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S1 Estimating stage of infection

Stage of infection (0-4) was estimated on the basis of CD4 at diagnosis, date of last

negative test, ambiguous sites in the HIV sequence, and concurrent diagnosis with AIDS.

Instead of using incidence assays based on differential antigen/antibody assays, we
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used the frequency of ambiguous sites (FAS) within DRM sequences to detect diagnoses

with EHI. A high FAS is an indicator of a diverse intra-host viral population resulting

from a long period of intra-host evolution. FAS has previously been shown to be highly

informative about the recency of infection in the individual from whom virus was sampled

[1,2]. An advantage of this approach is that a customized threshold FAS value was found

to have a high positive predictive value for detecting EHI, which we define as the first year

of infection. We defined EHI to be one year rather than the more commonly used periods

of 2 or 6 months because the simulation studies described in section Text S4 revealed that

transmission rates for shorter periods were not identifiable given the available number

and quality of HIV sequences.

Our goal for using FAS is different than that of [1,2], who were focused on developing

a test with good sensitivity and specificity that could be useful for incidence estimation.

Our objective is to design a test with high positive predictive value for identifying EHI

(1st year of infection), which allows us to select sequences for inclusion in the phylogenetic

analysis which are highly likely to have come from a true EHI. Given the data available

to us, we find that such a test is possible, though it has poor sensitivity.

CD4 counts collected more than 6 months from the diagnosis date were excluded.

AIDS diagnosis was considered to be concurrent with HIV diagnosis if AIDS diagnosis

was within 2 months of the first positive HIV test.

The square root of CD4 counts are known to decrease approximately linearly over

the course of infection [3]. Figure S11 shows the distribution of root CD4 from the

Michigan surveillance data, only considering cases known to be EHI or AIDS. Using these

surveillance data, we fit a linear model
√

CD4 = i + ε, where i ∈ [0, 4] is the stage of

infection. Only patients who were known to be either EHI or AIDS were used when fitting

the model. The root CD4 values and fitted model are shown in figure S11.
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A test for EHI with a high PPV of 86% was developed based on FAS [1,2]. To develop

this test, we examined the set of MDCH sequences which were definitely from EHI based

on the date of last negative test. 643 sequences were definitely EHI, while 498 were

definitely from late infection. Figure S12 shows the probability and odds that a sequence

originated from EHI given the threshold FAS value. We used the highest PPV threshold

of 3 ambiguous sites.

A naive Bayes model was developed to derive the probability Pu(i|θu) that patient

u is in stage i at the time of diagnosis conditional on a vector of clinical covariates θu.

Covariates consisted of CD4 counts within 6 months of diagnosis x, FAS, and whether

the patient was diagnosed with AIDS within two months of HIV diagnosis. Naive Bayes

models are easy to fit and the results are easily interpretable, but they depend on the

approximation that variables used for classification are conditionally independent. There

is undoubtedly some dependence among variables such as CD4 and FAS which is not

captured by this model. But, naive Bayes classifiers tend to perform well unless this

dependence is near that between the objective variable (stage of infection in this case)

and the predictor variable [4]. It would be optimal, although impractical in the current

setting and with available data, to develop a model for the joint distribution of all predictor

variables and the objective variable.

Let θu be a vector of p covariates for patient u that will be used to estimate the stage

of infection. We will estimate P (i|θu), the probability that u is in state i at diagnosis.

Using Bayes’ rule

P (i|θu) =
P (i)

P (θu)
P (θu|i). (S1)

In practice, P (θu|i) can be difficult to calculate, so naive Bayes models make the approx-
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imation

P (i|θu) ≈
P (i)

C

p∏
k=1

P (θuk|i), (S2)

where C normalizes the pmf. Then we only need to calculate the conditional probabili-

ties P (θuk|i) for the following CD4, FAS, and AIDS: P (
√

CD4|i) is given by the normal

distribution fitted by the linear regression model above.

