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Figure S1. Analysis of classification conflict (related to Figure 1). a. In total, 443 cells from Exp.1 were classified in at least one 
time window and included in this analysis. The left panel refers to actual neuronal data. For each pair of time window, the number 
indicated the number of cells that showed classification conflict. The right panel refers to chance level and indicates, for each pair 
of time windows, the mean of the distribution obtained from the bootstrap (rounded). Shades of gray illustrate the same numbers 
graphically. For every pair of time windows, actual classification conflicts were significantly fewer than expected by chance. 
b. Analysis of classification consistency. For each pair of time windows, the number indicated the number of cells that presented 
consistent classification. The right panel refers to chance level. In every pair of time windows (except on the diagonal), the 
consistency of classification was much more frequent than expected by chance.



Figure S2

Figure S2. Control analyses for offer value cells (related to Figure 5). ab. Same analysis as in Fig.5ab including only neurons 
that were tuned in the 150-400 ms after the offer. Traces for positive and negative encoding are from 130 cells and 33 cells, 
respectively. cd. In this analysis, trials were split depending on the outcome of the previous trial (trials E•, O•, and X•). Each 
neuron thus contributed up to three traces. Population traces for positive and negative encoding are the average of 509 traces 
and 154 traces, respectively. e. Activity in relation to the other value (positive encoding). This analysis focused on offer value 
cells and on trials in which the animal chose one drop of the preferred juice (1A). Trials were divided into two groups depending 
on whether the offer type was easy (dark blue) or split (light blue) (see Experimental Procedures). Average traces shown here 
are from the 59 cells for which I could compute both traces (≥2 trials per trace). The results fail to support the hypothesis that 
near-indifference decisions were driven by fluctuations in the activity of offer value cells. f. Activity in relation to the other value 
(negative encoding cells). Average traces shown here are from 24 cells.
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Figure S3

Figure S3. Control analyses for chosen juice cells (related to Figure 6). To verify the robustness of the results obtained for 
chosen juice cells, I repeated the analysis for different subsets of neurons: cells from monkey L (a, 169 cells), cells from 
monkey V (b, 96 cells), cells recorded in Exp.1 (c, 119 cells), cells recorded in Exp.2 (d, 146 cells). In all those cases, 
neurons with positive and negative encoding were pooled together. Data from Exp.2 were further broken down into positive 
encoding (e, 96 cells) and negative encoding (f, 50 cells). Both phenomena described for Fig.5a ‒ namely the dependence 
on the decision difficulty and the predictive activity ‒ can be observed for each subset of cells.
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Figure S4

Figure S4. Chosen juice cells, activity in relation to the previous trial (related to Figure 6). a. Trials were divided depending 
on both the previous outcome and the current choice (see legend). The activity of chosen juice cells mainly depends on the 
current choice (green traces above purple traces after the offer). However, there is a tail activity from the previous trial (dark 
traces above purple traces before the offer). b-d. Residual predictive activity. These plots focus only on split decisions. For 
these plots, the activity traces were coarse-grained by averaging firing rates in 75 ms bins (non-overlapping). e. Residual 
predictive activity, combined. Each line represents the difference between the two traces shown in (b-d). The combined 
distribution was displaced above zero.
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Figure S5
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Figure S5. Results of logistic analyses (related to Figures 4, 5, 6). a. Choice hysteresis (same as Fig.4a). The x-axis 
represents the ratio a2/a1 defined in Eq.1, the y-axis represents the number of sessions (304 total). b. Analysis of offer 
value cells. The x-axis represents the ratio a3/a1 defined in Eq.2, the y-axis represents the number of cells (324 total). 
Note that offer value cells from Exp.2 contributed to the histogram with 2 data points. c. Chosen juice cells, predictive 
activity. The x-axis represents the ratio a2/a1 defined in Eq.3, the y-axis represents the number of cells (411 total). d. 
Chosen juice cells, residual predictive activity. The x-axis represents the ratio a3/a1 defined in Eq.4. e. Time course of 
choice hysteresis. The x-axis represents trial number and the y-axis represents the median regression coefficient (bk/a1) 
across the population (see model 6) . The data point for trial n-1 (roughly) corresponds to the median of the distribution in 
panel (a). The effect of choice hysteresis per se was essentially confined to trial n-1. In addition, there was a smaller effect 
that could be measured over several trials likely due to small drifts of relative value within the course of a session. f. Chosen 
juice cells, residual predictive activity accounting for the previous 2 trials. The results obtained here (model 7) are almost 
identical to those obtained accounting for the previous 1 trial (panel (d), model 4). In each analysis, I removed data points for 
which the logistic regression did not converge. The analysis of offer value cells focused on the 500 ms after the offer. The 
analysis of chosen juice cells focused on the 500 ms before the offer. Histograms in b, c, d and f include neurons with 
positive and negative encoding (the sign of the x-axis was reversed for negative encoding cells).



