General

¹H NMR and ¹³C NMR spectra were taken on a Bruker Avance 300 spectrometer at 300 MHz and 75 MHz respectively, a Bruker Avance 400 spectrometer at 400 MHz and 100 MHz, or a Bruker Avance 500 spectrometer at 500 MHz and 125 MHz, as specified. The chemical shifts are reported in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: CDCl₃ = 7.27 ppm, CD₂Cl₂ = 5.31 ppm, C₆D₆ = 7.16 ppm, for ¹³C NMR: CDCl₃ = 77.23, CDCl₃ = 53.52, C₆D₆ = 128.37. Data are reported as follows: m = multiplet, s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets; dt = doublet of triplets; br = broad. High resolution and low resolution mass spectra were collected on a VG 7070 spectrometer. Infrared (IR) spectra were taken on a Mattson Cygnus 100 spectrometer. Samples for IR were prepared as thin films on a NaCl plates by dissolving the corresponding compounds in CH₂Cl₂ followed by evaporation of the CH₂Cl₂. Methylene chloride was distilled under N₂ from CaH₂. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash chromatography was done using ICN SiliTech 32-63 60 Å silica gel. Reagent grade ethyl acetate, diethyl ether, pentane and hexanes (commercial mixture) were purchased from EM Science and used as is for chromatography. All reactions were performed in oven or flame-dried glassware under a positive pressure of N₂ with magnetic stirring unless otherwise noted.

General procedure for rearrangement cyclization catalyzed by Re₂O₇

To a solution (~10 mM) of corresponding substrate in CH_2Cl_2 was added 0.05 equivalent of Re_2O_7 , the reaction mixture was stirred at RT (unless otherwise mentioned in the substrate tables) and monitored by TLC until complete consumption of the starting chemicals, then the reaction was quenched with a few drops of pyridine or triethylamine and the solvent was removed under vacuum, follwed by purification by flash chromatography or preparation TLC to give the product.

 $\begin{array}{l} \textbf{Reagents and conditions} \\ \textbf{a) DIBAL-H, hexanes, -78 °C, then I_2, THF, 51%. b) BnMgCl, (dppf)_2PdCl_2, THF, 95%. \\ \textbf{c) PCC, Celite, CH_2Cl_2. d) (EtO)_2P(O)CH_2CO_2Et, NaH, THF, 0 °C, 77% (two steps). \\ \textbf{e) D-Fructose-derived Shi ketone, Oxone, Na_2B_4O_7, Na_2(EDTA), K_2CO_3, Bu_4NHSO_4, \\ \textbf{CH}_3CN, H_2O, 0 °C, 39\%. f) DIBAL-H, CH_2Cl_2, -78 °C, 91\%. \end{array}$

Scheme 1. Synthesis of 1.

ОΗ

(*E*)-6-((2*R*,3*R*)-3-Benzyloxiran-2-yl)hex-2-en-1-ol (1)

¹H NMR (400 MHz, CDCl₃) δ 7.31-7.38 (m, 2H), 7.23-7.30 (m, 3H), 5.57-5.72 (m, 2H), 4.08 (d, J = 5.2, 2H), 2.90-2.98 (m, 2H), 2.77-2.86 (m, 2H), 2.03-2.13 (m, 2H), 1.83 (br, 1H), 1.45-1.65 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) 137.4, 132.3, 129.6,

128.9, 128.6, 126.6, 63.5, 58.8, 58.6, 38.5, 31.8, 31.3; IR (neat) 3407, 3027, 2973, 2929, 2857, 1669, 1604, 1494, 1370, 1088, 1001, 971, 932, 743 cm⁻¹; HRMS (ESI) calcd for $C_{15}H_{20}O_2Na [M + Na]^+ 255.1361$, found 255.1387.

(*R*)-2-Phenyl-1-((2*S*,6*R*)-6-vinyltetrahydro-2H-pyran-2-yl)ethanol (2) and (*R*)-2-Phenyl-1-((2*S*,6*S*)-6-vinyltetrahydro-2H-pyran-2-yl)ethanol (3)

The general rearrangement procedure was followed with 1 (28 mg, 0.12 mmol), Re_2O_7 (3 mg, 0.006 mmol), and CH_2Cl_2 (12 mL). The reaction was stirred at rt for 4 h, then was quenched with five drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (10%-20% ethyl acetate in hexanes) to give the product (25 mg, 89%, dr = 1.3:1). The mixture was further purified for analysis. Major

product (**2**): ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.35 (m, 2H), 7.21-7.28 (m, 3H), 5.89 (ddd, J = 5.2, 10.8, 17.2, 1H), 5.26 (dt, J = 1.6, 17.2, 1H), 5.12 (dt, J = 1.6, 10.8, 1H), 3.94 (h, J = 4.0, 1H), 3.88 (ddddd, J = 1.2, 1.6, 2.8, 5.2, 10.8, 1H), 3.35 (ddd, J = 2.0, 4.4, 10.8, 1H), 2.89 (dd, J = 4.8, 13.6, 1H), 2.80 (dd, J = 8.4, 13.2, 1H), 2.04 (d, J = 4.0, 1H), 1.92-1.99 (m, 1H), 1.62-1.77 (m, 2H), 1.41-1.62 (m, 2H), 1.28-1.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 139.4, 138.5, 129.4, 128.5, 126.3, 114.4, 79.5, 78.4, 74.7, 38.7, 31.6, 25.1, 23.0; IR (neat) 3446, 3027, 2934, 2855, 1646, 1603, 1495, 1453, 1306, 1201, 1077, 1046, 915, 748; HRMS (ESI) calcd for C₁₅H₂₀O₂Na [M + Na]⁺ 255.1361, found 255.1378. Minor product (**3**): ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.34 (m, 2H), 7.21-7.28 (m, 3H), 5.92-6.02 (m, 1H), 5.25-5.27 (m, 1H), 5.21-5.24 (m, 1H), 4.45-4.51 (m, 1H), 3.89 (h, J = 4.4, 1H), 3.63 (ddd, J = 2.0, 5.2, 9.2, 1H), 2.93 (dd, J = 4.0, 14.0, 1H), 2.69 (dd, J = 8.8, 14.0, 1H), 1.91 (d, J = 3.6, 1H), 1.77-1.88 (m, 1H), 1.63-1.75 (m, 4H), 1.52-1.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 138.6, 138.1, 129.4, 128.5, 126.4, 116.4, 74.1, 73.3, 73.0, 39.0, 28.6, 25.5, 18.3; IR (neat) 3439, 3027, 2930, 2858, 1669, 1603, 1494, 1453, 1407, 1338, 1203, 1121, 1048, 1039, 921, 891, 748 cm⁻¹; HRMS (ESI) calcd for C₁₅H₂₀O₂Na [M + Na]⁺ 255.1361, found 255.1376.

Reagents and conditions a) PCC, Celite, CH₂Cl₂. b) (EtO)₂P(O)CH₂COMe, NaH, THF, 0 °C, 66% (two steps). c) D-Fructose -derived Shi ketone, Oxone, Na₂B₄O₇, Na₂(EDTA), K₂CO₃, Bu₄NHSO₄,CH₃CN, H₂O, 0 °C, 58%. d) DIBAL-H, CH₂Cl₂, -78 °C, 91%.

