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1. Description of data-points in Figs. 1-3 and additional details of data sources 
 
Data for the infant-parent dyads comes from our (Messinger group) laboratory experiments. 
Details of the experiment and laboratory conditions are given in the following papers: J.F. Cohn & 
E.Z. Tronick, Mother–infant face-to-face interaction: Influence is bidirectional and unrelated to 
periodic cycles in either partner’s behavior. Developmental Psychology 24, 386 –392 (1988); N. 
Ekas, J.D. Haltigan & D.S. Messinger, The Dynamic Still-Face Effect: Do Infants Decrease 
Bidding Over Time When Parents are Not Responsive? Developmental Psychology July 16, 1-9 
(2012). Each experiment was performed separately, at a different time, and without 
communication between the participants in different dyads. An event is counted as starting when 
the infant presents a cry-face and ends when the infant stops presenting that cry-face. Each 
log τ1,β( )  point corresponds to a unique infant-parent dyad in this laboratory experiment where 

the parent is instructed to temporarily refrain from interacting with the infant through positive 
affection etc. The infant (Red) attacks the parent in that it sporadically decides to present a cry-
face to protest the lack of interaction with its parent (Blue). Millisecond scale digital monitoring 
records the time intervals between successive infant cry-face attacks (i.e. successive events) 
against the parent. The time-interval sequence for each dyad yields its own log τ1,β( )  point in the 
plot. Since the infant-parent dyads involve different people, at a different place and time, it is 
remarkable that a linear relationship emerges in Fig. 2A. 
 
Data for protests are obtained from the European Protest and Coercion Data Project undertaken by 
the University of Kansas, and compiled and provided by Prof. Ron Francisco from the University 
of Kansas. The data is public and can be downloaded from 
http://web.ku.edu/~ronfran/data/index.html. This is a coded dataset containing the day, action type, 
location, protest group and targets on protest and coercion in Europe. We took the following sets 
from the website: Poland 1980-1981, Poland 1982-1983, Poland 1984-1985, Poland 1986-1987, 
and Poland 1988-1989. This corresponds to the period prior to the fall of the Berlin Wall and the 
subsequent dissolution of the Soviet Union. The events are street protests by anti-Communist 
groups (Red) against the Polish government (Blue) prior to the fall of the Soviet Union. Each  
log τ1,β( )  point corresponds to a different geographic location.  

 
Data for the cyber-attacks are extracted digitally from the February 2013 report by MANDIANT 
on cyber attacks by a foreign, suspected Chinese, group (Red) against national infrastructure 
sectors (Blue). See www.mandiant.com.  
 
Data for the predatory trading attacks are stock price data on the millisecond timescale (shown 
explicitly in charts on NANEX website www.nanex.net, with instructions for access below). The 
events correspond to predatory high-frequency traders/algorithms (Red) suddenly taking 
aggressive positions against slower market participants (Blue), triggering an ultrafast dip or spike 
in a particular stock price. Each log τ1,β( )  point corresponds to a particular U.S. financial 
institution’s stock. Data provided to us by NANEX, see www.nanex.net, and correspond to 
ultrafast events in the period prior to the 2008 global financial crash. We are extremely grateful to 
Eric Hunsader of NANEX for his help with this. The data can also be obtained manually by 
visiting the NANEX website and recording the times of the spikes and dips from the files 
available.  
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The instructions for accessing this open source data are as follows: 
1. Go to http://www.nanex.net 
2. Click on Nanex Research to access page 

http://www.nanex.net/FlashCrash/OngoingResearch.html 
3. In column “Research” on left hand side, click “Micro Flash Crashes” to access 

http://www.nanex.net/FlashCrashEquities/FlashCrashAnalysis_Equities.html 
4. This contains all the events used in the study. 
5. As stated on this page, the links on this page contain “…ZIP archives for each year 

analyzed. Simply download the files, unzip and start viewing.”  
6. As examples, there are also 10 pages with 10 sample images from each year to view.  
7. As stated, each chart contains a set of numbers in the upper left corner, which give the 

details for each. The meaning of these numbers is given on the website. 
 
The datapoint for sexual violence against women comes from “The Power Laws of Violence 
against Women: Rescaling Research and Policies” by Karolin E. Kappler and Andreas 
Kaltenbrunner, PLoS ONE 7, e40289 (2012). As stated by the researchers, their analysis uses data 
from the research study Health, Well-Being and Personal Safety of Women in Germany: Muller U, 
Schrottle M, Glammeier S (2004) Lebenssituation, Sicherheit und Gesundheit von Frauen in 
Deutschland. Eine reprasentative Untersuchung zu Gewalt gegen Frauen in Deutschland. BFSFJ, 
Bonn, 1.0.0, 13.04.2010, doi:10.4232/1.4193. BFSFJ website. Available: http://www.bmfsfj.de/ 
BMFSFJ/root,did = 20560.html, accessed 17 May 2012. As they state: “(quote).. It was the first 
representative survey on VaW [Violence against Women] in Germany, forming part of the 
national action plan published in 1999 by the German Federal Government to combat VaW. The 
representative study is based on 10,264 interviews, conducted nation-wide from February until 
October 2003 with women aged 16 to 85, residing in Germany”. We consider sexual violence 
against women, since this is the closest variable to the notion of casualties, with the severity in this 
case measured as the number of cases per woman. 

Some of the civil unrest/conflict data in Fig. 1A was obtained from Uppsala Conflict Data 
Program, http://www.pcr.uu.se/research/UCDP/ . It is geo-referenced data. Below are the identities 
of each of the points in Fig. 1A. The shade of color for each denotes the range of the number of 
victims: 
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Fig. S1. Details of datapoints in Fig. 1A of main paper text, for conflicts within a given continent. Each conflict is 
coded. Also shown are the results for global terrorism, interstate wars and deaths for events aggregated for all African 
conflicts. 

 

In Fig. 1B showing a mix of countries across the globe, we also included datasets that we helped 
compile which list severity measured by actor, and also according to whether measured in terms of 
injuries or death. Our benchmark results can be seen to be robust to these changes in definition: 
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Fig. S2. Details of datapoints in Fig. 1B of main paper text, for conflicts in different countries and continents. Each 
conflict is coded, with the data corresponding to different measures of severity (i.e. killed, injured, also maximum and 
minimum estimated body counts). Also shown are the results for global terrorism and interstate wars. 

