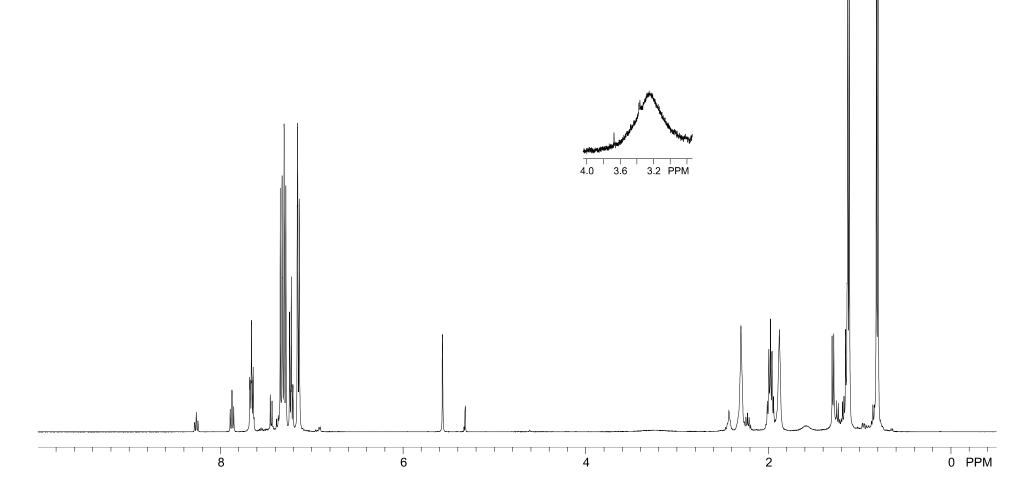
S52


¹H NMR (700 MHz), CD₂Cl₂

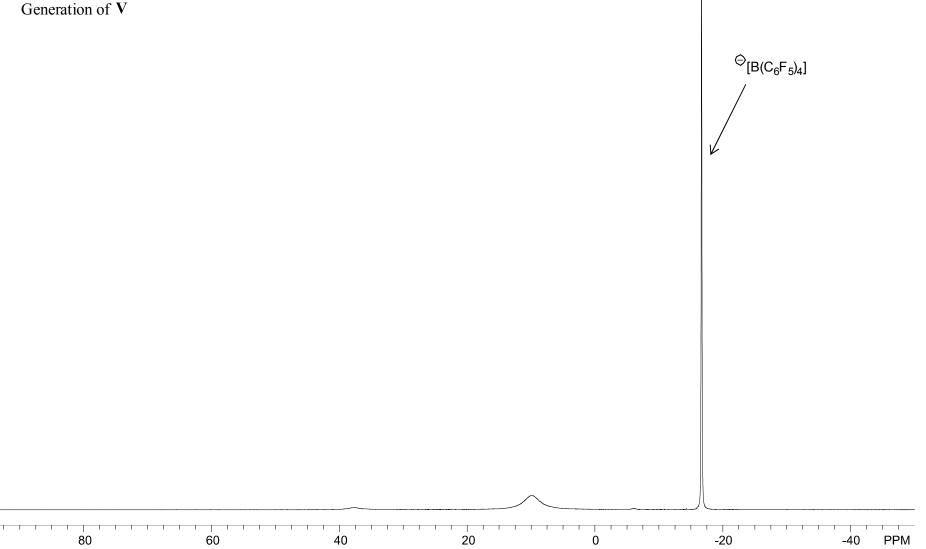
Activation of 2b with $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of IV


¹¹B NMR (225 MHz), CD₂Cl₂

Activation of **2b** with $Ph_3C^+[B(C_6F_5)_4]^-(1 \text{ equiv})$ Generation of **IV**


 $^{11}B\{^{1}H\}$ NMR (225 MHz), CD₂Cl₂

Activation of **2b** with $Ph_3C^+[B(C_6F_5)_4]^-(1 \text{ equiv})$ Generation of **IV**