We will use the indicator function IFAS3(u) which takes a value of 1 if FAS< 3 and is

zero otherwise. P (FAS|i) is found by cross-tabulating IFAS3 and the known EHI status

of infected individuals. These data are arranged in the following confusion matrix:

IFAS3 = 1 IFAS3 = 0

i = 0 A = 171 B = 472

i > 0 C = 21 D = 477

Then, for example,

P (IFAS3 = 1|i = 0) = A/(A+B) = 27% (S3)

P (IFAS3 = 0|i = 0) = B/(A+B) = 73% (S4)

P (IFAS3 = 1|i > 0) = C/(C +D) = 4% (S5)

P (IFAS3 = 0|i > 0) = D/(C +D) = 96% (S6)

P (AIDS|i) is straightforward, since detection of AIDS can reasonably be approximated

to have perfect sensitivity and specificity. Let IAIDS(u) be the indicator function for
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whether a patient has AIDS.

P (IAIDS = 1|i = 4) = 1 (S7)

P (IAIDS = 0|i = 4) = 0 (S8)

P (IAIDS = 1|i < 4) = 0 (S9)

P (IAIDS = 0|i < 4) = 1 (S10)

Applying these conditional probabilities to equation S2 gives our estimate of P (i|θu).

The prior P (i) is based on the number of infections in each stage in 2011 from a MLE fit

of the HIV model to timeseries data alone (section S3 ).

S2 Coalescent model

An epidemiological coalescent model [5–9] was derived from the transmission model us-

ing the methods described in [9]. Code used to calculate the likelihood of a tree using

epidemiological coalescent model is available at http://code.google.com/p/colgem/.

The coalescent model provides a means of calculating the likelihood of a gene genealogy

conditional on a complex demographic history. The time series consists of the prevalence

of diagnosed and undiagnosed infections in each stage, the number of transmissions by

each stage, and the flux of infected individuals between states (by diagnosis or disease

progression). The time series data were aggregated into 473 intervals. The likelihood is

also a function of states of the patients from whom the HIV sequences were sampled (see

section S1 ). Estimation was carried out using the mean likelihood from a random sample

10 trees from the BEAST posterior (see Text S3).
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The coalescent likelihood of a gene genealogy G has the form

P (G) =
∏

(i,j,sα)∈G

qij(sα), (S11)

where G is the set of nodes in the genealogy, i and j are lineages that coalesce at a node

at time sα, and qij(sα) is the rate that lineages i and j coalesce times the probability that

they have not yet coalesced at time sα. In [9], it is shown how to derive sα and qij from

the ‘birth’ and ‘migration’ matrices described in Text S1.

S3 Model fitting

The ODE model equations were fitted to the surveillance data T . The surveillance data

consisted of all annual diagnoses, the number of diagnoses concurrent with AIDS, and the

number of AIDS diagnoses among patients previously diagnosed with HIV. The likelihood

of the surveillance data was derived under the condition that the number of reported

diagnoses is Poisson distributed around the values predicted by the deterministic ODE

model.

Let y(t) be the aggregated number of diagnoses in year t, yA(t) be the aggregated num-

ber of diagnoses concurrent with AIDS diagnosis, and yCA(t) be the aggregated number of

AIDS diagnoses among previously diagnosed HIV cases. ȳ will represent the correspond-

ing quantities from a solution of the HIV model. The likelihood is

P (T ) =
∏
t

PPois(y(t)|ȳ(t))Pbinom(yA(t)|ȳ(t), ȳA(t))PPois(yCA(t)|ȳCA(t)) (S12)

The important effect of including AIDS diagnoses in the model and the likelihood is

to constrain the tradeoff between incidence and the observed total number of diagnoses.
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Similarly, by modeling the likelihood of yCA(t) AIDS diagnoses from previously diagnosed

individuals, we fit the model to trajectories that closely match the known number of

diagnosed AIDS cases over time. By constraining the number of diagnosed AIDS cases,

this may increase the identifiability of the stage progression parameter τ .

With the log likelihoods L(T ), the ODE model equations were fitted by maximum

likelihood. The likelihood was maximized using the simplex method in R (Nelder-Mead

optim), with periodic re-starts and stochastic search.

1. 6000 random starting conditions are drawn uniformly from a p−dimensional param-

eter space. Each of these will be called a particle.

2. While the MLE has not been found:

(a) The likelihood is optimized for each particle for 200 iterations.