 

All the civil unrest/conflict datasets tend to use the same common-sense definition of an ‘event’ as 
an occurrence of an action involving a group of armed actors that cannot be partitioned into any 
smaller set of actions, can be distinguished from other such events, is carried out by at least one 
recognized group in a conflict, involves a number of casualties being reported, and there is some 
broad strategic description that can be given, i.e. weapons used, or military objective, or general 
identity of units involved. For the Afghanistan conflict we used a dataset integrating data provided 
by Marc Herold of the University of New Hampshire (http://pubpages.unh.edu/ ̃mwherold/) with 
data from icasualties.org (http://www.icasualties.org/) and the ITERATE 
(http://www.ciser.cornell.edu) terrorism database. The Iraq data, like the Afghanistan data, is an 
amalgamation of three separate data sets that record violent events in Iraq. These data-sets are Iraq 
Body Count (IBC, http://www.iraqbodycount.org/), icasualities.org and ITERATE. Ultimately, all 
the data comes from multiple sources that can be grouped into three broad categories; real-time 
media databases, official (government and nongovernmental organization (NGO)) reports, and 
academic studies. Some sources use real-time media monitoring of the stream of stories about 
violent events from newspapers, web-sites and television. These databases typically monitor a 
range of media channels and employ filters to cross-check different stories for accuracy. For the 

¯̄

¯̄

¯̄

AK1

AK2

CIG

CI

CKI

CIC

CKG

CKI

CKGCKIG
CKIC

CKC

CIP

CKIG

CKP

CKt

CIG

SaISaK

SaIG

SaKG SaIG

SaKG
InK

IrcK1

IrcK2
IrcKI1

IrcKI2

IrcI2
IrcI1

IrbK2

IrbK1
IrbK1

IrbK2

NiK

PKG

PKC PKG

PKPPKt

SeK
SeK1

SeK2

SeISeI1

SeI2

SeK2

SiI

SiK

UCDP-Deaths in African Conflicts

TerrorismH1968-2006L

Interstate-WarsH1816-1980Ll

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

6

pvalue

al
ph
a

AK1 : Afghanistan-Kmin CKI : Colombia-KI CKP : Colombia-Kpar SaIG : Salvador-Igov IrcI2 : Iraq-CIID-Imax PKG : Peru-Kgue SeK2 : Senegal-Kciv
AK2 : Afghanistan-Kmax CKG : Colombia-Kgov CKt : Colombia-K SaKG : Salvador-Kgov IrcI1 : Iraq-CIID-Imin PKC : Peru-Kciv SeI : Senegal-Ibest
CIG : Colombia-Igue CKIG : Colombia-Kigov CIG : Colombia-Igov InK : Indonesia-K IrbK2 : Iraq-IBCv3-Kmax PKG : Peru-Kgov SeI1 : Senegal-Imin
CI : Colombia-I CKIC : Colombia-Kiciv SaI : Salvador-I IrcK1 : Iraq-CIID-Kmin IrbK1 : Iraq-IBCv3-Kmin PKP : Peru-Kpar SeI2 : Senegal-Imax
CKI : Colombia-Kipar CKC : Colombia-Kciv SaK : Salvador-K IrcK2 : Iraq-CIID-Kimax IrbK1 : Iraq-NoBod-Kmin PKt : Peru-K SeK2 : Senegal-Kmax
CIC : Colombia-Iciv CIP : Colombia-Ipar SaIG : Salvador-Igue IrcKI1 : Iraq-CIID-Kimin IrbK2 : Iraq-NoBod-Kmax SeK : Senegal-Kbest SiI : S.Leone-I
CKG : Colombia-Kgue CKIG : Colombia-Kigue SaKG : Salvador-Kgue IrcKI2 : Iraq-CIID-Kmax NiK : N.Ireland-Kdaily SeK1 : Senegal-Kmin SiK : S.Leone-K

>10000 Deaths

5000-10000 Deaths

1000-5000 Deaths

500-1000 Deaths

50-500 Deaths

Countries"across"globe:"
Disaggregated"by"vic.m"type"etc.""

p

α



 6 

Peruvian conflict, data is built from the report published by Truth and Reconciliation Committee 
(TRC): http://www.cverdad.org.pe/ingles/ifinal/index.php. The data for Sierra Leone comes from 
the academic work of Macartan Humphrey of Colombia University: http://www.columbia.edu/-
mh2245/ . The data source for the Northern Ireland conflict is the research of Malcolm Sutton: 
http://cain.ulst.ac.uk/sutton/ which itself uses a large number of sources. 

 

 

Fig. S3. Details of datapoints in Fig. 1C of main paper text, for conflicts in different political departments within a 
given country (Colombia). Also shown are the results for global terrorism and interstate wars. 

The data used for different Departments within Colombia, above, are obtained from the 
Colombian Conflict Database, provided to us by the Conflict Analysis Resource Center-
CERAC.  The dataset contains the type of victim, the date and location of people killed or injured 
in the Colombian conflict, from 1988 to 2006. We took the insurgent guerrilla FARC as the Red 
side and the Colombian government as the Blue side. See The Severity of the Colombian Conflict: 
Cross-Country Datasets versus New Micro Data (J. Restrepo, M.Spagat and J. Vargas), Journal of 
Peace Research 43, 99-115 (2006). Each point occurs in a separate geographical location (i.e. a 
separate Department).  
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Fig. S4. Details of datapoints in Fig. 1D of main paper text, for more conventional wars. ‘K’ corresponds to numbers 
killed, and ‘I’ corresponds to numbers injured. Also shown are the results for global terrorism, and the value for all 
interstate wars aggregated between 1816-1980. 

 

For the older data on the American and Spanish civil wars we use the academic work of Ron 
Francisco of the University of Kansas who, in turn, relies on historians accounts 
(http://web.ku.edu/ ̃ronfran/data/civilwars/index.html).  

The comparative data in Fig. 1D for suicides, accidents, homicides etc. is obtained from Medicina 
Legal in Colombia, and measures deaths from the various causes in the capital city Bogota. The 
range of corresponding exponent values α  is effectively a continuous strip in Fig. 1D showing the 
range over which the α  values vary as different criteria for severity are applied. 
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To give an idea of how close to 2.5 the values are in Fig. 1, the following list takes the α  values in 
a particular plot, and calculates the mean value and the standard deviation, respectively:  

Fig. 1A Africa                              2.23635                        0.6311 

Fig. 1B (across the globe)            2.5082                          0.4249 

Fig. 1D (old wars)                        2.0850                          0.5067 

More details about the research underlying the PIRA network analysis (Fig. 1D inset of the main 
paper) are given in P. Gill, J. Lee, K. Rethemeyer, J. Horgan and V. Asal. (in Press) “Lethal 
Connections: The Determinants of Network Connections in the Provisional Irish Republican 
Army, 1970-1998”. International Interactions (2013). 
 