¹H NMR (400 MHz), CD₂Cl₂

Activation of 2d with $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of V

 $^{11}B\{^{1}H\}$ NMR (225 MHz), CD₂Cl₂

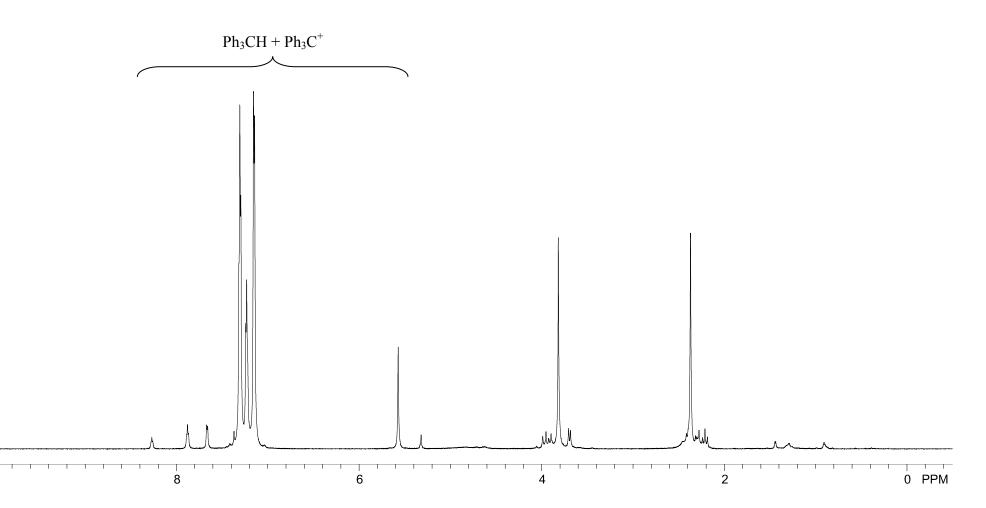
Activation of 2d with $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of V

¹⁹F NMR (376 MHz), CD₂Cl₂

Activation of 2d with $Ph_3C^+ [B(C_6F_5)_4]^- (1 \text{ equiv})$ Generation of V