Figure S6

Figure S6. Control analyses for chosen value cells (related to Figure 7). Same analysis and all conventions as in Fig.7a. 
a. Data from Exp.1 (88 traces from 87 cells). b. Data from Exp.2 (124 traces from 64 cells). c. Data from monkey L (144 
traces from 104 cells). d. Data from monkey V (68 traces from 47 cells).
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Figure S7

Figure S7. Overshooting of chosen value cells: contrasting variable chosen value X and total value (related to Figure 7). 
a. Comparing chosen value and chosen value X, example session. The choice pattern is the same as in Fig.1d. Blue 
and red symbols refer to variables chosen value and chosen value X, respectively. Away from the indifference point, the 
two variables are essentially identical. However, near the indifference point, the two variables differ. Specifically, 
chosen value X is higher than chosen value for trials in which the animal seemingly chooses the "lesser" option. 
b. Chosen value X (y-axis) versus chosen value (x-axis). Same data as in (a). c. Chosen value X (y-axis) versus total 
value (x-axis). d. Contrasting the explanatory power of chosen value X and total value. Each symbol represents one cells 
and one trial group (A•, B• and X•). The y-axis (x-axis) represents the R2 obtained from the linear regression of the 
neuronal firing rate onto the variable chosen value X (total value). It can be noted that most of the data points lie above 
the diagonal line, indicating that chosen value X generally provided a better fit for the data.
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Supplemental Experimental Procedures 

From neuronal responses to cell classes 

 Previous analyses showed that individual responses in the OFC encode individual variables. 
Indeed, adding a second variable or a quadratic term to the linear regression usually failed to 
significantly improve the linear fit (Padoa-Schioppa and Assad, 2006). To examine whether offer value 
and chosen value were different classes of responses or, alternatively, two poles of a continuum, I 
first focused on Exp.1. I considered all the responses encoding either offer value or chosen value. 
Notably, offer value was a collapsed variable and responses could in fact encode either offer value A 
or offer value B. For each response, I considered each of the R2 obtained from the linear regressions 
onto the encoded variable and the other, non-encoded variable (independently of whether the latter 
explained the response). I then computed the difference ∆R2 = R2

offer value – R2
chosen value. This was done 

in one of two ways. For offer value responses, R2
offer value was always the higher of the two R2 provided 

by offer value A and offer value B. For chosen value responses, R2
offer value was either the higher of the 

two R2 provided by offer value A and offer value B or, alternatively, one of the two R2 randomly 
selected. The results reported here refer to the latter procedure. The former procedure provided very 
similar results (a bimodal distribution for ∆R2; p<0.01, Hartigan's dip test), except that the distribution 
was displaced towards higher values of ∆R2 (as expected). Responses from Exp.2 (were offer value 
responses could encode offer value A, offer value B or offer value C) were treated similarly. 
Analogous procedures were used to compare variables chosen value and chosen juice and variables 
offer value and chosen juice. Data from the two experiments are pooled in Fig.1f-k.  

 Next, I sought to establish whether the incidence of classification conflicts actually found in the 
population was greater, comparable or lower than the incidence expected if conflicts occurred by 
chance. To estimate chance level, I used a bootstrap technique. For each time window, each cell was 
reassigned to a new variable with a random permutation of the variables recorded across the 
population in that time window. The permutation was done separately for each time window and the 
procedure was repeated for 1,000 times. This procedure thus provided, for each pair of time windows, 
two distributions for the number of classification conflicts and for the number of classification 
consistencies expected by chance. The procedure also provided a distribution for the total number of 
conflicts expected across the population. The results of this analysis are shown in Fig.S1. 