 
The data for Fig. 3 are obtained from the above mentioned sources, and identities are as shown 
below: 

 
 
Fig. S5. Details of datapoints in Fig. 3 of main paper text. In the key, ‘C’ means civilian casualties inflicted by Red, 
while ‘G’ means government (army, state security) casualties inflicted by Red. 
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Figures 2 and 3 therefore span a wide spectrum of human confrontations: They show a progression 
from individual face-to-face confrontations in an otherwise affectionate relationship (Fig. 2A), to 
real-space non-violent and violent group-level political confrontations (Fig. 2B and Fig. 3), to 
cyber-based economic confrontations (Fig. 2D), and in Fig. 2C the example of a clandestine 
international Red entity of unknown size and origin carrying out cyber-attacks (events) against 
another country’s Internet-based infrastructure (Blue).  
 
In Figs. 2 and 3, we define the time interval between events as the time between the end of the 
previous event and the start of the next. For all the systems except some of the street protests, and 
the baby cry-face, the events (i.e. attacks) are essentially over in one timestep. Street protests and 
baby cry-faces can last several timesteps – hence, given its definition, the time interval is measured 
between the end of the previous protest/cry-face and the start of the next.  
 
 
2. Data file description  
Examples will be provided online as Excel files. For illustration, below we present a snapshot of 
the format for the timings analysis in Figs. 2 and 3. Each domain is a separate sheet and the dyads 
are columns. Each row in a given dyad contains a time interval between consecutive events, listed 
sequentially from top to bottom in a timescale of choice. For example for the insurgency, an event 
is a day in which Red attacked and killed Blue members, so the time interval is measured in days. 
The choice of scale of the time interval is not important for the analysis since the power-law curve 
is independent of scale (i.e. multiplying the time interval by a given factor affects both sides of the 
power-law progress curve equation equally and so does not change the corresponding α  value). 
The case below is for Fig. 2D as illustration: 

 
Fig. S6. Snapshot of the data used in the analysis of the main paper, specifically in producing Fig. 2D. 
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0.205823785 103.2393837 5.740903067 0.008281539 1.01119184 1.009551215 35.98435995 43.80849508 1.946690683 0.03373206 0.783489294 78.03998698 3.036646123 4.993847801 0.030841724 0.011487847 0.990540799 0.006976562
0.733475405 10.95250752 3.254915509 28.25481134 0.021033276 0.002756366 6.105015914 0.016654514 0.001708912 0.017177083 0.116958912 19.94682118 2.986700521 0.111266204 1.007381655 0.020314815 1.017254919 0.810981192
0.008018808 17.77974045 0.774427951 23.9981276 0.040280382 0.985430845 0.03100434 2.982645833 0.004164641 0.200668403 0.121684317 0.159650174 0.053267361 4.049397569 0.832970197 0.013478588 0.249945602

0.0960761 44.00024248 0.127292535 1.00156713 0.027989294 0.054240162 0.957621528 0.036977431 0.040081597 5.747439525 2.77433044 0.072959491 0.006560185 0.243572049 1.055583333 0.753773148
0.04039294 0.001818866 0.045687789 1.91045978 0.066451678 3.186064815 0.017802662 0.050319155 0.019065104 2.00176794 3.802790799 0.005060764 0.017260706 0.924978299 0.239803241

0.006591435 4.248627894 0.044916667 0.075674768 0.013965857 0.759626736 0.025017072 0.020173611 0.011916956 41.99749161 0.198065104 0.002130498 0.855605613 0.2442989
0.066600694 0.771608218 0.009825231 3.986319734 0.006464699 0.036291956 0.016381945 0.003646412 0.009438657 0.001539931 0.999558449 0.003326389 0.060776042 2.742833912
0.021177951 0.179008102 2.737856771 2.961512732 0.042613715 0.005760995 0.027172743 0.035992766 2.759997974 0.265572049 0.756787037 0.011537616 0.011761574
0.027387442 0.872206308 0.009251447 0.802354167 0.009743634 0.226065972 1.828787326 0.00480816 0.054034144 3.751030382 0.240031539
0.735147859 0.006064815 0.012623264 0.039327546 3.979440683 0.741822917 0.004764178 0.052722801 0.036685764 1.182134838 0.010230614
0.00799566 0.006462095 0.009099826 2.976178819 0.016117477 1.991236401 0.149131944 0.042563657 0.173920718 0.982187211 2.737643229

0.003319155 0.033450521 0.001427373 0.16620081 0.004880498 25.00160156 0.08343316 0.001730903 0.996147859 0.073579282 0.036215856
0.030741609 0.00675434 0.094657986 0.056256944 0.004650463 0.999369502 0.017472801 0.015708044 0.739508102 1.743186053 4.964417824
0.032620081 0.014457755 0.008887732 2.765495081 0.735687789 27.00002344 0.732078704 0.7339864 0.033624132 10.17668634
0.06490625 0.057911748 0.015719618 0.231127604 0.137358218 1.04110706 0.005738136 13.04566782 0.002432581

0.049587384 0.015042245 0.038206019 0.797489873 0.051172164 1.955638889 0.004538773 0.181468171 0.00472309
0.036283275 0.793894097 0.03615191 0.174198785 0.001445891 14.26269358 0.001686632 57.82981568 0.010490741
0.008357639 0.142674479 0.77184838 0.031001157 0.039191551 0.002019387 0.001797743 0.001729745
0.006971643 0.013322049 0.074688079 2.761080729 0.013784144 2.73744213 0.006988426 1.906985532
0.004327546 0.050086516 0.045408565 0.008499711 0.01786603 0.020784143 0.002782407 2.163841724
0.004740741 0.009247396 0.012673032 0.250412037 0.004804109 0.010951389 0.007099537
0.006156829 0.006769097 0.003800347 0.005598669 0.733448785 0.001435764 0.00438397
0.747941262 0.022761285 0.02226331 0.733360822 0.010030093 0.003996238
0.018253183 0.752542245 0.02048206 0.011718461 0.009431713
0.005981482 0.001390046 0.01590625 0.010600116
0.009942419 0.017838831 0.046689815 0.009685185
2.958390625 0.153083623 0.003964989 0.0676386
2.042594618 0.038146412 0.016271991 0.161350694
0.21847309 2.785728588 0.739863715 0.740722222

