

Conservation of the PopZ coding sequence through *Alphaproteobacterial* lineages. The diagram depicts a species tree of the *Alphaproteobacteria*, taken from the construction by Williams et al. (2007), and based on Bayesian analysis of consensus alignments for 104 protein families. The branches end at the level of Genus. PopZ homologs were identified in all branches of the tree with the exception of *Loktanella*, *Neorickettsia*, and *Pelagibacter* (gene loss is indicated by an X). Genera discussed in detail in Supplementary Figure 2 are highlighted in color.

Williams, K.P., Sobral, B.W., Dickerman, A.W. (2007) A robust species tree for the alphaproteobacteria. *J Bacteriol* **189**: 4578–4586



Phylogenetic tree diagrams for conserved regions in PopZ. The Splitstree4 software package (Huson and Bryant, 2006) was used to create unrooted networks that show the divergence of PopZ coding sequences across alphaproteobacterial phyla. The most conserved sequence regions within R1 (top panel) and R3 (bottom panel) were taken from one representative of each genus (Supplementary Figure 1) and used to make two separate trees. Members of the Rickettsiales order (highlighted in green) have divergent R1 sequences but similar R3 sequences. Conversely, two members of the Rhizobiales order, Bartonella and Brucella (highlighted in orange) have similar R1 sequences but divergent R3 sequences. The relevant amino acid sequences for these species (and also Caloubacter crescentus) are shown on the right side of the tree diagram. These different patterns of phylogenetic conservation indicate that a significant fraction of the residues in R1 and R3 are not necessarily co-conserved, and that these regions of PopZ are evolving under different processes that do not generate identical tree signals.

D.H. Huson and D. Bryant, Application of Phylogenetic Networks in Evolutionary Studies, Molecular Biology and Evolution, 23(2):254-267, 2006. Software available from www.splitstree.org.



Centromere anchoring is inhibited in PopZ C-terminal truncation mutants.

A) Centromere position was observed in live cells in which the centromere binding protein MipZ was replaced with MipZ-CFP. In each strain, an untagged copy of wildtype *popZ* or the indicated *popZ* truncation mutant is expressed from the endogenous popZ promoter. Representative images from strains GB1107, GB1113, GB1127, GB1128, and GB1129 are shown. Fluorescence images are overlayed on pahse contrast images. Bar = 1 $\mu$ m. B) The distance between a cell pole and the nearest centromere was calculated by drawing a straight line between the centroid of the MipZ-CFP focus and the contrast edge at the cell pole in the phase contrast image. Cells with only one centromere were omitted from the analysis. At least 100 cells (200 cell poles) of each genotype in A were quantified per experiment. The error bars represent the standard deviation of the average value calculated from three independent experiments.



Diffusely localized venus-popZ∆134-177 does not have a dominant negative effect on PopZ activty.

A) Venus-popZ $\Delta$ 134-177 was expressed in a wildtype background (GB1121). The length of wildtype cells (left panel) is not changed after adding the venus-popZ $\Delta$ 134-177expression plasmid (righ panel), indicating that the N-terminal 133 amino acids of PopZ do not act as a dominant negative for inhibiting cell division. B) The venus-popZ $\Delta$ 134-177 expression plasmid was transformed into cells expressing full length mCherry-PopZ (GB1122). Polar localization of full length mCherry-PopZ was not perturbed. Where appllicable, a fluorescence image is overlayed on a phase contrast image. Bar = 1  $\mu$ m.



Localization of SpmX-mCherry in PopZ variant backgrounds.

Spmx-mCherry fluorescence (red) overlays the phase contrast image (grayscale). Bar = 9 μm. Representative images from AP253, AP236, AP280, AP300, AP282, AP299, AP254, AP257, AP298, AP342, AP343, AP344, AP292, AP293, AP290, AP291, AP283, AP285, AP286, AP287, AP288, and AP289 are presented. Corresponding quantitation of polar SpmX-mCherry localization is presented in graphs in the main text figures.



C. crescentus CB15N, ∆popZ, pBXMCS-2(mVenus-popZ\*)

Electrophoretic migration of venus-tagged PopZ variant proteins.

Whole cell lysates of venus-tagged PopZ expressing strains in Figure 3B (A), Figure 4B (B) Figure 5B (C), and Figure 6B (D) of the main text were resolved native gels, then probed with anti-PopZ antisera by immunoblotting.