(b) If there is no improvement in the maximum likelihood particle: terminate.

(c) The top 10% of 6000 particles are retained. The remaining 90% of particles

were drawn from a multivariate normal distribution with center chosen in-

dependantly and uniformly at random from the top 10% of particles. The

variance covariance matrix was calculated from the top 10% of particles.

Convergence was tested by running the optimizer twice and ensuring the same MLE was

reached.

Given an MLE fit of the model, the parameters βc, βa and ξ (see section Text S1) were

estimated from the genetic data using the likelihood equation S11. The simplex method

was used as above, but since there are only 3 parameters, optimization was started from 18

random initial conditions and we did not use periodic re-starts with stochastic search. All

solutions were checked for convergence and consistency. Likelihood profiles and 95% con-
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fidence intervals were constructed for each parameter θ = (βc, βa, ξ). Deriving confidence

intervals for derived quantities, such as the proportion of transmissions from EHI over

time is more challenging, and likelihood profiles cannot be easily translated to estimated

transmission fractions. We used an approach which is formally an empirical Bayes ap-

proximation to the confidence interval [10]. This approach uses a prior distribution which

is calculated directly from the data. In our case, the prior is based on the likelihood

profiles; we constructed a multivariate uniform prior with bounds given by the 97.5% CIs

calculated for each parameter using the profile method. A Bayesian sampling-importance-

resampling method was then used to sample epidemic trajectories from the multivariate

uniform prior. One thousand parameter vectors were sampled from the posterior yielding

938 unique trajectories.

S3 .1 Overdispersion

We have analyzed the predicted and actual diagnoses aggregated by year for evidence of

overdispersion as well as suitability of the Poisson distribution more generally. There is

evidence for a few outliers in the early epidemic, but overall the Poisson model holds up

quite well. We can quantify overdispersion using the statistic

R =
1

n

∑
i

z2i

where n is the number of years, and zi is the Z-score corresponding to the predicted and

actual number of diagnoses in the i′th year. The statistic R will asymptotically follow

a χ2 distribution with n degrees of freedom. Using all years of data, we find R = 2.48,

indicating moderate overdispersion. Removing the early outliers (first 10 years of the

epidemic), we find R = 1.24 and p = 0.21 (χ2 test). Because outliers occur early in the
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epidemic, estimated incidence will not be biased close to the present, and including extra

parameters to cope with overdispersion would be unwarranted.

We also examined the suitability of the Poisson distribution using a KS test of the CDF

of the residuals. This test verifies that the residuals follow a Poisson distribution with

variable rates and gives an indication of the suitability of the model over all quantiles,

not just the tails. Note that we cannot do a direct test of residuals against a Poisson

distribution, because each data point has a distinct rate parameter; therefore we compare

the CDF of residuals to a uniform distribution. In this case, we find D = 0.17, p = 0.29

without removing outliers.

S3 .2 Computation

In this study, we were limited to using only about a quarter of potentially informative

sequences by the computational demands of both estimating a relaxed clock phylogeny

and in fitting complex models to the estimated phylogeny. The phylogenetic algorithms

implemented in BEAST are O(n2) in the number of sequences n. Calculation of the

coalescent likelihood [9] is O(n) in the number of sequences and O(m2) in the number

of states of the transmission model. The computational requirements of fitting the HIV

transmission system model are more sensitive to the complexity of the model than to

the sample size. Estimation of the phylogeny was carried out in parallel on 9 multicore

processors (10 independent Markov chains) with 12 cores each and using the BEAGLE

library [11]. Calculating a single coalescent likelihood with a single tree of 762 taxa takes

about 30 seconds with a 2GHz processor. The computational complexity is highly sensitive

to the complexity of the model; models with fewer states could be fitted more easily, but

might not capture essential features of the natural history of HIV or the effects of diagnosis

on transmission. Fitting a model requires tens of thousands of likelihood calculations, and
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the likelihood must be averaged across a sample of trees from the Bayesian-phylogenetic

posterior. ML estimation with the coalescent likelihood was carried out in parallel on

a cluster with 200 nodes. Fitting all model variants described in section Text S1 and

estimating confidence intervals using a sample of 10 trees took about one week on this

cluster.
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