1.784964699 0.211302951 0.008189236 0.007484664
3.130020544 3.798438368 0.006407118 0.003786169
0.002811632 3.041089699 0.045190972 0.039734664
0.002083912 0.134482928 0.001846065 0.103569445
0.08499103 0.065786169 0.062442419 0.013654224

0.769842303 0.015344618 0.063067708 0.039996817
0.152073785 1.870748264 0.07366522
0.815100984 0.041000868 0.003045139
0.165347222 0.068830151 0.001683738
0.007002315 0.013933738
2.042650752 0.749024305
2.782305556 1.155109664
0.012384259 2.836375
0.011232928
0.004225116
0.178323785
0.799538484
0.017789641
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3. Lack of systematic correlation between severity and timing 
This can be seen from our datasets, however as illustration below we show that the exponent value 
α  does not shift in a systematic way over time. The figure is obtained by dividing each 
confrontation up into four equal periods, without any prior knowledge of the resulting α  value or 
goodness-of-fit: 

 
Fig. S7. Demonstration that severity and timings do not show systematic correlation. Examples chosen from four Red-
Blue conflicts. The progression of values for four successive periods in time is shown. Same conclusion concerning 
lack of severity-timing correlation, holds for other choices of periods.  

 
4. Residuals for best-fit curve for timings 
Below we show a typical example of the best straight line fit through the empirical timings data on 
a log-log plot, for Magdalena in Colombia which is shown as a black oval in Fig. 3 of the main 
paper and occupies a position near the middle of all the data-points (see Fig. 3). On right below is 
the distribution of these residuals (top) confirming their near-Gaussian nature, and also a plot 
showing their lack of correlation (bottom). Both these observations are consistent with the 
requirement of having i.i.d. Gaussian distributed residuals, as claimed in the main paper. 
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Fig. S8. Demonstration of power-law fit to trend in inter-event timings. Left panel shows the fit, right panel shows the 
properties of the residuals with (top) near Gaussian distribution and (bottom) lack of serial correlation as required. 

 
5. Demonstration that linear dependence relationship for timings is non-trivial 
We demonstrate below the non-trivial nature of the benchmark linear dependence for timings, by 
comparing to (a) real data from a real-world experiment where there is no active Blue opponent, 
and (b) model with randomized version of the data. 
(a) Real data with no active Blue opponent: 
Anyone engaged in a completing a particular task (i.e. facing an effectively static Blue) such as 
proof-reading, solving a puzzle, or purchasing something online, does not have to worry about that 
task (i.e. Blue) intentionally resisting completion. In panel B of the figure below, we summarize 
Crossman’s classic results showing that for a given type of task (e.g. proof reading), each subject 
exhibits his/her own escalation rate and intercept. (See Crossman, E.R.F.W. A theory of the 
acquisition of speed-skill. Ergonomics 2, 153-166 (1959)). The lack of a generic dependence 
between the two parameters is no surprise given the heterogeneity of humans (Red). Panel C 
shows that this lack of any linear dependence also arises for humans completing passive cyber 
tasks, specifically the navigation of different websites. Data from Johnson, E., Bellman, S., & 
Lohse, G.L. Cognitive Lock-In and the Power Law of Practice. Journal of Marketing 67, 62-75 
(2003): 

τ1

−β

τ n = τ1 n
−β

τ n

n
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Fig. S9. Benchmark signature for timings disappears in one-sided activities (i.e. no active Blue). Top: fitting 
procedure. Middle: existing empirical results in the literature for passive tasks. There is no systematic relationship 
between τ1   and β , in stark contrast to Figs. 2 and 3 of the main paper. Bottom: results for one-sided activity of 
searching Internet sites. Again there is no systematic relationship between τ1   and β , in stark contrast to Figs. 2 and 
3 of main paper. Data-sources given in SI text. 
 
(b) Randomized data 
Our method of adding stochasticity (randomness) to the event times, and hence generating a null 
model which we use to further investigate if the linear-dependence happens by chance, is as 
follows: 
1. For each dyad i , calculate the total time Ti  as the time between the first event and the last 
event.  
2. For each i , take the number of events ni  and divide by Ti . This gives the probability pi  of an 
event per unit time for that dyad. 
3. Generate a random series by considering an event at each timestep using probability pi  from 
step 2. Generate a total number of events ni  for each dyad. Hence the synthetic time-series we 
produce are conditioned on having the correct number of events, and also the correct duration on 
average. Choosing to preserve the correct duration, and have the correct number of events on 
average, leads to similar conclusions. 
4. Calculate β  and log τ1  from step 3 for each dyad i . 
5. Repeat steps 1-4 many times in order to get a set of simulated β  vs. log τ1  plots.  
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6. For each one of the simulated β  vs. log τ1  plots in step 5, calculate the R2  of the β  vs. log τ1

best-line fit.  
7. Calculate the mean and standard deviation for the R2  distribution obtained in step 6. We find 
empirically that this distribution is approximately Gaussian: N µ,σ( )  
8. Using the distribution of the R2  from step 7, estimate the p -value as the probability of getting a 
value of R2  equal to, or greater than, the empirical value given by Rreal

2 . The values for the five 
domains we consider are as follows: 
Fig. 2A         p =0.0089                 Rreal

2 =0.74           Rrandom
2 =0.36 

Fig. 2B         p = 5.7 ×10−5             Rreal
2 =0.82           Rrandom

2 =0.38 
Fig. 2C         p=0.036                    Rreal

2 =0.91           Rrandom
2 =0.65 

Fig. 2D         p =0.0087                  Rreal
2 =0.80           Rrandom

2 =0.45 
For the results in Fig. 3, we give a typical example for Colombia: 
Fig. 3           p=0.0018                  Rreal

2 =0.83           Rrandom
2 =0.40 

We have investigated other null model variants and found similar results, confirming the non-
trivial nature of our findings. Examples of the R2  histograms for these randomized series for Fig. 
2A (left) and 3 for Colombia (right) are: 
 

          
 
Fig. S10. Distribution of R2  results. Left: results for randomized series of Colombia events. Right: actual results for 
Colombia events. 