Scheme 2. Synthesis of 4.

(E)-7-((2R, 3R)-3-Benzylloxiran-2-yl)hept-3-en-2-ol (4)

¹H NMR (300 MHz, CDCl₃) δ 7.30-7.38 (m, 2H), 7.23-7.30 (m, 3H), 5.46-5.66 (m, 2H), 4.26 (p, J = 6.3, 1H), 2.90-2.98 (m, 2H), 2.77-2.85 (m, 2H), 2.05 (q, J = 6.6,

2H), 1.78 (br, 1H), 1.46-1.62 (m, 4H), 1.26 (d, J = 6.3, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.4, 134.8, 130.0, 128.9, 128.5, 126.6, 68.7, 58.8, 58.6, 38.5, 31.7, 31.3, 25.5, 23.5; IR (neat) 3412, 3027, 2971, 2925, 2857, 1604, 1494, 1453, 1367,1145, 1063, 969, 798, 743 cm⁻¹; HRMS (ESI) calcd for C₁₆H₂₂O₂Na [M + Na]⁺ 269.1517, found 269.1529.

(2*R*,3*S*,7*R*)-2-Benzyl-7-((*E*)-prop-1-en-1-yl)oxepan-3-ol (5) and (2*R*,3*S*,7*S*)-2-Benzyl-7-((*E*)-prop-1-en-1-yl)oxepan-3-ol (6)

The general rearrangement procedure was followed with 4 (25 mg, 0.10 mmol), Re_2O_7 (2 mg, 0.005 mmol), and CH_2Cl_2 (10 mL). The reaction was stirred at rt for 45 min, then was quenched with five drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (20%-30% ethyl acetate in hexanes) to give the

product (22 mg, 89%, dr = 1:1.2). The isomers were further purified for characterization. Minor product (**5**): ¹H NMR (400 MHz, C6D₆) δ 7.35-7.37 (m, 2H), 7.18-7.22 (m, 2H), 7.08-7.12 (m, 1H), 5.39-5.51 (m, 2H), 3.62-3.67 (m, 1H), 3.42-3.45 (m, 1H), 3.38 (dt, *J* = 3.2, 8.4, 1H), 3.04 (dd, *J* = 3.0, 13.8, 1H), 2.78 (dd, *J* = 8.6, 13.8, 1H), 1.70-1.79 (m, 1H), 1.49-1.58 (m, 2H), 1.53 (d, *J* = 5.2, 3H), 1.35-1.48 (m, 3H). 0.78 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) 139.5, 132.3, 129.5, 128.1, 126.0, 125.8, 86.2, 82.4, 75.3, 40.7, 36.2, 35.8, 19.4, 17.8; IR (neat) 3415, 3027, 2926, 2857, 1672, 1604, 1495, 1452, 1133, 1101, 1037, 999, 966, 750 cm⁻¹; HRMS (EI) calcd for C₁₆H₂₂O₂ [M]⁺ 246.1620, found 246.1629. Major product (**6**): ¹H NMR (400 MHz, C₆D₆) δ 7.29-7.33 (m, 2H), 7.17-7.22 (m, 2H), 7.07-7.12 (m, 1H), 5.24 (ddq, *J* = 1.2, 6.4, 15.6, 1H), 4.91 (ddq, *J*= 1.6, 5.6, 15.6, 1H), 3.92 (p, *J* = 5.2, 1H), 3.46 (dt, *J* = 2.8, 9.2, 1H), 3.12 (dt, *J* = 4.4, 9.2, 1H), 3.17 (dd, *J* = 2.8, 13.6, 1H), 2.64 (dd, *J* = 9.2, 13.6, 1H), 1.79-1.87 (m, 1H), 1.48-1.56 (m, 1H), 1.35-1.47 (m, 2H), 1.39 (d, *J* = 6.4, 3H), 1.18-1.35 (m, 3H), 0.90 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) 139.4, 132.3, 130.0, 128.0, 125.9, 125.7, 78.3, 75.6, 75.3, 39.4, 38.4, 33.9, 21.5, 17.8; IR (neat) 3307, 3034, 2926, 2855, 1605,

1495, 1451, 1354, 1123, 1091, 1036, 970, 744 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{22}O_2Na [M + Na]^+$ 269.1517, found 269.1509.

(R)-2-Phenyl-1-((2S,6R)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)ethanol (7) and (R)-2-phenyl-1-((2S,6S)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)ethanol (8)

The general rearrangement procedure was followed with 4 (30 mg, 0.12 mmol), Re_2O_7 (3 mg, 0.006 mmol), and CH_2Cl_2 (12 mL). The reaction was stirred at rt for 36 h (5% more catalyst added at 12 hr and 24 hr respectively), then was quenched with five drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash

chromatography (10%-20% ethyl acetate in hexanes) to give the product (27 mg, 93%, dr = 1:1.1). These isomers were further purified for characterization. Minor product (7): ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.37 (m, 2H), 7.23-7.30 (m, 3H), 5.72 (ddt, J = 0.8, 6.4, 15.6, 1H), 5.55 (ddt, J = 1.6, 6.0, 15.6, 1H), 3.96 (h, J = 4.0, 1H), 3.84 (dd, J = 6.2, 10.2, 1H), 3.34 (ddd, J = 1.8, 4.2, 10.6, 1H), 2.88 (dd, J = 5.0, 13.8, 1H), 2.81 (dd, J = 8.2, 13.8), 2.01-2.04 (m, 1H), 1.92-1.98 (m, 1H), 1.73 (d, J = 6.4, 3H), 1.72 (br, 1H), 1.58-1.67 (m, 1H), 1.41-1.58 (m, 2H), 1.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 138.5, 132.4, 129.4, 128.5, 126.5, 126.3, 79.4, 78.5, 74.6, 38.7, 31.9, 24.9, 23.0, 17.9; IR (neat) 3360, 3029, 2960, 2928, 2912, 2839, 1677, 1495, 1453, 1379, 1293, 1196, 1078, 1037, 748 cm⁻¹; HRMS (ESI) calcd for C₁₆H₂₂O₂Na [M + Na]⁺ 269.1517, found 269.1535. Major product (**8**): ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.38 (m, 2H), 7.23-7.31 (m, 3H), 5.64-5.75 (m, 2H), 4.40-4.46 (m, 1H), 1.92 (br, 1H), 1.78-1.86 (m, 1H), 1.76 (d, J = 4.8, 3H), 1.68-1.74 (m, 3H), 1.56-1.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 138.7, 130.6, 129.5, 128.5, 127.9, 126.4, 73.9, 73.2, 72.8, 39.0, 29.2, 25.5, 18.4, 18.0; IR (neat) 3434, 3026, 2934, 2859, 1668, 1603, 1494, 1452, 1202, 1077, 1035, 966, 890, 748 cm⁻¹; HRMS (ESI) calcd for C₁₆H₂₂O₂Na [M + Na]⁺ 269.1517, found 269.1406.