Activity profiles 

 Several analyses presented in the paper were conducted by dividing trials into two groups ‒ 
easy and split. In all cases, split refers to offer types in which the animal split its decisions between 
the two offers, conditioned on the fact that the animal chose either option at least twice; easy refers to 
offer types in which the animal consistently chose the same option. To calculate the activity profile 
(i.e., the spike density function), trials were aligned at the time of the offer and separately at the time 
of juice delivery. For each alignment and each trial, the spike train was smoothed using the method of 
So and Stuphorn (2010). Spike times, expressed in 1 ms resolution, were convolved with the kernel:  

  k (t) = (1 - exp (-t/g))* exp (-t/d)   for t ≥ 0  
  k (t) = 0      for t < 0 

This kernel mimics a post-synaptic potential and ensures that each spike only exerts its influence 
forward in time. Following previous work (Sayer et al., 1990; So and Stuphorn, 2010), I used g = 1 
ms and d = 20 ms. For each cell, I then averaged the spike trains across all relevant trials and 
obtained a smoothed activity profile. Finally, I coarse-grained the signal by averaging the activity in 
non-adjacent 5 ms bins. This binning was performed only for display purposes; all statistical analyses
were based on sp

 
ike counts. 
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 With the exception of Fig.2, all activity profiles are displayed after baseline subtraction. To 
calculate them, I subtracted from the activity of each cell the average activity in the 0.5 s preceding 
the offer. I then averaged the activity profiles across the relevant population.  

Analysis of activity profiles by quantile 

 For each offer value and chosen value cell, I divided trials into three tertiles depending on the 
value of the encoded variable (high, medium, low). I then averaged the activity of each tertile across 
the population. This was done separately for cells with positive and negative encoding (Fig.2a-d). 
Several aspects emerged from this analysis. First, the overall baseline activity ranged between 6 and 
10 Hz for the various populations. The overall modulation (activity difference between the first and last 
tertile) ranged from roughly 2 to 6 Hz. Second, neurons with negative encoding did not simply 
decrease their activity compared to baseline. Rather, they often showed an increased activity for 
lower values of the encoded variable (this was most clear for offer value cells). Third, different groups 
of cells (e.g., offer value cells with negative encoding) presented robust preparatory activity preceding 
the offer. 

 Before conducting a similar analysis for chosen juice cells, I examined the sign of the encoding 
for this neuronal population. Indeed, previous work described the sign of the encoding for offer value 
and chosen value cells (Padoa-Schioppa, 2009), but it did not establish whether negative encoding 
also exists for chosen juice cells. In fact, this issue cannot be addressed based on data from Exp.1, 
where only two juices A and B were included in each session, because one cannot disambiguate 
between higher firing rate for one juice (positive encoding) and lower firing rate for the other juice 
(negative encoding). However, the sign of the encoding can be examined in data from Exp.2, where 
three juices (A, B and C) were included in each session. In this case, a neuron encoding, for example, 
chosen juice A with a positive sign would have high activity when the animal chooses juice A and low 
activity when the animal chooses either juice B or juice C. In contrast, a neuron encoding chosen juice 
B with a negative sign would have high activity when the animal chooses either juice A or juice C and 
low activity when the animal chooses juice B. In total, 146 chosen juice cells were recorded in Exp.2. 
Across this population, the sign of the encoding was positive for 96 (66%) cells and negative for 50 
(34%) cells. 

 Based on this classification, I analyzed the average neuronal signal for chosen juice cells with 
positive and negative encoding. I divided trials depending on whether the animal chose the juice 
encoded by the cell (E) or the other juice (O; Fig.2e). For both groups of cells, the overall baseline 
activity and overall modulation during the delay were roughly equal to 10 Hz and 2 Hz, respectively. 
Both groups of cells presented preparatory activity preceding the offer. After the offer, chosen juice 
cells did not simply decrease their activity when the animal chose the other juice. Interestingly, the 
activity of this population clearly discriminated between the two juices starting <200 ms after the offer.  