Circular dichroism analysis. Individual uv-CD spectra for purified wildtype, P146A, and PopZ $\Delta$ 172-177 proteins are compared by overlay. A positive band at 190 nm and negative bands at 208 nm and 222 nm are characteristic alpha helical signatures. The shift in the minimum to shorter wavelengths (203 nm for PopZ $\Delta$ 172-177 and 205nm for PopZ P146A and wildtype) are inidicative of the influence of disordered regions, which have a minimum signal at 200nm (Chemes et al. 2012).

Chemes, L.B., Alonso, L.G., Noval, M.G., Prat-Gay, G. de (2012). Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. *Methods Mol Biol* **895**: 387–404



Illustration of non-linear angular dependence of scattered light for PopZ protein oligomers. A plot of  $K^*c / R(\Theta)$  vs.  $sin^2(\Theta/2)$ , a Zimm plot (Zimm, 1948), yields a curve whose intercept gives (Mw)<sup>-1</sup> and whose slope gives root-mean-square radius (rms), also known as radius of gyration, Rg, which characterizes particle dimensions independently of particle shape. Shown are Zimm plots for apexes of eluting peaks. Two separate curves are generated from data obtained generated by high or low angle incident light. In heterogenous samples, the data from lower angles is primarily influenced by the largest particles. The angular dependence of the wildtype and PopZ P146A samples is more skewed than the PopZ∆172-177 sample, indicating qualitative differences in the distributions of particle size. The Apoferritin control, which is uniform in particle size, is linear across all angles. Results of MW and rms determinations at higher angles are summarized in Table 1.

Zimm B H (1948) Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering; Preliminary Results on Polystyrene Solutions. *J.Chem.Phys.* **16**; 1099-1116

| Supplementary Table 1: | Bacterial strains                  |                             |  |
|------------------------|------------------------------------|-----------------------------|--|
| C. crescentus strains  | Relevant                           | Construction, source or     |  |
|                        | genotype/description               | reference                   |  |
| AP236                  | spmX:: spmX mCherry;               | Bowman <i>et al.</i> (2010) |  |
|                        | popZ::A                            |                             |  |
| AP253                  | spmX:: spmX mCherry;               | pAP214 electroporated       |  |
|                        | <i>рорZ::Д; pBXMCS-2 +</i>         | into AP236                  |  |
|                        | mVenus PopZ                        |                             |  |
| AP254                  | spmX:: spmX mCherry;               | pAP237 electroporated       |  |
|                        | <i>рорZ::Д; pBXMCS-2 +</i>         | into AP236                  |  |
|                        | тVenus PopZ <u>Д</u> 24–102        |                             |  |
| AP257                  | spmX:: spmX mCherry;               | pAP240 electroporated       |  |
|                        | <i>рорZ::Д; pBXMCS-2 +</i>         | into AP236                  |  |
|                        | mVenus PopZ Δ24–81                 |                             |  |
| AP280                  | spmX:: spmX mCherry;               | pAP259 electroporated       |  |
|                        | <i>рорZ::Д; pBXMCS-2 +</i>         | into AP236                  |  |
|                        | mVenus PopZ $\Delta 134$ –177      |                             |  |
| AP282                  | spmX:: spmX mCherry;               | pAP261 electroporated       |  |
|                        | <i>рорZ::</i> Δ; <i>pBXMCS-2</i> + | into AP236                  |  |
|                        | <i>mVenus PopZ</i> Δ172–177        |                             |  |
| AP283                  | spmX:: spmX mCherry;               | pAP262 electroporated       |  |
|                        | <i>рорZ::</i> Δ; <i>pBXMCS-2</i> + | into AP236                  |  |
|                        | mVenus PopZ P146A                  |                             |  |
| AP285                  | spmX:: spmX mCherry;               | pAP264 electroporated       |  |
|                        | <i>рорZ::</i> Δ; <i>pBXMCS-2</i> + | into AP236                  |  |
|                        | mVenus PopZ D153A                  |                             |  |
| AP286                  | spmX:: spmX mCherry;               | pAP265 electroporated       |  |
|                        | <i>рорZ::</i> Δ; <i>pBXMCS-2</i> + | into AP236                  |  |
|                        | mVenus PopZ L156A                  |                             |  |
| AP287                  | spmX:: spmX mCherry;               | pAP266 electroporated       |  |
|                        | <i>рорZ::Δ; pBXMCS-2</i> +         | into AP236                  |  |
|                        | mVenus PopZ V160A                  |                             |  |
| AP288                  | spmX:: spmX mCherry;               | pAP267 electroporated       |  |
|                        | popZ::A;pBXMCS-2 +                 | into AP236                  |  |
| 17222                  | mVenus PopZ V164A                  |                             |  |
| AP289                  | spmX:: spmX mCherry;               | pAP268 electroporated       |  |
|                        | popZ:://,pBXMCS-2 +                | into AP236                  |  |
| 40000                  | mVenus PopZ E167A                  |                             |  |
| AP290                  | spmx:: spmx mtherry;               | pAP269 electroporated       |  |
|                        | $popZ::\Delta; pBXMCS-2 +$         | INTO AP236                  |  |
|                        | mvenus Popz 113A                   |                             |  |
|                        |                                    |                             |  |