The absolute configurations of the secondary alcohols in structures **5-8** were determined by Mosher ester analysis. Typically, 5-6 mg of each alcohol was divided into two parts, these two parts were treated with R and S Mosher acid (5 equiv), DCC (5.5 equiv), and DMAP (5.5 equiv) in 1 mL CH₂Cl₂. The reactions were stirred at rt and were monitored by TLC. When the starting alcohol was completely consumed, the reaction mixtures were filtered through a short column of silica gel to remove the insoluble salts. After the removal of the solvents under reduced pressure, ¹H NMR and ¹⁹F NMR were taken to determine the confituration and enantiopurity of the conrresponding alcohols.

		HO H2 H3				HO H ₂ , H ₃	
2		3		5		8	
	<i>R</i> -Mosher ester		<i>S</i> -]	Mosher es	ter		
Structure	δ H1	δ H2	δН3	δ H1	δ H2	δ H3	Solvent
2	5.79	2.88	2.88	5.75	2.91	3.01	CDCl ₃
3	5.83	2.81	2.97	5.81	2.96	3.16	CDCl ₃
5	3.51			3.65			C_6D_6
8	3.83	2.88	3.04	3.78	2.94	3.14	CDCl ₃

Structures **5** and **7**, **6** and **8** were difficult to differentiate by ¹H NMR, ¹³C NMR, COSY and NOESY experiments, but could be differentiated oxidizing to the corresponding ketones. The ketone products were obained by submitting the corresponding alcohols to the PCC oxidation conditions: typically, 2-7 mg of alcohol was treated with 5-10 eq PCC and Celite in CH_2Cl_2 until complete consumption of the alcohol, then

thre reaction mixture was filtered through a short column of silica gel to give the pure ketones. (yield: 92%-97%) The sturctures 6 and 7 were also confirmed by X-ray crystallography.

(2R,7S)-2-Benzyl-7-((E)-prop-1-en-1-yl)oxepan-3-one

¹H NMR (400 MHz, C₆D₆) δ 7.19-7.23 (m, 2H), 7.12-7.15 (m, 2H), 7.04-7.09 (m, 1H), 5.11-5.27 (m, 2H), 4.08 (dd, J = 3.6, 8.8, 1H), 3.91 (m, 1H), 3.23 (dd, J = 3.6, 14.4, 1H), 2.79 (dd, J = 8.8, 14.4, 1H), 2.46-2.54 (m, 1H), 2.27-2.36 (m, 1H), 1.41 (d, J = 5.6, 3H), 1.32-1.37 (m, 3H), 1.22-1.32 (m, 1H); ¹³C NMR (100 MHz, C₆D₆) 212.9, 138.5, 130.9, 129.8, 127.6, 126.5, 126.1, 81.3, 76.4, 40.2, 37.0, 33.1, 21.3, 17.4; IR (neat) 3061, 3028, 2933, 2863, 1711, 1604, 1459, 1452, 1324, 1180, 1093, 968, 785 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{20}O_2Na [M + Na]^+ 267.1361$, found 267.1379.

(2R,7R)-2-benzyl-7-((E)-prop-1-en-1-yl)oxepan-3-one

¹H NMR (400 MHz, CDCl₃) δ 7.20-7.32 (m, 5H), 5.40-5.56 (m, 2H), 4.03 (dd, J = 4.0, 8.4, 1H), 3.66 (d, J = 9.4, 1H), 3.06 (dd, J = 3.6, 14.0, 1H), 2.89 (dd, J = 9.0, 14.0, 1H), 2.69 (dt, J = 2.4, 12.4, 1H), 2.32 (dd, J = 6.4, 12.0, 1H), 1.90-1.99 (m, 1H), 1.80-1.88 (m, 1H), 1.64 (d, J = 1.46.0, 3H), 1.58-1.69 (m, 1H), 1.41-1.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 216.3, 137.6, 131.8, 129.6, 128.1, 126.4, 125.7, 87.1, 83.2, 41.6, 39.2, 36.2, 23.3, 17.4; IR (neat) 3061, 3029, 2931, 2859, 1711, 1603, 1495, 1452, 1434, 1319, 1173, 1107, 966, 735 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{20}O_2Na [M + Na]^+$ 267.1361, found 267.1350.

2-Phenyl-1-((2S,6R)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)ethanone

¹H NMR (400 MHz, C₆D₆) δ 7.22-7.28 (m, 2H), 7.12-7.17 (m, 2H), 7.03-7.09 (m, 1H), 5.65 (ddq, J = 0.8, 6.4, 15.2, 1H), 5.53 (ddq, J = 1.6, 5.6, 15.2, 1H), 3.92 (d, J = 15.2, 1H), 3.84 (d, J = 15.2, 1H), (3.61 (dd, J = 2.4, 11.2, 1H), 3.51 (ddt, J = 1.2, 5.6, 10.2, 1H), 1.70-1.76 (m, 1H), 1.60 (dt, J = 1.2, 6.4, 3H), 1.43-1.49 (m, 1H), 1.25-1.30 (m, 1H), 1.02-1.21 (m, 3H); ¹³C NMR (100 MHz, C₆D₆) 206.7, 134.7, 132.5, 130.0, 128.3, 126.5, 125.5, 82.0, 78.0, 44.7, 31.4, 27.5,

22.9, 17.6; IR (neat) 3061, 3029, 2936, 2855, 1722, 1601, 1495, 1452, 1299, 1199, 1095, 1034, 965, 742, 702 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{20}O_2Na [M + Na]^+$ 267.1361, found 267.1406.

2-Phenyl-1-((2S,6S)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)ethanone

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.35 (m, 2H), 7.22-7.28 (m, 3H), 5.72 (ddt, J = 1.2, 6.4, 15.2, 1H), 5.56 (ddt, J = 1.6, 5.6, 15.2, 1H), 4.30 (t, J = 5.0, 1H), 4.11 (t, J = 5.6, 1H), 3.95 (d, J = 15.2, 1H), 3.85 (d, J = 15.2, 1H), 1.83-1.91 (m, 1H), 1.74 (dt, J = 1.2, 6.4, 3H), 1.64-1.72 (m, 3H), 1.44-1.62 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 209.6, 134.2, 131.0, 128.5,

128.0, 126.8, 77.3, 74.4, 45.3, 30.2, 25.2, 19.3, 17.9; IR (neat) 3029, 2936, 2854, 1717, 1601, 1495, 1453, 1260, 1202, 1084, 1028, 965, 797 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{20}O_2Na [M + Na]^+$ 267.1361, found 267.1359.

Reagents and conditions a) NaH, THF, then Mel, 88%

Scheme 3. Synthesis of 13.