Control analyses for offer value cells 

 A general concern is whether the negative results of Fig.5ab were veridical or due to spurious 
factors in the analysis. I considered several possible factors.  

 First, the ROC analysis in Fig.5ab focused on the time window 150-400 ms after the offer. This 
window was chosen based on inspection of Fig.2e and for consistency with the analysis of chosen 
value cells (Fig.7). At the same time, it is reasonable to question whether it would be more appropriate 
to run the ROC analysis on a later time window. However, the analysis repeated on the time window 
300-500 ms after the offer yielded very similar results for both positive encoding cells (mean AUC = 
0.509; p = 0.28; t-test) and negative encoding cells (mean AUC = 0.480; p = 0.19; t-test).  
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 Second, the analysis in Fig.5ab pooled all offer value cells, including those that were not tuned 
in the time period immediately following the offer (these cells became tuned later in the trial). One 
concern might be that these cells effectively added noise and thus obfuscated the signal of interest 
here. Thus I repeated this analysis including in the pool only offer value cells that were significantly 
tuned in the 150-400 ms following the offer (see Experimental Procedures). The results (Fig.S2ab) 
confirmed those illustrated in Fig.5ab for both positive encoding cells (mean AUC = 0.502; p = 0.83; t-
test) and negative encoding cells (mean AUC = 0.474; p = 0.18; t-test). 

 Third, the analysis in Fig.5ab averaged traces across offer types and then across cells. For 
positive (negative) encoding cells, this procedure could overweight high-value (low-value) offer types 
within each neuron, or could over-emphasize cells with higher firing rates, effectively reducing the 
statistical power of the analysis. I controlled for this issue as follows. In any time window, the encoding 
of value in OFC is linear and range adapting (Padoa-Schioppa, 2009). In formulas, φ = φ0 + ∆φ * V / 
∆V, where φ is the firing rate, φ0 is the baseline activity, ∆φ is the activity range, V is the encoded 
value and ∆V is the value range. (Note that for offer value cells in the experiment the minimum value 
V0 was always zero, so that ∆V = Vmax.) Here I am interested in small fluctuations on φ related to an 
endogenous factor (i.e., whether the encoded juice was eventually chosen). It is reasonable to 
assume that, if they exist, such fluctuations are proportional to the firing rate. Thus the formula can be 
re-written as follows φ * (1 + ε) = φ0 + ∆φ * V / ∆V, where ε is the fluctuation. This makes it clear that ε 
depends on both V / ∆V and ∆φ . In essence, the analysis of Fig.5ab aims at studying ε by averaging 
neuronal traces across offer types (i.e., across values) and across cells. However, by simply 
averaging the firing rates, the analysis overweighs offers with large values (because ε increases with 
V / ∆V) and cells with large activity range (because ε increases with ∆φ). Thus to increase the 
resolution of the analysis one would like to rescale the firing rate (and ε). I did so in two steps. First, I 
rescaled φ → φ' = (φ - φ0) * ∆V / V (value range rescaling). Second, I rescaled φ' → φ'' = φ' / ∆φ 
(activity range rescaling). In these transformations, I used for φ0 the average activity in the 500 ms 
before the offer and for ∆φ the activity range in the 500 ms after the offer (post-offer time window). 
None of these variants of the analysis affected the results for the mean AUC (all p > 0.3; t-test).  

 Fourth, because of choice hysteresis, the signal of interest here might be examined with 
higher resolution by separating trials depending on the outcome of the previous trial. I thus conducted 
a variant of the analysis as follows. For each offer value cell, I separated trials into three groups 
depending on the outcome of the previous trial (trials E•, O• and X•). For each group of trials, I 
identified offer types for which offers were split, and I calculated the two neuronal traces and the AUC 
as in Fig.5ab. The results are shown in Fig.S2cd. For positive encoding neurons, the results 
confirmed those of Fig.5a (mean AUC = 0.494; p = 0.25, t-test). For negative encoding cells, the 
population AUC was significantly below 0.5 (mean AUC = 0.472; p < 0.02, t-test). Note that this 
departure is in the direction predicted by the hypothesis that fluctuations of offer value cells drive 
near-indifference decisions. However, when I examined data from individual animals, the effect was 
significant only for one monkey (L, mean AUC = 0.44; p < 0.005, t-test) and not for the other (V, mean 
AUC = 0.494; p = 0.64, t-test). In conclusion, the evidence that choices are driven by fluctuations of 
offer value cells was at best tentative. 