| AP291 | spmX:: spmX mCherry;                 | pAP270 electroporated |
|-------|--------------------------------------|-----------------------|
|       | <i>рорZ::Д; pBXMCS-2 +</i>           | into AP236            |
|       | mVenus PopZ I17A                     |                       |
| AP292 | spmX:: spmX mCherry;                 | pAP272 electroporated |
|       | <i>рорZ::Δ; pBXMCS-2</i> +           | into AP236            |
|       | mVenus PopZ E12A                     |                       |
| AP293 | spmX:: spmX mCherry;                 | pAP271 electroporated |
|       | <i>рорZ::Δ; pBXMCS-2</i> +           | into AP236            |
|       | mVenus PopZ R19A                     |                       |
| AP298 | spmX:: spmX mCherry;                 | pAP277 electroporated |
|       | <i>рорZ::Δ; pBXMCS-2</i> +           | into AP236            |
|       | mVenus PopZ $\Delta 81-102$          |                       |
| AP299 | spmX:: spmX mCherry;                 | pAP278 electroporated |
|       | <i>рорZ::Δ; рВХМСS-2</i> +           | into AP236            |
|       | mVenus PopZ $\Delta 1-80$            |                       |
| AP300 | spmX:: spmX mCherry;                 | pAP279 electroporated |
|       | <i>рорZ::Δ; рВХМСS-2</i> +           | into AP236            |
|       | mVenus PopZ $\Delta 160-177$         |                       |
| AP302 | рор <i>Z::</i> Δ; pBXMCS-2 +         | pAP301 electroporated |
|       | mVenus PopZ Δ48–102                  | into GB255            |
| AP303 | рор <i>Z:: Δ</i> ; <i>pBXMCS-2</i> + | pAP259 electroporated |
|       | mVenus PopZ $\Delta 134-177$         | into GB255            |
| AP305 | рор <i>Z::</i> Δ; pBXMCS-2 +         | pAP261 electroporated |
|       | mVenus PopZ $\Delta 172-177$         | into GB255            |
| AP306 | рор <i>Z::</i> Δ; pBXMCS-2 +         | pAP262 electroporated |
|       | mVenus PopZ P146A                    | into GB255            |
| AP308 | рор <i>Z::Δ</i> ; <i>pBXMCS-2</i> +  | pAP264 electroporated |
|       | mVenus PopZ D153A                    | into GB255            |
| AP309 | <i>рорZ::Δ; pBXMCS-2</i> +           | pAP265 electroporated |
|       | mVenus PopZ L156A                    | into GB255            |
| AP310 | рор <i>Z::Δ</i> ; <i>pBXMCS-2</i> +  | pAP266 electroporated |
|       | mVenus PopZ V160A                    | into GB255            |
| AP311 | рор <i>Z::Δ</i> ; <i>pBXMCS-2</i> +  | pAP267 electroporated |
|       | mVenus PopZ V164A                    | into GB255            |
| AP312 | рор <i>Z::</i> Δ; pBXMCS-2 +         | pAP268 electroporated |
|       | mVenus PopZ E167A                    | into GB255            |
| AP313 | рор <i>Z:: Δ</i> ; <i>pBXMCS-2</i> + | pAP269 electroporated |
|       | mVenus PopZ I13A                     | into GB255            |
| AP314 | рор <i>Z::</i> Δ; pBXMCS-2 +         | pAP270 electroporated |
|       | mVenus PopZ I17A                     | into GB255            |
| AP315 | рор <i>Z:: Δ</i> : <i>pBXMCS-2</i> + | pAP272 electroporated |
|       | mVenus PopZ E12A                     | into GB255            |
| AP316 | рорZ::Д: pBXMCS-2 +                  | pAP271 electroporated |
|       | mVenus PopZ R19A                     | into GB255            |