(2S,6R)-2-((R)-1-Methoxy-2-phenylethyl)-6-((E)-prop-1-en-1-yl) tetrahydro-2Hpyran (13-cis) ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.35 (m, 5H), 5.73 (dt, J = 6.4, 15.6, 1H), 5.56 (dd, 11.0, 1H), 2.95 (dd, J = 4.4, 14.0, 1H), 2.85 (dd, J = 6.8, 14.0, 1H), 1.86-1.94 (m, 1H), 1.76-1.82 (m, 1H), 1.74 (d, J = 6.4, 3H), 1.59-1.66 (m, 1H), 1.44-1.56 (m, 1H), 1.28-1.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 139.0, 132.7, 129.7, 128.1, 126.0, 125.9, 84.8, 78.7, 78.2, 58.8, 36.7, 31.9, 26.7, 23.3, 17.9; IR (neat) 3061, 3027, 2932, 2855, 1603, 1495, 1453, 1352, 1301, 1196, 1103, 1037, 964, 749 cm⁻¹; HRMS (ESI) calcd for $C_{17}H_{24}O_2Na [M + Na]^+ 283.1674$, found 283.1684.

(2S,6S)-2-((R)-1-Methoxy-2-phenylethyl)-6-((E)-prop-1-en-1-yl) tetrahydro-2Hpyran (13*-trans*)

¹H NMR (400 MHz, CDCl₃) δ 7.24-7.33 (m, 4H), 7.18-7.24 (m, 1H), 5.55-5.69 (m, 2H), 3.58 (ddd, J = 2.4, 6.0, 9.6, 1H), 3.41 (ddd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.27 (s, 3H), 3.98 (dd, J = 4.0, 6.8, 7.2, 1H), 3.98 (dd, J = 4.0, 7.2, 1H), 3.98 (dd, J = 4.0, 7.2, 1H),J = 3.6, 14.0, 1H, 3.75 (dd, J = 7.2, 14.0, 1H), 1.62-1.82 (m, 4H), 1.71 (d, J = 5.2, 3H), 1.46-1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 139.3, 130.9, 129.7, 128.1, 127.6, 125.9, 83.8, 72.9, 71.9, 58.7, 36.8, 29.5, 26.5, 18.8, 18.0; IR (neat) 3061, 3027, 2932, 2824, 1603, 1494, 1453, 1378, 1352, 1200, 1105, 1036, 966, 887, 749 cm⁻¹; HRMS (ESI) calcd for $C_{17}H_{24}O_2Na [M + Na]^+ 283.1674$, found 283.1678.

Isomerization of 13-cis and 13-trans

To a mixture of 13-cis and 13-trans (12 mg, 0.048 mmol, dr = 1:1) in CH_2Cl_2 (2 ml) was added Re_2O_7 (1 mg, 0.002 mmol). The reaction was stirred rt for 5 h, then was guenched with 5 drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (5%-10% ethyl acetate in hexanes) to give the product (11 mg, 90%, dr > 30:1).

Reagents and conditions a) DIBAL-H, hexanes, then I2, THF, -78 °C, 51%. b) Pent-4-en-1-ylmagnesium bromide, (dppf)PdCI2, Et₂O, 65%. c) Jones reagent, 0 °C, 64%. d) K₂CO₃, MeI, DMF, 99%. e) *m*-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, 67%. f) (Z)-Hex-3-ene-2,5-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 57%.

Scheme 4. Synthesis of 14.

(*E*)-Methyl 4-(3-(6-hydroxyhept-4-en-1-yl)oxiran-2-yl) butanoate (14) ¹H NMR (400 MHz, CDCl₃) δ 5.58 (dt, J = 6.4, 15.2, 1H), 5.49 (dd, J = 6.4, ,OMe 15.2, 1H), 4.22 (p, J = 6.0, 1H), 3.64 (s, 3H), 2.62-2.67 (m, 2H), 2.34 (dt, J =1.4, 7.2, 2H), 2.01-2.08 (m, 2H), 1.82 (br, 1H), 1.68-1.80 (m, 2H), 1.42-1.62 (m, 6H), 1.22 (d, J = 6.4, 3H); ¹³C NMR (100 MHz, CDCl₃) 173.7, 134.8, 130.0, 68.7, 58.4, 58.2, 51.6, 33.6, 31.8, 31.40, 31.37, 25.5, 23.4, 21.5; IR (neat) 3433, 2928, 2860, 1737, 1438, 1367, 1248, 1169, 1117, 1061, 970, 893 cm⁻¹; HRMS (ESI) calcd for $C_{14}H_{24}O_4Na [M + Na]^+ 279.1572$, found 279.1552.

(2R,2'S,6'R)-6'-((E)-Prop-1-en-1-yl)hexahydro-2H,2'H-[2,2'-bipyran]-6(3H)-one (15)

The general rearrangement procedure was followed with 14 (32 mg, 0.125 mmol), Re₂O₇ (3 mg, 0.006 mmol), and CH₂Cl₂ (12.5 mL). The reaction was stirred at rt for 12 h. The solvent was then removed under reduced pressure and the reaction mixture was kept at

high vaccum for 1hr, after which the reaction mixture was redispersed in CH₂Cl₂ (12.5 mL) and 5% more catalyst was added. The reaction mixture was stirred at rt for another 12 h, then was guenched with 5 drops of pyridine. After the removal of solvent under reduced pressure, the crude mixture was purified by flash chromatography (20%-30% ethyl acetate in hexanes) to give the product (23 mg, purity: 87%, 71% with respect to the desired product). ¹H NMR (400 MHz, CDCl₃) δ 5.66 (ddq, J = 0.8, 6.4, 15.2, 1H), 5.46 (ddq, J= 1.2, 6.0, 15.2, 1H, 4.17 (ddd, J = 3.6, 6.4, 10.4, 1H), 3.79 (dd, J = 6.0, 10.4, 1H), 3.42 (ddd, J = 2.0, 6.0, 10.4, 1H)11.2, 1H), 2.52-2.62 (m, 1H), 2.41-2.51 (m, 1H), 2.06-2.14 (m, 1H), 1.75-1.98 (m, 4H), 1.68 (d, J = 6.4, 3H),

1.57-1.72 (m, 2H), 1.46-1.56 (m, 1H), 1.20-1.37 (m, 2H); 13 C NMR (100 MHz, CDCl₃) 171.5, 132.2, 126.4, 82.5, 78.8, 78.3, 31.6, 29.8, 27.2, 24.0, 22.9, 18.1, 17.9; IR (neat) 2935, 2855, 1738, 1440, 1346, 1240, 1203, 1169, 1089, 1049, 965, 933 cm⁻¹; HRMS (ESI) calcd for C₁₃H₂₁O₃ [M + H]⁺ 225.1491, found 225.1481.

Reagents and conditions a) PCC, Celite, CH₂Cl₂. b) BnOH, *p*-TsOH, Na₂SO₄, CH₂Cl₂, 67% (two steps). c) *m*-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, 57%. d) (*Z*)-Hex-3-ene-2,5-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 73%.

Scheme 5. Synthesis of 16.