 

Below is an explicit example for Fig. 2C, comparing real (left) and randomized (right) versions: 
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Fig. S11. Examining effects of randomization on results for timings in main paper. Left: actual results for Fig. 2C. 
Right: results for randomized event series for Fig. 2C.  

 
For completeness, we now discuss some other candidate mechanisms that one might propose to 
explain the timings signature that we observe, but which can also be rejected by comparison with 
the actual results:  
(1) Concerning the resolution of the data for insurgencies, fatal days are by definition one day or 
more apart. One might wonder if this finite data resolution affects our results, and hence generates 
a false correlation between β  and log τ1  due to accumulation of τ n = 1  values. For most dyads, as 
can be seen explicitly for the example above of Magdalena, this is not an issue since the τ n = 1  
values are very infrequent. Even when they do occur, the τ n = 1  values tend to be real and not a 
spurious resolution effect. We have checked that our results are insensitive to whether they are 
included in the dataset or not. For the cases that τ n = 1  values do begin to accumulate, we truncate 
the dataset at a value nmax  and obtain the best-fit power-law curve for n ≤ nmax . To deduce which 
nmax  value to use, we employ an algorithm that detects the onset of any accumulation based on a 
moving average. We checked the robustness of our results to variations of this algorithm. 
Alternative algorithms such as LOWESS give similar results. The robustness of our findings in the 
case of Afghanistan, mentioned in the main paper, is discussed in more detail in the online preprint 
http://arxiv.org/abs/1109.2076 (“Escalation, timing and severity of insurgent and terrorist events: 
Toward a unified theory of future threats”). 
(2) Start with the assumption that the set of τ n{ }  data for each dyad follows the power-law curve 
and that on the log-log plot it follows a straight line with Gaussian-distributed i.i.d. residuals. We 
know this is consistent with the real data (e.g. Magdalena shown above) but now let’s assume 
momentarily that it also happens for data generated by a null model in order to see how this might 
favour a candidate null model explanation of our results. Each data-point can therefore be written 
as log τ n = log τ1 − β log n + εn . Adding together over all N  data-points yields 
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log τ n
n=1

N

∑ = log τ1
n=1

N

∑ −β log n
n=1

N

∑  assuming that the residuals add to give approximately zero. This 

can then be rewritten as log τ n
n=1

N

∑ = N log τ1 − β log n
n=1

N

∏ . Rearranging yields 

β = N

log N !
⎛
⎝⎜

⎞
⎠⎟ log τ1 −

log τ n
n=1

N

∏
log N !

. One might wonder if this equation explains Figs. 2 and 3. It does 

not: Each dyad in a given domain has a distinct numbers of events, and hence a distinct number N  
of inter-event time intervals. Hence the factors log  N!  and N  differ between dyads. The factor 

τ n
n=1

N

∏ also differs between dyads. Hence β  is not a priori proportional to log τ1 . If a null model 

constructs each dyad log τ1,β( )  value by drawing N  (i.e. the specific number of τ n{ }  for that 
dyad) values from a stationary distribution of time intervals, it will not reproduce the same scatter 
of β  vs. log τ1  points that we see in the main paper. We can show this more explicitly by writing 

log τ n = log τ + εn  where τ  is the mean of the null model distribution and εn  is a stochastic term 

with zero mean. Substituting into the above equation yields β = N
log N !

⎛
⎝⎜

⎞
⎠⎟
ε1  assuming the sum of 

the stochastic terms is negligibly small. In general, since N  differs between dyads, this does not 
produce a straight line. If we momentarily assume that N  is the same for each dyad (which it is 
not), a straight line appears – however, it is still not the same straight line scatter of points as in 
Figs. 2 and 3. Since ε1  is equally likely to be positive or negative, it produces a straight line scatter 
which is symmetric around β = 0  with both positive and negative values, however this is not the 

case in Figs. 2 and 3 in general. The value of the slope 
N

log N !
⎛
⎝⎜

⎞
⎠⎟  is also different from the one we 

observe, and it tends toward zero as N  increases. The underlying assumption of drawing τ n{ }  
from a stationary distribution also ignores the fact that in the individual progress curve plots of 
log τ n  vs. log n  (see above for Magdalena, Colombia) there is typically a visible linear trend in 
the τ n  values. Although there is scatter about this linear trend, large values of τ n  tend to occur 
earlier on in the series (giving β > 0 ), or later on in the series (β < 0 ), making the null model 
assumption of a stationary distribution very hard to justify. Generating a model by shuffling τ n{ }  
values with replacement, produces similar conclusions, and it has an additional lack of realism in 
that the corresponding distribution only contains these specific τ n  values, i.e. for some unknown 
reason, these τ n  values are suddenly the only τ n  values allowed. A model generated by shuffling 
without replacement is even more inappropriate as a plausible explanation, since it implies there is 
some memory process at work in all domains whereby the system can remember past values of τ n  
and not re-use them. Indeed any such shuffling scheme of τ n  to form a candidate null model, is 
hard to justify since it does not correspond to randomizing event times. Perhaps most importantly, 
the explanatory power of all such models involving randomization is severely compromised by the 
fact that the information about the ordering of individual dyads along the line is lost, and hence the 
relative locations of the dyads along the line will typically bear no relation to the actual ones in 
Figs. 2 and 3. This can be seen in the figure above when compared to Fig. 2C. Such a null model 
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cannot therefore reproduce the meaningful insights mentioned in association with the actual data in 
the main paper, e.g. a super-linear escalation β >1( )  for cyber-attacks against international 
organizations, high-tech electronics and the media, as compared to de-escalation β ≈ −1( )  for the 
construction industry. The null model that is least unrealistic from a mechanistic perspective, 
given the features of the real systems, is one where the clock times of the actual events themselves 
are randomized – this is the null model that was discussed above and that was rejected based on 
the p -significance values.  
 
 
6. Demonstration of prediction of timing of future events 
Below we illustrate the accuracy of out-of-sample predictions, using the timings benchmark of the 
main paper, for future fatal attacks on Blue (coalition military) in Afghanistan. The only input is 
the time interval τ1  between the first two attacks that have been observed to date in a given region 
X (e.g. Kandahar) that was previously quiet. In the absence of any benchmark, it would be 
impossible to obtain a projection forward of future time intervals (and hence times) of attacks 
since there are an infinite number of lines that can be drawn through one point. However, 
assuming that the same Red underlies the attacks in all these different regions, we can use the 
linear relation between β  and logτ1  for all the other regions that have already had attacks in the 
recent past, but obviously we do not include region X in this plot since we are trying to predict 
future attacks in X. So we use the actual time interval between the first two events as an estimate 
of the intercept, and then read off β  from the linear relationship. Then using τ1 n

−β  we can 
estimate any future time-interval, and hence obtain a prediction for the time of any future attack.  