 In another analysis, I specifically examined trials in which the animal chose one drop of the 
preferred juice (1A). I focused on neurons encoding offer value A (the preferred juice) and I divided 
trials depending on the quantity of juice B offered in alternative to 1A. The rationale for this analysis 
was as follows. In principle, one can hypothesize that choice variability reflects stochastic fluctuations 
in the subjective value of any particular juice. In particular, the subjective value of 1A, represented by 
the activity of offer value A cells, might randomly fluctuate from trial to trial. All other things equal, one 
would expect that positive fluctuations in the activity of offer value A cells would facilitate choices of 
juice A. By the same token, one would expect that the activity of offer value A cells, conditional on the 
animal choosing 1A, would be enhanced (by chance) when the alternative offer is more desirable. 
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This argument would predict that the activity of positive encoding offer value A cells would be higher 
when 1A is chosen against large amounts of juice B compared to when 1A is chosen against small 
amounts of juice B. To test the prediction, I divided trials in easy (offer types for which the animal 
always chose the same option) and split (offer types for which the animal split its decisions between 
two options). Contrary to the prediction, the activity recorded for the two groups of trials was 
indistinguishable throughout the 1 s following the offer (Fig.S2e). Similar results were found for 
negative encoding cells (Fig.S2f). 

Time course of choice hysteresis and its relation to predictive activity 

 As noted in Fig.4c, choice hysteresis largely dissipated after one trial. To quantify its time 
course more precisely, I constructed a logistic model taking into consideration the five trials preceding 
the current one, as follows: 

 choice B = 1 / (1 + e-X) 

 X = a0 + a1 log (#B / #A) + Σk=1:5 bk (δn-k, B - δn-k, A)     (6) 

Variable δn-k, J = 1 if the animal chose and received juice J in trial (n-k), and 0 otherwise. Across the 
population, I found the following values: median (bn-1/a1) = 0.128, p<10-10; median (bn-2/a1) = 0.037, 
p<10-10; median (bn-3/a1) = 0.029, p<10-10; median (bn-4/a1) = 0.013, p<10-5; median (bn-5/a1) = 0.013,
p<10

 

 

g 
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-4 (all Wilcoxon sign test; Fig.S5e). These results confirm that choice hysteresis was 
predominantly related to the previous trial. At the same time, there was also an effect that persisted 
for several trials and reached a plateau level of ~0.013. This plateau might be due to the fact that the 
animals' preferences often drifted toward the preferred juice during the course of the session, 
probably due to reduced thirst. 

 In light of this result, one concern might be whether the residual predictive activity of chosen 
juice cells observed in Fig.S5d is in fact related to the persistence of choice hysteresis past the 
previous trial. To examine this issue, I repeated the analysis of firing rates residuals taking into 
consideration the preceding two trials. Specifically, I constructed the following logistic model: 

 choice E = 1 / (1 + e-X) 

 X = a0 + a1 log (#E / #O) + a2 (δn-1, E - δn-1, O) + a3 (δn-2, E - δn-2, O) + a4 φresidual 2 (7) 

For each chosen juice cell, φresidual 2 is the residual firing rate remaining after the bilinear regression of 
the raw firing rate φ onto variables (δn-1, E - δn-1, O) and (δn-2, E - δn-2, O). The null hypothesis 
corresponds to a4/a1 = 0. Across the population, the median of the distribution was m = 0.002 (p<0.02,
all Wilcoxon signed-rank test; Fig.S5f). Notably, this measure is almost identical to that obtained for 
a3/a1 in model 4, which considered only the previous trial (n-1). This observation suggests that the 
residual predictive activity of chosen juice cells is not due to the persistent plateau effect or to driftin
preferences. In other words, baseline fluctuations in the activity of chosen juice cells appear to expla
a portion of choice variability above and beyond that explained by behavioral analy