(E)-7-(3-(4,4-Bis(benzyloxy)butyl)oxiran-2-yl)hept-3-en-2-ol (16)

¹H NMR (400 MHz, CDCl₃) δ 7.34-7.40 (m,8H), 7.28-7.34 (m, 2H), 5.63 (dt, J = 6.4, 15.2, 1H), 5.54 (dd, J = 6.4, 15.2, 1H), 4.76 (t, J = 6.0, 1H), 4.68 (dd, J = 0.8, 12.0, 2H), 4.58 (d, J = 12.0, 2H), 4.26 (p, J = 6.4, 1H), 2.62-2.70 (m, 2H),

2.03-2.13 (m, 2H), 1.76-1.86 (m, 2H), 1.64 (br, 1H), 1.45-1.62 (m, 8H), 1.26 (d, J = 6.4, 3H); ¹³C NMR (100 MHz, CDCl₃) 138.2, 134.8, 130.2, 128.5, 127.8, 127.7, 101.9, 68.8, 67.33, 67.28, 58.6, 33.1, 31.9, 31.8, 31.5, 25.6, 23.5, 21.4; IR (neat) 3444, 3030, 2929, 2863, 1605, 1496, 1454, 1366, 1307, 1207, 1123, 1046, 970, 737 cm⁻¹; HRMS (ESI) calcd for C₂₇H₃₆O₄Na [M + Na]⁺ 447.2511, found 447.2531.

(2*R*,2'*S*,6*R*,6'*R*)-6-(Benzyloxy)-6'-((*E*)-prop-1-en-1-yl)octahydro-2H,2'H-2,2'bipyran (17a) and (2*R*,2'*S*,6*S*,6'*R*)-6-(benzyloxy)-6'-((*E*)-prop-1-en-1-yl) octahydro -2H,2'H-2,2'-bipyran (17b)

The general rearrangement procedure was followed with **16** (30 mg, 0.071 mmol), $Ph_3SiOReO_3$ (1.8 mg, 0.0036 mmol), and CH_2Cl_2 (7 mL). The reaction was stirred at – 25 °C for 8 h (when all starting materials was consumed), and then at 20 °C for another 12 h before being quenched with five drops of pyridine. After evaporation of the

solvent, the crude mixture was purified by flash chromatography (2%-5% ethyl acetate in hexanes) to give the product (12.6 mg, 56%, dr = 5:2). ¹H NMR (400 MHz, C_6D_6) δ 7.35-7.39 (m, 2H), 7.16-7.21 (m, 2H), 7. 07-7.13 (m, 1H), 5.69 (ddg, J = 0.8, 6.4, 15.2, 1H), 5.59 (ddg, J = 1.2, 5.2, 15.2, 1H), 4.88 (d, J = 2.8, 1H), 4.80 (d, J = 12.0, 1H), 4.39 (d, J = 12.0, 1H), 3.91 (ddd, J = 2.0, 6.8, 10.8, 1H), 3.74 (dd, J = 5.2, 9.6, 1H), 3.33 (ddd, J = 2.0, 6.8, 10.4, 1H), 2.00-2.07 (m, 1H), 1.88-1.99 (m, 2H), 1.61-1.75 (m, 2H), 1.58 (dt, J = 1.2, 1.58)6.4, 3H), 1.27-1.54 (m, 7H); ¹³C NMR (100 MHz, C₆D₆) 138.8, 133.3, 128.2, 127.9, 127.3, 124.6, 96.2, 80.3, 77.9, 71.8, 68.8, 32.2, 30.0, 27.9, 27.8, 23.3, 18.0, 17.6; IR (neat) 3029, 2932, 2854, 1496, 1453, 1440, 1360, 1302, 1195, 1126, 1079, 1036, 964, 734 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{28}O_3Na [M + Na]^+$ 339.1936, found 339.1923. Second compound: ¹H NMR (400 MHz, C₆D₆) & 7.36-7.40 (m, 2H), 7.17-7.21 (m, 2H), 7.08-7.12 (m, 1H), 5.55-5.70 (m, 2H), 4.95 (d, J = 12.0, 1H), 4.55 (d, J = 12.0, 1H), 4.33 (dd, J = 2.0, 9.2, 1H) 1H), 3.72 (dd, J = 4.8, 10.0, 1H), 3.38 (ddd, J = 2.0, 7.2, 10.4, 1H), 5.25 (ddd, J = 2.0, 7.2, 10.4, 1H), 1.96-2.02 (m, 1H), 1.88-1.94 (m, 1H), 1.64-1.76 (m, 2H), 1.58 (d, J = 6.0, 3H), 1.50-1.61 (m, 2H), 1.41-1.49 (1H), 1.14-1.40 (m, 5H); ¹³C NMR (100 MHz, C₆D₆) 138.7, 133.2, 128.2, 127.6, 127.3, 124.8, 101.3, 80.2, 78.9, 77.9, 69.4, 32.3, 31.5, 28.2, 27.8, 23.2, 21.8, 17.6; IR (neat) 3030, 2933, 2854, 1496, 1453, 1439, 1360, 1305, 1261, 1199, 1123, 1086, 1024, 964, 732 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{28}O_3Na [M + Na]^+$ 339.1936, found 339.1945.

Reagents and conditions

a) PCC, Celite, CH₂Cl₂. b) NaH, (EtO)₂P(O)CH₂C(O)CH₃, THF, 0 °C, 78% (two steps). c) *m*-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, 66%. d) (Z)-Hex-3-ene-2,5-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 56%.

Scheme 6. Synthesis of 18.

(*E*)-7-(3-((*E*)-6-Hydroxyhept-4-en-1-yl)oxiran-2-yl)hept-3-en-2-one (18)

¹H NMR (400 MHz, CDCl₃) δ 6.78 (dt, J = 6.8, 16.0, 1H), 6.08 (d, J = 16.0, 1H), 5.62 (dt, J = 6.4, 15.2, 1H), 5.52 (dd, J = 6.4, 15.2, 1H), 5.26 (p, J = 6.4, 1H), 2.64-2.69 (m, 2H), 2.28 (q, J = 6.8, 2H), 2.24 (s, 3H), 2.03-2.10 (m, 2H),

1.57-1.70 (m, 4H), 1.45-1.57 (m, 5H), 1.25 (d, J = 6.4, 3H); ¹³C NMR (100 MHz, CDCl₃) 198.7, 147.6, 134.8, 131.6, 130.1, 68.8, 58.5, 58.3, 32.1, 31.8, 31.5, 31.4, 27.0, 25.5, 24.6, 23.5; IR (neat) 3446, 2969, 2930, 2859, 1673, 1626, 1454, 1363, 1255, 1145, 1062, 974, 894 cm⁻¹; HRMS (ESI) calcd for C₁₆H₂₆O₃Na $[M + Na]^+$ 289.1780, found 289.1795.