| AD320  | non7. A: nRYMCS 2 1                | nAP277 electronorated       |
|--------|------------------------------------|-----------------------------|
| AI 320 | $pop Z_{Z}, p D A M C S^{-2} +$    | into GB255                  |
| AD221  |                                    | nAD279 electronerated       |
| AP321  | $popZ::\Delta; pBXMCS-2 +$         | into CP255                  |
| 40000  | mVenus PopZ $\Delta I = 80$        |                             |
| AP322  | <i>pop2::Δ</i> ; <i>pBXMCS-2</i> + | pAP279 electroporated       |
|        | mVenus PopZ $\Delta 160-177$       | into GB255                  |
| AP323  | $popZ::\Delta; pBXMCS-2 +$         | pAP214 electroporated       |
|        | mVenus PopZ                        | into GB255                  |
| AP324  | popZ::∆; pBXMCS-2 +                | pAP237 electroporated       |
|        | mVenus PopZ $\Delta 24-102$        | into GB255                  |
| AP327  | <i>рорZ::</i> Д; <i>pBXMCS-2</i> + | pAP240 electroporated       |
|        | mVenus PopZ Δ24–81                 | into GB255                  |
| AP342  | spmX:: spmX mCherry;               | pAP301 electroporated       |
|        | <i>рорZ::Δ; pBXMCS-2</i> +         | into AP236                  |
|        | mVenus PopZ $\Delta 48-102$        |                             |
| AP343  | spmX:: spmX mCherry;               | pAP332 electroporated       |
|        | popZ::Δ: pBXMCS-2 +                | into AP236                  |
|        | mVenus PopZ $\Lambda 48-102 +$     |                             |
|        | 24-47 scr                          |                             |
| AP344  | spmX:: spmX mCherry:               | pAP333 electroporated       |
|        | popZ:: A: pBXMCS-2 +               | into AP236                  |
|        | $mVenus PonZ \Lambda 24-81 + 82-$  |                             |
|        | 102 scr                            |                             |
| CB15N  | Synchronizeable derivative         | Evinger and Agabian         |
|        | of WT CB15                         | (1977)                      |
| GB135  | popZ::popZ-FLAG                    | Bowman <i>et al.</i> (2008) |
| GB255  | popZ:A                             | Bowman $et al.$ (2008)      |
| GB544  | non7A.vanAmCherry-                 | nGB525 mated into GB255     |
|        | non7 R1                            |                             |
| CR545  | popZ KI                            | pCB526 mated into CB255     |
| 60343  | popZ::2, vunA::menerry-            | pubbilo mateu mto ubilo     |
| CD750  |                                    |                             |
| GB/50  | popZ::: $\Delta$ ; vanA::mCherry-  | pGB527 mated into GB255     |
|        | popZ R3                            |                             |
| GB757  | popZ::popZ-FLAG; pBXMCS-           | pGB570 electroporated       |
|        | 2 + mCherry-PopZ R1                | into GB135                  |
|        |                                    |                             |
| GB758  | popZ::popZ-FLAG; pBXMCS-           | pGB572 electroporated       |
|        | 2 + mCherry-PopZ R3                | into GB135                  |
|        |                                    |                             |
| GB885  | popZ::popZ ∆134–177                | pGB844 mated into GB255     |
| GB886  | рорΖ::рорΖ ∆160–177                | pGB845 mated into GB255     |
| GB888  | рорZ::popZ <u>Л</u> 172–177        | pGB823 mated into GB255     |
| GB890  | popZ::popZ P146A                   | pGB822 mated into GB255     |

