Supplementary Figure S10-S13 and the Relative Legends

Supplementary Figure S10. Re-introduction of the miR-29 members into BM CD34+ cells derived from an AML M5 patient can partially overcome monocytic differentiation arrest. BM CD34+ cells from an AML patient (#11) who was diagnosed as FAB M5 were infected with lenti_29a, lenti_29b, lenti_29c and lenti_con respectively, and induced to monocytic differentiation after infection for 24 h. Cells were obtained at the indicated times and the GFP-positive cells were collected for analysis. (a) Expression level of CD14 was analyzed by FACS. (b) May-Grünwald-Giemsa staining for detecting the cells at different stages of monocytic differentiation. (c) Statistic analysis of cell numbers at different differentiation stages at day 5 from the differentiation induction was shown. Mob: monoblasts; PMo: promonocytes; Mo: monocytes; Ma: macrophage.

Supplementary Figure S11. Histological analysis in mouse spleens by H&E. Spleen sections obtained from the mice with different treatments were analyzed for the degree of engraftment by H&E staining. Untreated mice, n=2; mice treated with lenti_con (n=5), lenti_29a (n=5), lenti_29b (n=5) and lenti_29c (n=5). Scare bar: 50 µm.

Supplementary Figure S12. Immnohistochemical analysis of the expression level of Ki67 in mice spleens. Spleen sections obtained from the mice with different treatments were analyzed for cell proliferation by Ki67 staining. Untreated mice, n=2; mice treated with lenti_con (n=5), lenti_29a (n=5), lenti_29b (n=5) and lenti_29c (n=5). Scare bar: 20 μ m.

Supplementary Figure S13. Immnohistochemical analysis of the expression level of caspase-3 in mice spleens. Spleen sections obtained from the mice with different treatment were analyzed for cell apoptosis by detection of the level of caspase-3. Untreated mice, n=2; mice treated with lenti_con (n=5), lenti_29a (n=5), lenti_29b (n=5) and lenti_29c (n=5). Scare bar: 20 μ m.