Overshooting of chosen value cells: control for variable total value 

 Consider offers [aA:bB], where a and b are quantities of juices A and B, respectively. The 
experimental design and all the analyses were based on two assumptions. First, it was assumed that 
the choice pattern (i.e., the percent of trials in which the animal chose juice B) depended only on the 
quantity ratio b/a. Second, it was assumed that value functions were linear. In other words, indicating 
with V(qX) the value assigned to a quantity q of juice X, it was assumed that V(qX) = qV(X). If this is 



the case, choice patterns can be described in one dimension as a function of the quantity ratio b/a. 
Then the relative value (ρ) is defined as the quantity ratio that makes the animal indifferent between 
the two juices: V(A) = ρ V(B). 

 The activity overshooting of chosen value cells can essentially be described as follows. 
Restricting the analysis to trials in which the animal chose 1A over qB (1A►qB), the activity of chosen 
value cells recorded in the time window 150-400 ms after the offer increased as a function of q. As 
discussed in the main text, the overshooting can be explained qualitatively if one assumes that the 
relative value of the two juices fluctuated from trial to trial. In the following, I refer to this hypothesis as 
chosen value cells encoding the variable chosen value X, which is the same as the variable chosen 
value corrected for fluctuations of ρ (see below). However, an alternative explanation is that chosen 
value cells actually encode the variable total value (defined as the sum of the two offer values, which 
increases as a function of q). These two hypotheses were contrasted as follows.  

 To compute the variable chosen value X, it is necessary to specify the probability distribution 
for the relative value ρ. In the following analyses, I assumed that, once controlled for choice hysteresis, 
choice variability was entirely due to fluctuations of ρ. If this is true, then the probability distribution for 
ρ can be derived from the choice pattern. Choice patterns in the experiments were well fitted with a 
normal sigmoid (probit function) in log space (typical R2>0.95). If choice variability is entirely due to 
fluctuations of ρ, the underlying normal distribution can be viewed as a probability distribution for the 
variable x = log ρ. Thus the probability distribution for ρ is N(x(ρ), μ, σ) dx/dρ = N(log ρ, μ, σ) 1/ρ. On 
this basis, one can compute the variable chosen value X in each trial, as follows.  

 First consider one trial in which the animal chose 1A over qB. As noted in the main text, if 
values are expressed in units of juice B, Eq.5 implies chosen value X = ρ ≥ q. Now consider many 
trials in which the animal chose 1A over qB. On average, the variable chosen value X1A►qB = < ρ >ρ≥q 
is equal to:  
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More generally, when the animal chose a drops of juice A over b drops of juice B (aA►bB), chosen 
value XaA►bB = a chosen value X1A►b/aB. This can be calculated substituting b/a for q in Eq.8. 

 Now consider trials in which the animal chose qB over 1A. To proceed formally as when the 
animal chose juice A, I define ξ such that B = ξ A and x = log ξ. In this case, the probability distribution 
for x is N(x, -μ, σ) and the probability distribution for ξ is N(log ξ, -μ, σ) 1/ξ. Thus the variable chosen 
value X1B►1/q A = < ξ >ξ ≥ 1/q is equal to: 
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Importantly, Eq.9 expresses the chosen value X in units of juice A. To express all chosen values in 
units of juice B, I multiply for the average conversion factor <ρ>. In conclusion, one obtains for each 
trial type a measure of the variable chosen value X.  

 The results of this calculation are illustrated for one representative session in Fig.S7a. Away 
from the indifference point, chosen value X is nearly identical to chosen value. However, close to the 
indifference point, chosen value X is generally higher than chosen value. Fig.S7bc also illustrate the 
fact that although variables chosen value, chosen value X, and total value are highly correlated, they 
are distinguishable. In particular, it can be noted that total value and chosen value X are most 
correlated near the indifference point, but appreciably different away from the indifference point.  