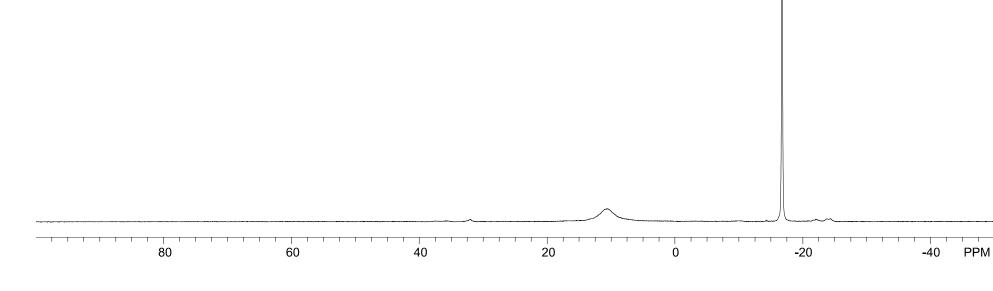
Ó

-50

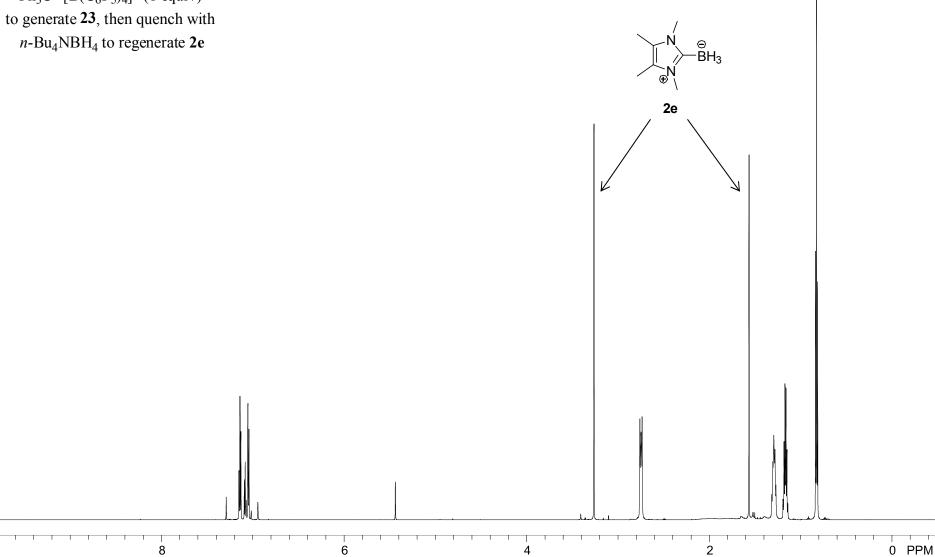

-100

PPM

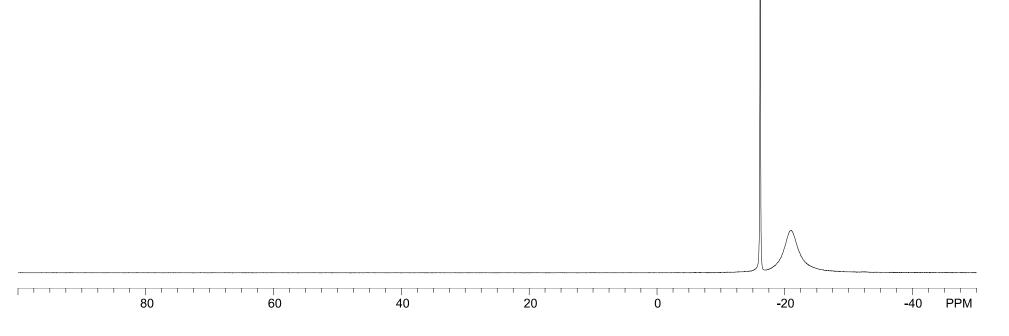
-150

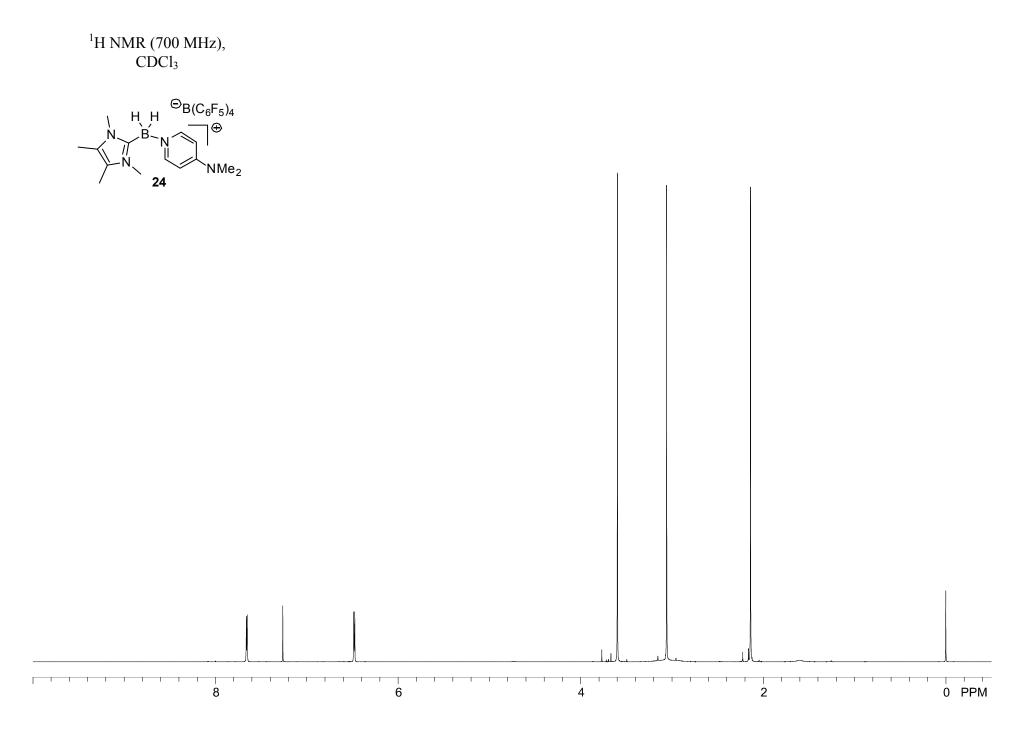

¹H NMR (700 MHz), CD₂Cl₂

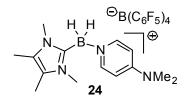
Activation of 2e with $Ph_3C^+[B(C_6F_5)_4]^-(1 \text{ equiv})$ Generation of 23