The figure below shows: (a) The predicted (red diamonds) time of the n’th future attack compared 
to the actual time (blue squares) measured in days (vertical scale) since the initial day on which 
there was a military IED fatality in Kandahar. Horizontal axis is attack label n. Predictions are 
made at the start, and no updating is allowed. An interval of 3 years is shown on the vertical time 
axis to highlight the long-term nature of the prediction. (b) Comparison of predicted time intervals 
to the actual ones. Red line is a guide to the eye. (c) Same as (a) but for Kabul. (d) Same as (a) but 
for Farah, and now including all hostile military fatalities (i.e. fatalities attributed to insurgent 
activity). 
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Fig. S12. Results for prediction of future attacks using only one point as input (i.e. initial time-interval). Top left: 
results for successive attacks n in Kandahar against coalition forces, shown as function of calendar time (vertical axis). 
Top right: underlying plot for successive time-intervals. Bottom left: Similar results for Kabul as a function of 
calendar time (vertical axis). Bottom right: Similar results for Farah.  
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8. Details of the derivation of the Red-Blue relative advantage result quoted in the main 
paper, which describes and explains the timings benchmark (Figs. 2-3 of main paper); and 
the derivation of the 2.5 exponent result quoted in the main paper, which describes and 
reproduces the severity benchmark (Fig. 1 of main paper), using the minimal version of our 
dynamical clustering theory  
 
The proof of the result x n( ) rms ∝ n

β  which is quoted in the main text, is a standard property for 
stochastic processes, or so-called stochastic ‘walks’. We show this here, using slightly different 
notation, i.e. we call the relative advantage 

� 

R n( ) (i.e. x n( )  in the main paper) after 

� 

n steps. Our 
notation for the change in 

� 

R n( ) at step i  is 1i i ix x x −Δ = − . Hence the change between step 0 and n  

is given by ,0 01

n
n j nj
x x x x

=
Δ = Δ = −∑ . The mean change between step 0 and n  is: 

,0
1

n

n j
j

x x
=

Δ = Δ∑    

which is the well-known result that the average of the sum is equal to the sum of the averages. 
This equation holds irrespective of whether the changes jxΔ  are i.i.d. or not. For the special case 

in which each mean is always the same jx xΔ ≡ Δ  (for example, for i.i.d. variables) we have: 

,0
1

n

n j
j

x x n x
=

Δ = Δ = Δ∑        

For the case of the coin-toss walk above, we have 0xΔ =  where the average includes all possible 

trajectories for the ‘walk’. Hence ,0 0nxΔ =  for all n . The variance is as follows: 
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σ n,0
2 ≡ Δxn,0 − Δxn,0( )2

= Δxn,0( )2
− Δxn,0

2
= Δx j

j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟

2

− Δx j
j=1

n

∑
2

= ΔxiΔx j
j=1

n

∑
i=1

n

∑

⇓
  

− Δx j
j=1

n

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

⇓
  

Δxi( )2

i=1

n

∑ + ΔxiΔx j
i≠ j
∑ Δxi

2

i=1

n

∑ + Δxi Δx j
i≠ j
∑

  

 
Collecting up the cross terms, gives contributions of the form 

� 

ΔxiΔx j − Δxi Δx j  which is a 
crucially important quantity. It connects past outcomes to current outcomes (i.e. 

� 

Δxi at step 

� 

i  to 

� 

Δx j  at step 

� 

j ). It will only be non-zero if there is some kind of memory (i.e. correlation) in the 
process. Specifically, if the changes in the lead ixΔ  are uncorrelated (i.e. no memory) then 

i j i jx x x xΔ Δ = Δ Δ  for i j≠  and hence the above equation simplifies exactly to: 

( ) ( ){ }2 22 22 2
,0 , 1

1 1 1 1

n n n n

n i i i i i i
i i i i

x x x xσ σ −
= = = =

= Δ − Δ = Δ − Δ =∑ ∑ ∑ ∑    

Hence we have proved the well-known statistical result for uncorrelated variables (i.e. no 
memory) that the variance of the sum is equal to the sum of the variances. For the special case in 
which each variance is the same for each step (for example, for i.i.d. variables) then 2 2

, 1i iσ σ− ≡  
and we have: 

2 2 2
, , 1

1

n

i i n i i
i

nσ σ σ− −
=

≡ =∑         

where 2 2
, ,0i i n nσ σ− =  since the lead-changes at each step have the same variance. Taking the square 

root of each side, this gives the result quoted in the main paper that the typical size (i.e. root-mean-
square ‘rms’) of an uncorrelated process following the n’th attack (recall each attack is a step in 
the walk) increases as nβ  where β = 0.5 . Using the more general notation of this SI, we have: 

1
2

,i i n nσ σ− =            
So, the typical size of the lead of Red over Blue (or vice versa) for the entire confrontation to date, 
with n  attacks to date, increases as the square-root of n , i.e. n  to the power 0.5, when the 
process is uncorrelated. For the special case of a coin-toss walk, we have dσ =  and hence 

1
2

,i i n n dσ − = .  
We stress that the timestep here, i.e. the tick of the clock from n to n+1, is measured on an event 
clock, not a time clock. In the more general case of a positive correlation (i.e. some memory), the 
corresponding expression for the typical size of 

� 

R (i.e. root-mean-square) will therefore be larger 
than the uncorrelated case of nβ=0.5 , i.e. β > 0.5  in the notation of the main paper. By contrast, if 
the changes ixΔ  are anti-correlated (i.e. their correlation is negative), then the dependence will 
approach n0  , i.e. 0 < β < 0.5  in the notation of the main paper. 
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Hence in general (i.e. in the presence of correlations) the relative advantage will have the property 
that the typical size after n  events, given by x n( ) rms , increases as nβ  as we claimed. 
 