 To contrast the explanatory power of variables chosen value X and total value, I specifically 
examined the 150-400 ms after the offer and I restricted the analysis to neurons from Exp.1 that were 
significantly tuned in this time window (positive encoding). For an accurate measure of chosen value 
X, I removed the variability due to choice hysteresis by dividing trials into three groups depending on 
the outcome of the previous trial. The three groups of trials A•, B• and X• were analyzed separately, 
with all the trials included in the analysis. For each cell, for each group of trials and for each trial type, 
I computed the variables chosen value X and total value and I averaged the activity across trials. 
Then I performed a linear regression of the neuronal firing rate onto each variable, from which I 
obtained the two R2. (Note that these procedures are essentially the same as used in previous studies 
(Padoa-Schioppa and Assad, 2006).) As illustrated in Fig.S7d, the R2 obtained for chosen value X 
was generally higher than that obtained for total value (p<0.01, Kruskal-Wallis test). This result 
indicates that the explanatory power of chosen value X, corresponding to the hypothesis that the 
overshooting of chosen value cells is due to fluctuations of relative value ρ, is significantly higher than 
that of total value.  

The overshooting of chosen value cells is independent of choice hysteresis 

 This study describes two neuronal phenomena seemingly related to choice variability: 
predictive activity of chosen juice cells and activity overshooting of chosen value cells. One important 
question is whether these phenomena are different manifestations of the same underlying source of 
variability or, alternatively, whether activity overshooting and predictive activity are mutually 
independent. To examine this issue, I took advantage of the fact that predictive activity was largely 
accounted for by the outcome of the previous trial (choice hysteresis). To assess whether the choice 
variability related to the activity overshooting added to, or was redundant with, that related to the 
choice hysteresis, I repeated the analyses of chosen value cells described in Fig.7a while controlling 
for the outcome of the previous trial. The analysis included only trials in which the animal chose one 
drop of the preferred juice (1A) against various amounts of the other juice (qB). These trials were 
divided into three groups depending on the outcome of the previous trial (trials A•, B• and X•). Each 
group of trials was further divided depending on the whether the offer type was easy or split (see 
Experimental Procedures). As illustrated in Fig.8a-c, the activity of chosen value cells presented the 
overshooting even when the previous trial's outcome was controlled for. 

 For each chosen value cell and for each group of trials (A•, B• and X•), I also performed the 
ROC analysis and computed the AUC. The results obtained pooling trials (insert in Fig.7a) held true 
separately for each group of trials (all p<0.05, t-test; inserts in Fig.8a-c). I also noted that the mean 
AUC obtained for each group of trials was quantitatively similar to that obtained pooling all trials 
(pooling trials, mean AUC = 0.526; for A•, B• and X• trials, mean AUC = 0.531, 0.526 and 0.530, 
respectively). These measures suggest that the activity overshooting is independent of the outcome of 
the previous trial.  
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 To further test the relation between activity overshooting and choice hysteresis, I compared for 
each chosen value cell the AUC obtained for A• trials and that obtained for B• trials (Fig.8d). Two 
important results emerged from this analysis. First, although each measure was rather noisy, the two 
measures were significantly correlated across the population (correlation coefficient = 0.22, p<0.01). 
This correlation is important because it indicates that the AUC is a reproducible measure for any given 
chosen value cell (Britten et al., 1996). Second, the difference between the two AUC obtained for the 
two groups of trials, examined at the population level, was statistically indistinguishable from zero (p = 
0.48, t-test; insert in Fig.8d). This result stands as strong evidence that activity overshooting was 
independent of choice hysteresis. Indeed, if even a portion of the activity overshooting had been 
redundant with choice hysteresis, the AUC measured in A• trials would be overall smaller than that 
measured in B• trials ‒ contrary to the observation. I repeated this analysis comparing A• trials and X• 
trials (Fig.8e) and, separately, B• trials and X• trials (Fig.8f). The results reinforced the conclusions 
already drawn. First, in both cases there was a significant correlation between the AUC measured for 
any given cell in different groups of trials (both p<0.003). Second, in both cases the difference 
between the two measures of AUC obtained for the two groups of trials was statistically 
indistinguishable from zero (inserts in Fig.8ef). In conclusion, the activity overshooting of chosen value 
cells is independent of choice hysteresis. 
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