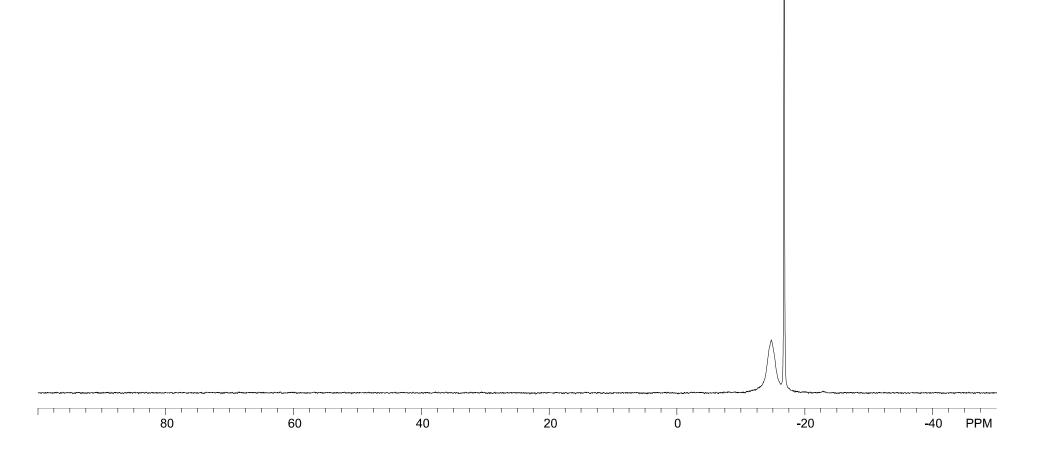

¹¹B NMR (225 MHz), CD₂Cl₂

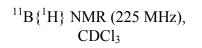
Activation of 2e with Ph₃C⁺ [B(C₆F₅)₄]⁻ (1 equiv) Generation of 23