Our theoretical explanation of the timings, discussed in the main paper, can also be extended to 
explain the typical scatter of observed time-interval values around the best-fit progress curve 
shown in Fig. 3 (top inset) if we assume that a series of steps need to happen before Red can 
complete its next attack against Blue. Each of these steps may fall behind or ahead of schedule for 
multiple external reasons, e.g. protest members may be unable to continue coordinating or 
insurgents may not receive new ammunition. Following multiplicative degradation processes in 
engineering, we assume each of these steps multiplies the expected time interval by a factor 
1+ ε j( )  where the ε j ’s are Gaussian distributed i.i.d. stochastic variables which mimic these 

exogenous factors. Hence the observed time interval is given by τ1 n
−β 1+ ε j( )

j=1

N

∏ . Taking the 

logarithm of both sides, and assuming  ε j 1gives a straight line fit on a log-log plot as observed 
in Fig. 3 (upper inset) and with Gaussian-distributed i.i.d. residuals, as we observe empirically (see 
figure in Section 4 of this SI).  
 

We now turn to the distribution of severities in Fig. 1, and our claim in the main paper that 
α ~ 2.5 . We stress that even though the overall command structure of Red might be hierarchical, 
or portrayed as so to give the impression of a strong army, our theory aligns with the PIRA 
analysis and other recent fieldwork studies by Kenney, Gambetta et al. in finding that the 
operational structure is delocalized into clusters. Our dynamical clustering theory for Red is 
exactly solvable at the level of mean-field theory, which means that the equations that are written 
down to denote the change in the average number of clusters of a given size, per timestep, is 
exactly solvable.  
 
 
As shown later in this section, each cluster-size has its own equation, and they are coupled – 
however use of a generating function approach enables an exact solution. Many variants can also 
be solved exactly. Below we provide a list of results for the model and its variants, with Blue 
referred to as A and Red referred to as B. This table shows the robustness of the results as 
generalizations are made. For details of certain generalizations, see Ruszczycki, B., Zhao, Z., 
Burnett, B., Johnson, N.F.: Relating the microscopic rules in coalescence-fragmentation models to 
the cluster-size distribution. Eur. Phys. J. B 72, 289 (2009). Also see Clauset, A., Wiegel, F.W.: A 
generalized aggregation-disintegration model for the frequency of severe terrorist attacks. J. Confl. 
Resolut. 54, 179 (2010).  
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Table S1. Effect of generalizations of simple one-population coalescence-fragmentation model from main paper, 
describing Red.  

 
 
 
It is straightforward to also implement this clustering theory using a simulation. On each timestep, 
a Red member (and hence the cluster to which this person belongs) is selected at random, for 
example through some process in which he/she gains some information about an opportunity or an 
impending attack by Blue. This is equivalent to saying a cluster is selected with probability 
proportional to its size. The cluster to which the agent belongs may then fragment, if it senses 
danger for example. It may also coalesce, or simply remain unchanged.  
 
 

Model 
variants 

Description of model variant Effect of 
heterogeneity 
in character of 
individuals? 

Proof of results 
requires 
computer 
simulations? 

 
Consistent with empirical results  

for severity of violence? 
Armed population B 

(e.g. insurgency) 
Armed 

population A 
(e.g. army) 

Unarmed 
population C 
(e.g. civilians) 

1.0 
 
 

Dynamical clustering of B agents (which is 
equivalent to a dynamical network). Each 
cluster has probability 

� 

νcoal  of coalescing 
with another cluster, and probability 

� 

ν frag  
of fragmenting. Size of B population 

� 

N  is 
constant, but total number of B clusters 

� 

Nclusters t( )  
varies endogenously in time t  

Inert. Population 
A simply triggers 
sporadic 
fragmentation of 
B clusters. 
Mimics agents 
breaking  
contacts/fleeing 
when in danger 

Inert.  
Incurs 
casualties 
proportional to 
size of 
insurgent 
clusters 

No effect if 

� 

νcoal  and 

� 

ν frag  do not 
depend on 
character 
variables 

NO 
All analytic. 
Detailed 
derivation 
given in SI 
below 

YES 
 
Produces power-law 

� 

p(x) ∝ x−α  with 

� 

α = 2.5 for 

� 

x > xmin , 
independent of N. Exponential cutoff at large 

� 

x  due to finite 
population size N. 

� 

α = 2.5 result emerges for a range of values 
of 

� 

νcoal  and 

� 

ν frag , hence this is not just a typical phase 
transition effect from statistical mechanics in which the system 
needs to be tuned to the phase transition  

1.1 Same as 1.0 except multiple clusters may 
coalesce at any one time 

Same as 1.0 Same as 1.0 Same as 1.0 NO YES 

� 

α = 2.5. Same as 1.0 
1.2 Same as 1.0 except fragment size 

� 

x0  may be 
larger than 1, as long as  

� 

x0 << N  
Same as 1.0 Same as 1.0 Same as 1.0 NO YES 

� 

α = 2.5. Same as 1.0 but 

� 

xmin > x0   
1.3 
 
 

Same as 1.0 except size of population N may 
fluctuate in time 

Same as 1.0 Same as 1.0 Same as 1.0 Some analytic 
results possible  

YES. 

� 

α = 2.5 as long as fluctuations small compared to N and 
slow compared to coalescence-fragmentation rates. Exponential 
cut-off and onset 

� 

xmin  may fluctuate in time. 
2.0 
 

Similar to 1.0 but agents located at vertices of 
a spatial grid in D-dimensions.  
Model 1.0 corresponds to 

� 

D→ ∞  

Same as 1.0 Same as 1.0 Same as 1.0 Some analytic 
results possible  

YES. 

� 

α  varies from 

� 

α ≈ 1.9 for 

� 

D = 2 , up to 

� 

α = 2.5 for 

� 

D→ ∞   
 

3.0 
 
 

Similar to 1.0 but rigidity of clusters (i.e. 
probability of a picked cluster i coalescing or 
fragmenting) depends on size according to 

� 

xi
−δ  where 

� 

δ  can be positive or negative. 
 

Same as 1.0 Same as 1.0 Same as 1.0 NO 
 

YES. Similar to 1.0, but 

� 

α = 2.5 −δ  so 

� 

α  takes on range of values 
around 2.5, as observed empirically, according to magnitude and 
sign of 

� 

δ , e.g. 

� 

1.8 <α < 3.2  for 

� 

0.7 >δ > −0.7 . Implication is that 
conflicts with different 

� 

α  values around 2.5, differ primarily in the 
relative rigidity of their B population’s (e.g. insurgent) clusters 

4.0 
 

Similar to 1.0 but vector with bit string defines 
individual agent character. Coalescence-
fragmentation probability depends on 
similarity of vectors 

Same as 1.0 Same as 1.0 Yes. Similarity 
of vectors 
favors cluster 
formation 

Some analytic 
results possible 

YES. 