1-((2R,2'S,6S,6'R)-6'-((E)-Prop-1-en-1-yl)octahydro-2H,2'H-[2,2'-bipyran]-6yl)propan-2-one (19) The general rearrangement procedure was followed with 18 (22 mg, 0.083 mmol),

Re₂O₇ (2 mg, 0.004 mmol), and CH₂Cl₂ (8.3 mL). The reaction was stirred at rt for 3.5

days, then was quenched with five drops of pyridine. Me₂(Bn)SiH (5 µl) was added as an internal standard and crude NMR was used to determine the yield of 59% (dr >20:1). ¹H NMR (400 MHz, CDCl₃) & 5.66 (ddq, J = 0.8, 6.4, 15.2, 1H), 5.49 (ddq, J = 1.6, 6.0, 15.2, 1H), 3.72-3.81 (m, 2H), 3.15-3.25 (m, 2H), 2.64(dd, J = 8.2, 15.0, 1H), 2.42 (dd, J = 4.6, 15.0, 1H), 2.18 (s, 3H), 1.76-1.95 (m, 2H), 1.68 (d, J = 6.4, 3H), 11.55-1.64 (m, 2H), 1.42-1.55 (m, 2H), 1.11-1.34 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) 207.9, 132.6, 126.2, 80.8, 80.3, 78.1, 74.7, 50.5, 31.9, 31.7, 30.8, 28.0, 27.9, 23.1, 23.0, 17.9; IR (neat) 2928, 2846, 1707, 1439, 1405, 1379, 1360, 1319, 1305, 1194, 1170, 1091, 1042, 963 cm⁻¹; HRMS (EI) calcd for C₁₆H₂₆O₃ [M]⁺ 289.1780, found 289.1766.

Reagents and conditions a) PCC, Celite, CH2Cl2. b) Pent-4-en-1-ylmagnesium bromide, Et2O, 70% (two steps). c) PCC, Celite, CH₂Cl₂, 93%. d) m-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, 52%. e) But-2-ene-1,4-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 59%

Scheme 7. Synthesis of 20.

(*E*)-1-(3-Benzyloxiran-2-yl)-10-hydroxydec-8-en-4-one (20) ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.35 (m, 2H), 7.22-7.27 (m, 3H), 5.59-5.69 (m, 2H), 4.08 (d, J = 2.0, 2H), 2.88-2.96 (m, 2H), 2.75-2.83 (m, 2H), 2.41 (d, J = 7.2, 2H), 2.37 (d, J = 7.2, 2H), 2.01-2.11 (m, 2H), 1.92 (br, 1H), 1.56-1.77 (m, 5H), 1.49 (p, J = 7.2, 2H)1H); ¹³C NMR (100 MHz, CDCl₃) 210.6, 137.3, 131.8, 130.0, 128.9, 128.6, 126.6, 63.5, 58.6, 58.4, 42.0, 41.9, 38.4, 31.6, 31.2, 23.0, 20.2; IR (neat) 3443, 3027, 2934, 2863, 1709, 1604, 1494, 1453, 1410, 1089, 1001, 972, 744 cm⁻¹; HRMS (ESI) calcd for $C_{19}H_{27}O_3 [M + H]^+$ 303.1960, found 303.1942.

(R)-2-Phenyl-1-((2S,6S,8S)-8-vinyl-1,7-dioxaspiro[5.5]undecan-2-yl) ethanol (21)

The general rearrangement procedure was followed with **20** (34 mg, 0.11 mmol), Re_2O_7 (3 mg, 0.006 mmol), and CH_2Cl_2 (11.2 mL). The reaction was stirred at rt for 20 h, then was quenched with five drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (10%-15% ethyl acetate in hexanes) to

give the product (32 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.37 (m, 5H), 5.85 (ddd, J = 5.6, 10.4, 17.2, 1H), 5.20 (dt, J = 1.6, 17.2, 1H), 5.09 (dt, J = 1.6, 10.4, 1H), 4.04 (ddddd, J = 0.8, 1.2, 2.6, 5.6, 11.2, 1H), 3.86 (p, J = 4.4, 1H), 3.00 (dd, J = 4.0, 14.0, 1H), 2.68 (dd, J = 9.2, 14.0, 1H), 1.86-2.04 (m, 3H), 1.74-1.82 (m, 1H), 1.57-1.73 (m, 5H), 1.41-1.51 (m, 2H), 1.27-1.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 139.4, 138.9 129.3, 128.5, 126.4, 114.5, 96.6, 75.1, 71.7, 70.0, 39.3, 35.5, 35.0, 30.6, 24.9, 18.7, 18.2; IR (neat) 3470, 3062, 2938, 2868, 1646, 1603, 1495, 1453, 1438, 1373, 1279, 1222, 1142, 1059, 980, 915, 747 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₇O₃ [M + H]⁺ 303.1960, found 303.1979.

a) (Z)-Hex-3-ene-2,5-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 75%.

Scheme 8. Synthesis of 25.

(E)-1-(3-Benzyloxiran-2-yl)-10-hydroxyundec-8-en-4-one (25)

¹H NMR (400 MHz, CDCl₃) δ 7.28-7.33 (m, 2H), 7.20-7.26 (m, 3H), 5.48-5.61 (m, 2H), 4.24 (p, J = 6.4, 1H), 2.87-2.93 (m, 2H), 2.73-2.82 (m, 2H), 2.39 (t, J = 7.6, 2H), 2.35 (t, J = 7.6, 2H), 2.06 (br, 1H), 2.00 (q, J = 6.8, 2H),

1.54-1.74 (m, 5H), 1.48 (p, J = 7.2, 1H), 1.24 (d, J = 6.4, 3H); ¹³C NMR (100 MHz, CDCl₃) 210.5, 137.3, 135.2, 129.6, 128.9, 128.6, 126.6, 68.6, 58.6, 58.4, 42.0, 41.9, 38.4, 31.5, 31.2, 23.5, 23.1, 20.2; IR (neat) 3450, 3061, 2968, 2930, 1709, 1604, 1494, 1452, 1409, 1370, 1138, 1063, 970, 743 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₉O₃ [M + H]⁺ 317.2117, found 317.2095.

(*R*)-2-Phenyl-1-((2*S*,6*S*,8*S*)-8-((*E*)-prop-1-en-1-yl)-1,7-dioxaspiro [5.5]undecan-2-yl)ethanol (26)

The general rearrangement procedure was followed with **25** (12 mg, 0.038 mmol), O_3 ReOSiPh₃ (1 mg, 0.002 mmol), and CH₂Cl₂ (3.8 mL). The reaction was initiated at –

78 °C followed by warming to -30 °C, stirring at -30 °C for 90 min (complete consumption of starting material), then warming to 0 °C and strring for 4 h. The reaction was quenched immediately with five drops of pyridine when TLC indicated that one major product was present. After evaporation of the solvent, the crude mixture was purified by flash chromatography (10%-15% ethyl acetate in hexanes) to give the product (8.5 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.35 (m, 5H), 5.55 (ddq, J = 0.8, 6.4, 15.6, 1H), 5.46 (ddq, J = 1.2, 6.4, 15.6, 1H), 3.94 (dd, J = 6.0, 11.6, 1H), 3.85 (p, J = 4.4, 1H), 3.58 (ddd, J = 2.4, 4.8, 11.6, 1H), 2.98 (dd, J = 4.4, 13.6, 1H), 2.68 (dd, J = 9.2, 13.6, 1H), 1.97 (br, 1H), 1.88 (tq, J = 4.0, 12.8, 2H), 1.72-1.80 (m, 1H), 1.69 (d, J = 6.4, 3H), 1.54-1.66 (m, 5H), 1.35-1.48 (m, 3H), 1.25-1.34 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 138.8, 132.3, 129.3, 128.5, 126.9, 126.3, 96.6, 75.1, 71.5, 70.0, 39.3, 35.5, 35.0, 30.8, 24.8, 18.3, 17.9; IR (neat) 3464, 3060, 2937, 2868, 1603, 1495, 1453, 1439, 1377, 1279, 1221, 1203, 1142, 1042, 979, 746 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₉O₃ [M + H]⁺ 317.2117, found 317.2141.