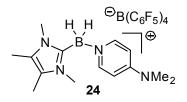

¹H NMR (700 MHz), d₅-PhBr

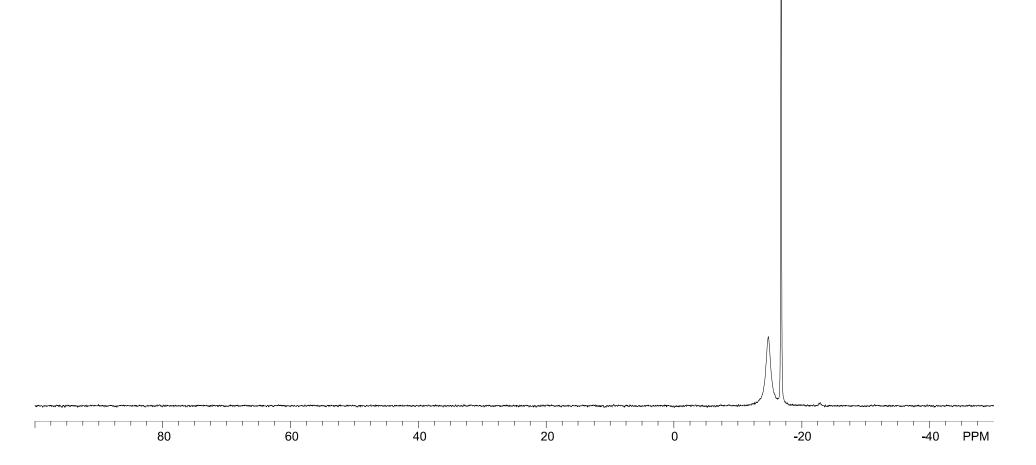

Activation of **2e** with $Ph_{3}C^{+}[B(C_{6}F_{5})_{4}]^{-}(1 \text{ equiv})$

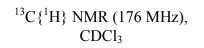

¹¹B NMR (225 MHz), *d*₅-PhBr

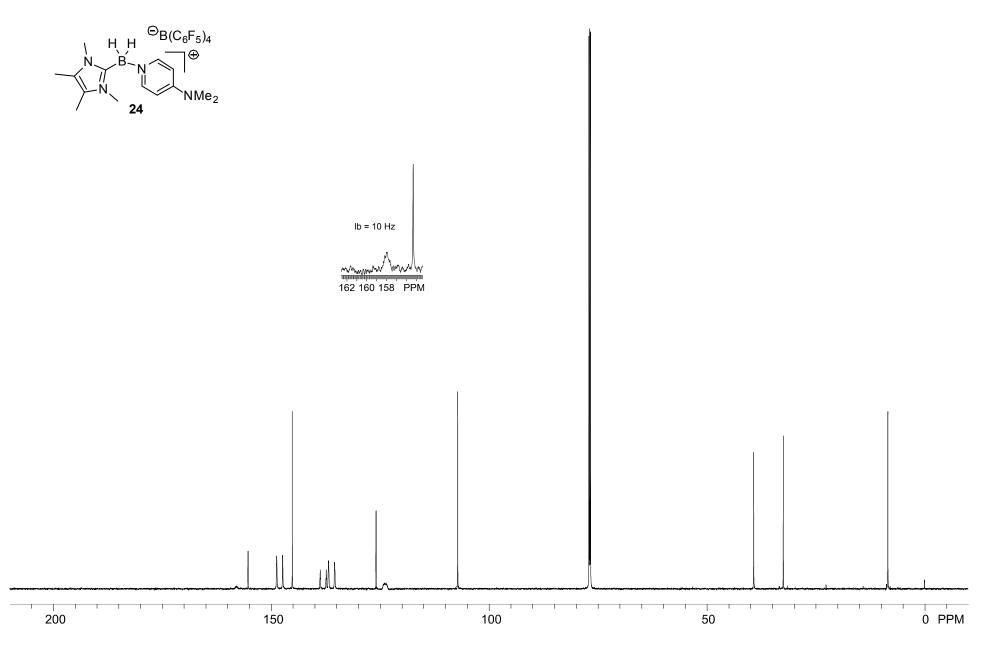

Activation of 2e with $Ph_3C^+[B(C_6F_5)_4]^-(1 \text{ equiv})$ to generate 23, then quench with 2e (1 equiv) to generate 6e

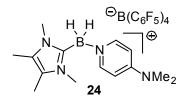


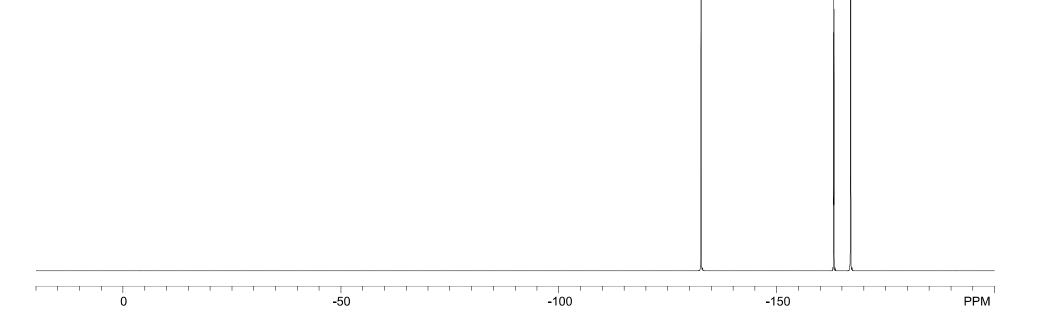



¹¹B NMR (225 MHz), CDCl₃









¹⁹F NMR (471 MHz), CDCl₃