� 

α ≈ 2.5  

5.0 Similar to 1.0 but scalar number 

� 

0 ≤ p ≤ 1
defines individual agent character. Similarity 
of p values favors cluster formation 

Same as 1.0 Same as 1.0 Yes. Mimics 
KINSHIP  

NO YES. 

� 

α ≈ 2.5  but phase transition observed for particular 

� 

p ≡ pc, kinship . Regime 

� 

p < pc, kinship  is dominated by isolated 
agents (e.g. insurgent clusters hardly ever form) 

5.1 Similar to 5.0 but dissimilarity of p favors 
cluster formation 

Same as 1.0 Same as 1.0 Yes. Mimics 
TEAM 
FORMATION 

NO YES. 

� 

α ≈ 2.5  Similar to 5.0. but 

� 

pc, team ≠ pc, kinship  

5.2 Intermediate between 5.0 and 5.1 Same as 1.0 Same as 1.0 Yes. MIXED  NO YES. 

� 

α ≈ 2.5  Similar to 5.0. 

� 

pc, mixed ≠ pc, team ≠ pc, kinship  

6.0 
 

Populations A,B both dynamically clustering. 
Coalescence/fragmentation dictated by size of 
A and B clusters in individual clashes 

Dynamically 
clustering 

Same as 1.0 Possible, but no 
character effects 
included so far 

Depends on 
cluster-cluster 
interaction rules 

YES. Can produce distributions for A and B casualties consistent 
with observed values of 

� 

α ≈ 2.5 , and goodness-of-fit values from 0 
to 1 as observed   

7.0 
 

Populations A, B, C all dynamically clustering. 
Coalescence/fragmentation dictated by size of 
A, B and C clusters in individual clashes 

Dynamically 
clustering 

Dynamically 
clustering 

Possible, but no 
character effects 
included so far 

Depends on 
cluster-cluster 
interaction rules 

YES. Can produce distributions for A, B and C casualties 
consistent with observed values of 

� 

α ≈ 2.5 , and goodness-of-fit  
values from 0 to 1 as observed 

 



In what follows we show how our theory derives the a = 2.5 benchmark for the event severity

distribution in Fig. 1. The Master Equation for the number of clusters of size s is as follows:

∂ns

∂t
=

ncoal

N2

s�1

Â
k=1

knk(s� k)ns�k �
nfragsns

N
� 2ncoalsns

N2

•

Â
k=1

knk , s � 2 , (1)

∂n1

∂t
=

nfrag

N

•

Â
k=2

k2nk �
2ncoaln1

N2

•

Â
k=1

knk . (2)

Here ncoal and nfrag are the probabilities per timestep (i.e. rates) of coalescence of two clusters, or

fragmentation of a cluster, respectively. To simplify the limits of the sums, we extend the upper

limit to infinity, which is a good approximation for large N. Terms on the right hand side of Eq. (1)

represent all the ways in which ns can change. In the steady state:

sns =
ncoal

(nfrag +2ncoal)N

s�1

Â
k=1

knk(s� k)ns�k , s � 2 , (3)

n1 =
nfrag

2ncoal

•

Â
k=2

k2nk . (4)

Consider

G[y] =
•

Â
k=0

knkyk = n1y+
•

Â
k=2

knkyk ⌘ n1y+g[y] , (5)

where y is a parameter and g[y] governs the cell size distribution nk for k � 2. Multiplying Eq. (3)

by ys and then summing over s from 2 to •, yields:

g[y] =
ncoal

(nfrag +2ncoal)N
G[y] , (6)

i.e.

g[y]2 �
✓

nfrag �2ncoal

ncoal
N �2n1y

◆
g[y]+n2

1y2 = 0 . (7)

From Eq. (5), g[1] = G[1]� n1. Substituting this into Eq. (7) and setting y = 1, we can solve for

g[1]

g[1] =
ncoal

nfrag +2ncoal
N . (8)

Hence

n1 = N �g[1] =
nfrag +ncoal

nfrag +2ncoal
N . (9)

Substituting this into Eq. (7) yields

g[y]2 �
✓

nfrag +2ncoal

ncoal
N �

2N(nfrag +ncoal)

nfrag +2ncoal
y
◆

g[y]+
(N(nfrag +ncoal))2

(nfrag +2ncoal)2 y2 = 0 . (10)
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We can solve this quadratic for g[y]

g[y] =
(nfrag +2ncoal)N

4ncoal

 
2�

4(nfrag +ncoal)ncoal

(nfrag +2ncoal)2 y�2

s

1�
4(nfrag +ncoal)ncoal

(nfrag +2nfrag)2 y

!
, (11)

which can be easily expanded

g[y] =
(nfrag +2ncoal)N

2ncoal

•

Â
k=2

(2k�3)!!
(2k)!!

✓
4(nfrag +ncoal)ncoal

(nfrag +2ncoal)2 y
◆k

. (12)

Comparing with the definition of g[y] in Eq. (5) shows that

ns =
nfrag +2ncoal

2ncoal

(2s�3)!!
s(2s)!!

✓
4(nfrag +ncoal)ncoal

(nfrag +2ncoal)2

◆s
. (13)

We now employ Stirling’s series

ln[s!] =
1
2

ln[2p]+
✓

s+
1
2

◆
ln[s]� s+

1
12s

� ... . (14)

Hence for s � 2, we find

ns ⇡
✓
(nfrag +2ncoal)e2

23/2
p

2pncoal

◆✓
4(nfrag +ncoal)ncoal

(nfrag +2ncoal)2

◆s (s�1)2s�3/2

s2s+1 N , (15)

which implies that

ns ⇠
 

ns�1
coal(nfrag +ncoal)s

(nfrag +2ncoal)2s�1

!
s�5/2 . (16)

In the limit s � 1, this is formally equivalent to saying that

ns ⇠ exp(�s/s0)s�5/2 (17)

where

s0 =�


ln
✓

4(nfrag +ncoal)ncoal

(nfrag +2ncoal)2

◆��1

(18)

characterizes the exponential cut-off which appears as very high s. The steady state for the dis-

tribution of cluster sizes ns can therefore be considered to be a power-law of the form Ms�a with

exponent a ⇠ 5/2 = 2.5, as claimed in the main paper.
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