Reagents and conditions

a) PCC, Celite, CH₂Cl₂. b) But-3-en-1ylmagnesium bromide Et₂O, 0 °C, 77% (two steps). c) PCC, Celite, CH₂Cl₂, 86%. d) m-CPBA, NaHCO₃, CH₂Cl₂, 0 °C, 49%. e) But-2-ene-1,4-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 71%.

Scheme 9. Synthesis of 27.

(E)-1-(3-Benzyloxiran-2-yl)-9-hydroxynon-7-en-4-one (27)

¹H NMR (400 MHz, CD₂Cl₂) δ 7.27-7.33 (m, 2H), 7.19-7.26 (m, 3H), 5.57-5.68 (m, 2H), 4.01 (br, 2H), 2.76-2.89 (m, 3H), 2.73 (t, J = 5.6, 1H), 2.43 (t, J = 7.2, 2H), 2.39 (t, J = 7.2, 2H), 2.22-2.30 (m, 2H), 1.60-1.73 (m, 3H), 1.41-1.59 (m, 2H); ¹³C NMR (100 MHz, CD₂Cl₂) 209.9, 138.1, 131.1, 130.5, 129.3, 128.8, 126.9, 63.6, 58.8, 58.6, 42.4, 42.3, 38.8, 31.6, 26.6, 20.5; IR (neat) 3433,3027, 2929, 2862, 1710, 1494, 1453, 1410, 1373, 1089, 1007, 972, 745 cm⁻¹; HRMS (ESI) calcd for $C_{18}H_{25}O_3$ [M + H]⁺ 289.1804, found 289.1829.

(R)-2-Phenyl-1-((2S,5R,7S)-2-vinyl-1,6-dioxaspiro[4.5]decan-7-vl) ethanol (28) and (R)-2-phenyl-1-((2R,5R,7S)-2-vinyl-1,6-dioxaspiro[4.5]decan-7-yl) ethanol (29)

The general rearrangement procedure was followed with 27 (29 mg, 0.10 mmol), Re_2O_7 (2 mg, 0.005 mmol), and CH₂Cl₂ (10 mL). The reaction was stirred for 3 h, then was quenched with five drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (10%-15% ethyl acetate in hexanes) to give the product (27.5 mg, 95%, 28:29 = 50:49). The mixture was further purified for characterization. 28: ¹H NMR (400 MHz, C₆D₆) δ 7.19-7.23 (m, 2H), 7.13-7.19 (m, 2H),

7.05-7.10 (m, 1H), 5.82 (ddd, J = 6.4, 10.4, 16.8, 1H), 5.22 (dt, J = 1.6, 16.8, 1H), 4.98 (dt, J = 1.6, 10.4, 1H), 4.49 (q, J = 6.4, 1H), 3.85 (ddd, J = 2.4, 5.2, 11.6, 1H), 3.75-3.83 (m, 1H), 2.83 (dd, J = 3.6, 14.0, 1H), 2.66 (dd, J = 9.2, 14.0, 1H), 1.87-2.19 (m, 2H), 1.77-1.87 (m, 1H), 1.59-1.67 (m, 3H), 1.47-1.59 (m, 3H), 1.31-1.47 (m, 2H); ¹³C NMR (100 MHz, C₆D₆) 135.4, 129.5, 128.3, 127.6, 126.1, 114.0, 106.4, 78.7, 74.9, 73.3, 39.3, 37.5, 33.6, 30.3, 25.0, 19.8; IR (neat) 3463, 3027, 2945, 2872, 1644, 1603, 1495, 1454, 1439, 1370, 1271, 1222, 1071,1036, 988, 874, 748 cm⁻¹; HRMS (ESI) calcd for $C_{18}H_{25}O_3$ [M + H]⁺ 289.1804, found 289.1828. **29**: ¹H NMR (300 MHz, C₆D₆) δ 7.12-7.23 (m, 4H), 7.04-7.11 (m, 1H), 5.91 (ddd, J = 7.2, 10.2, 17.4, 1H), 5.10 (ddd, J = 1.2, 1.8, 17.2, 1H), 4.95 (ddd, J = 0.9, 1.8, 10.4, 1H), 4.35 (q, J = 7.2, 1H), 3.96 (ddd, J = 2.4, 5.1, 11.4, 1H), 3.74-3.83 (m, 1H), 2.88 (dd, J = 3.9, 13.8, 1H), 2.69 (dd, J = 9.3, 13.8, 1H)1H), 1.78-2.05 (m, 3H), 1.56-1.76 (m, 4H), 1.30-1.55 (m, 5H); ¹³C NMR (100 MHz, C₆D₆) 141.1, 139.4, 129.4, 128.3, 126.0, 114.4, 106.2, 81.6, 75.1, 73.0, 39.5, 38.9, 33.6, 30.6, 25.1, 19.8; IR (neat) 3463, 3026, 2943, 2870, 1643, 1603, 1495, 1454, 1370, 1296, 1220, 1034, 988, 875, 747 cm⁻¹; HRMS (ESI) calcd for for $C_{18}H_{25}O_3 [M + H]^+ 289.1804$, found 289.1832.

Figure 1. Spectral assignment for stereoisomers.

Equibration experiments

Each stereoisomers was resubmitted to the following isomerization conditions: ~20mM solution, 5% Re₂O₇, stirring at rt for 18 h (no obvious change after 12 h) then guenching with 5 drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (10%-15% ethyl acetate in hexanes) to give the product (yield for each isomerization: $\sim 90\%$ -95%, dr = 11:9). Isomerization of **28** gave additional 19% of **29** while isomerization of **29** gave additional 22% of **28**. Thus after one recycling of isomerization: a total yield of 69% could be obtained for **28** and a total yield of 63% could be obtained for **29**. A second recycling gave a total yield of 78% for **28** and a total yield of 75% for **29**.

Reagents and conditions

a) (dpf)₂PdCl₂, Et₂O, 79%. b) Py•SO₃, DMSO, Et₃N, CH₂Cl₂, 0 °C, 86%. c) Pent-4-en-1-ylmagnesium bromide, Et₂O, 85%. d) Bu₄NF, THF, 69%. e) PCC, Celite, CH₂Cl₂, 66%. f) NaH, THF, then (EtO)₂P(O)CH₂C(O)CH₃, 0 °C, 87%. g) *m*-CPBA, NaHCO₃, CH₂Cl₂, 70%. h) But-2-ene-1,4-diol, Grubbs-Hoveyda 2nd generation metathesis catalyst, CH₂Cl₂, 69%.

Scheme 10. Synthesis of 30.

(*E*)-10-Hydroxy-1-(3-((*E*)-6-oxohept-4-en-1-yl) oxiran-2-yl)dec-8-en-4-one (30) ¹H NMR (400 MHz, CD₂Cl₂) δ 6.76 (dt, *J* = 6.8, 16.0, 1H), 6.03 (dt, *J* =

¹ H NMR (400 MHz, CD₂Cl₂) δ 6.76 (dt, J = 6.8, 16.0, 1H), 6.03 (dt, J = 1.6, 16.0, 1H), 5.56-5.67 (m, 2H), 4.02 (br, 2H), 2.60-2.65 (m, 2H), 2.43 (t, J = 7.2, 2H), 2.38 (t, J = 7.2, 2H), 2.26 (dq, J = 1.6, 7.2, 2H), 2.19 (s, 3H), 1.99-2.07 (m, 2H), 1.39-1.70 (m, 11H); ¹³C NMR (100 MHz, CD₂Cl₂) 210.1, 198.2, 147.5, 131.6, 131.5, 130.1, 63.3, 58.1, 57.9, 42.1, 41.8, 32.1, 31.53, 31.46, 31.4, 26.6, 24.6, 23.1, 20.2; IR (neat) 3451, 2934, 2862, 11708, 1672, 1626, 1431, 1364, 1256, 1089, 976, 893 cm⁻¹; HRMS (ESI) calcd for C₁₉H₃₀O₄Na [M + Na]⁺ 345.2042, found 345.2071.

1-((2*S*,6*R*)-6-((2*S*,6*S*,8*S*)-8-vinyl-1,7-dioxaspiro[5.5] undecan-2-vl) tetrahydro-2H-pyran-2-vl)propan-2-one (31)

The general rearrangement procedure was followed with **30** (25 mg, 0.078 mmol),

Re₂O₇ (2 mg, 0.004 mmol), and CH₂Cl₂ (7.8 mL). The reaction was stirred at 20 °C for 8 h, then was quenched with five drops of pyridine. After evaporation of the solvent, the crude mixture was purified by flash chromatography (10%-15% ethyl acetate in hexanes) to give the product (21 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 5.84 (ddd, J = 5.2, 10.4, 17.2, 1H), 5.23 (dt, J = 1.6, 17.2, 1H), 5.07 (dt, J = 1.6, 10.4, 1H), 4.04 (ddddd, J = 1.2, 1.6, 2.8, 5.2, 11.6, 1H), 3.77 (dddd, J = 1.2, 4.4, 8.8, 10.4, 1H), 3.42 (ddd, J = 2.0, 8.0, 10.4, 1H), 3.18 (ddd, J = 2.0, 8.0, 10.4, 1H), 2.64 (dd, J = 8.8, 14.8, 1H), 2.41 (dd, J = 4.4, 14.8, 1H), 2.18 (s, 3H), 1.95-2.03 (m, 1H), 1.78-1.94 (m, 4H), 1.49-1.69 (m, 7H), 1.33-1.44 (m, 2H), 1.21-1.32 (m, 2H), 1.05-1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 207.8, 139.5, 114.3, 96.1, 80.9, 74.8, 71.8, 69.7, 50.4, 35.6, 35.2, 31.7, 30.9, 30.7, 28.3, 27.8, 23.0, 18.8, 18.3; IR (neat) 3078, 2936, 2861, 1716, 1646, 1438, 1371, 1279, 1224, 1202, 1134, 1089, 1040, 981, 914, 861 cm⁻¹; HRMS (ESI) calcd for C₁₉H₃₀O₄Na [M + Na]⁺ 345.2042, found 345.2007.

Preparation of Re₂O₇ supported on SiO₂

A slurry of 1.8 g of SiO₂ and 200mg of Re_2O_7 in Et₂O was stirred at room temperature for 3 hours, followed by removal of Et₂O under reduced pressure, the obtained powder was dired under vaccum overnight. The catalyst was stored in dessicator and shielded from light.

Representative cyclization with Re₂O₇ supported on SiO₂

The general rearrangement procedure was followed with **16** (25 mg, 0.059 mmol), 10% Re₂O₇ on SiO₂ (14 mg, 0.003 mmol), and CH₂Cl₂ (12.0 mL). The reaction was stirred at -25 °C for 8 h (starting material was consumed) and then at rt for 10 h. The reaction was quenched with five drops of pyridine. After evaporation

of the solvent, the crude mixture was purified by flash chromatography (2%-5% ethyl acetate in hexanes) to provide 17 (11.5 mg, 60%, dr = 5:2).

300 1H CDC13 Reduction 042712

⁴⁰⁰A 1H CDC13 Reduction 042712

400B 1H CDC13 Rear SPT #1 050212

⁴⁰⁰A 13C CDC13 Rear SPT #1-1 0502

400B 1HNOESY CDC13 Rear SPT #1 050212

400B 1HCOSY CDC13 Rear SPT #1 050212

400B 1HNOESYCDC13 Rear SPT #2 050212

S17

400B 1HNOESY C6D6 REAR SPT #1 022612

400B 1HCOSY C6D6 Rear SPT #1 032612

S20

400B 1HNOESY C6D6 Rear SPT #2-2 032612

400B 1HCOSY C6D6 Rear SPT #2 032612

400B 1HNOESY CDC13 Rear SPT #3-2 032412

400B 1H CDC13 Rear SPT #4 032412

400B 1HNOESY CDC13 Rear SPT #4-2 032412

400B CDC13 1HNOESY Rear SPT #1 OX 041112-1

400B 1HCOSY Rear SPT #10X 041112

S30

400B 1HNOESY C6D6 Rear SPT #2 OX 041112-1

400B 1HCOSY Rear SPT #20X 041112

400B 1H-1 C6D6 Isomerization 051512

400B 1HCOSY C6D6 Isomerization 051512

400B 1HNOESY C6D6 Isomerization 051512

400B 1H CDC13 SPT 40X 041012

7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

6.5

ppn

400B 1H CDC13 Methylation SPT #2 082412

!

H OBn ↓0↓H

Ξ`O Η

2.0 2.5 3.0 3.5 4.0 4.5

5.0

6.0 6.5 7.0

7.5 8.0

ppn

. .

ł

1.5

Ē

17a

400B 1HCOSY C6D6 Rear SPT #1 060412

400B 1HNOESY C6D6 Rear SPT #1 060412

U

7.5

8.0

7.0

6.5 6.0

5.5 5.0

S44

4.5

4.0 3.5 3.0 2.5 2.0

. .

400B 1H CDC13 Rear Major 060812

 -10 ppm

400B 1HNOESY CDC13 Rear Major 060812

400B 1HCOSY CDC13 Rear Major 060812

400B 1H CDC13 Grubbs 052812

400B 13C CDC13 Grubbs 052812

400B 1H CDC13 Rear Major 061212

400B 1HNOESY CDC13 Rear Major 061212

400B 1HCOSY CDC13 Rear Major 061212

400A 1H CD2C12 Grubbs 062912

⁴⁰⁰A 13C CD2C12 Grubbs 062912

400B 1HNOESY C6D6 Rear SPT #1 070112

400B 1HCOSY C6D6 Rear SPT #1 070112

400B 1HNOESY C6D6 Rear SPT #2 070112

400B 1HCOSY C6D6 Rear SPT #2 070112

400B 1HCOSY CDC13 Rear Major 071612

S63