| GB892                 | popZ::popZ D153A                                          | pGB848 mated into GB255                                |  |
|-----------------------|-----------------------------------------------------------|--------------------------------------------------------|--|
| GB893                 | popZ::popZ L156A                                          | pGB849 mated into GB255                                |  |
| GB894                 | popZ::popZ V160A                                          | pGB850 mated into GB255                                |  |
| GB895                 | popZ::popZ V164A                                          | pGB851 mated into GB255                                |  |
| GB896                 | popZ::popZ E167A                                          | pGB852 mated into GB255                                |  |
| GB897                 | popZ::popZ I13A                                           | pGB853 mated into GB255                                |  |
| GB898                 | popZ::popZ I17A                                           | pGB854 mated into GB255                                |  |
| GB899                 | popZ::popZ E12A                                           | pGB855 mated into GB255                                |  |
| GB900                 | popZ::popZ R19A                                           | pGB856 mated into GB255                                |  |
| GB1007                | popZ::mCherry-PopZ                                        | pPD 72 mated into GB255                                |  |
| GB1078                | popZ::∆; vanA::mCherry-<br>popZ                           | pGB528 mated into GB255                                |  |
| GB1107                | mipZ::mipZ-CFP                                            | Goley <i>et al.</i> (2011)                             |  |
| GB1113                | mipZ::mipZ-CFP; popZ::∆                                   | <i>popZ::</i> ⊿ transduced from GB255 into GB113       |  |
| GB1115                | popZ::popZ ∆1–80                                          | pGB1108 mated into<br>GB255                            |  |
| GB1116                | рорZ::popZ <u>Л</u> 24–81                                 | pGB1109 mated into<br>GB255                            |  |
| GB1117                | рор <i>Z::popZ Δ24–102</i>                                | pGB1110 mated into GB255                               |  |
| GB1118                | рор <i>Z::popZ Δ48–102</i>                                | pGB1111 mated into<br>GB255                            |  |
| GB1119                | рорZ::popZ <u>A81–102</u>                                 | pGB1112 mated into<br>GB255                            |  |
| GB1121                | <i>pBXMCS-2 + mVenus PopZ</i><br>∆134–177                 | pAP259 electroporated into CB15N                       |  |
| GB1122                | popZ::mCherry-popZ;<br>pBXMCS-2 + mVenus PopZ<br>∆134–177 | pAP259 electroporated<br>into GB1007                   |  |
| GB1127                | mipZ::mipZ-CFP;<br>popZ::Δ134–177                         | <i>popZ::∆134–177</i> transduced from GB855 into GB113 |  |
| GB1128                | mipZ::mipZ-CFP;<br>popZ::∆160–177                         | <i>popZ::∆160–177</i> transduced from GB856 into GB113 |  |
| GB1129                | mipZ::mipZ-CFP;<br>popZ::∆172–177                         | <i>popZ::∆172–177</i> transduced from GB888 into GB113 |  |
| <i>E. coli</i> stains | Relevant                                                  | Source                                                 |  |
|                       | genotype/description                                      |                                                        |  |
| Rosetta               | High protein expression                                   | Novagen                                                |  |
| GB169                 | pET28a + PopZ                                             | Cloned into pET28a via 5'<br>NdeI and 3' EcoRI sites   |  |
| GB923                 | pET28a + PopZ P146A                                       | Cloned into pET28a via 5'<br>NdeI and 3' EcoRI sites   |  |
|                       |                                                           |                                                        |  |

| GB924 | pET28a + PopZ ∆172–177 | Cloned into pET28a via 5' |
|-------|------------------------|---------------------------|
|       |                        | NdeI and 3' EcoRI sites   |

Bowman, G.R., Comolli, L.R., Gaietta, G.M., Fero, M., Hong, S.-H., Jones, Y., Lee, J.H., Downing, K.H., Ellisman, M.H., McAdams, H.H., Shapiro, L. (2010) *Caulobacter* PopZ forms a polar subdomain dictating sequential changes in pole composition and function. *Mol Microbiol* **76**: 173–189

Bowman, G.R., Comolli, L.R., Zhu, J., Eckart, M., Koenig, M., Downing, K.H., Moerner, W.E., Earnest, T., Shapiro, L. (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. *Cell* **134**: 945–955

Evinger, M., Agabian, N. (1977) Envelope-associated nucleoid from *Caulobacter crescentus* stalked and swarmer cells. *J Bacteriol* **132**: 294–301

Goley, E.D., Yeh, Y.-C., Hong, S.-H., Fero, M.J., Abeliuk, E., McAdams, H.H., Shapiro, L. (2011) Assembly of the *Caulobacter* cell division machine. *Mol Microbiol* **80**: 1680–1698

| Supplementary | Table 2:                                    | Plasmids |                                      |
|---------------|---------------------------------------------|----------|--------------------------------------|
| Plasmids      | Description                                 | Backbone | Source                               |
| pBXMCS-2      | High copy<br>replicating plasmid            | pBXMCS-2 | Thianbichler <i>et al.</i><br>(2007) |
| pMCS-4        | Integrating<br>plasmid                      | pMCS-4   | Thianbichler <i>et al.</i><br>(2007) |
| pAP214        | High copy PxylX-<br>mVenus-PopZ             | pBXMCS-2 | This study                           |
| pAP237        | High copy PxylX-<br>mVenus-PopZ<br>A24–102  | pBXMCS-2 | This study                           |
| pAP240        | High copy PxylX-<br>mVenus-PopZ<br>A24–81   | pBXMCS-2 | This study                           |
| pAP259        | High copy PxylX-<br>mVenus-PopZ<br>Δ134–177 | pBXMCS-2 | This study                           |
| pAP261        | High copy PxylX-<br>mVenus-PopZ<br>Δ172–177 | pBXMCS-2 | This study                           |
|               |                                             |          |                                      |

| pAP262 | High copy PxylX-<br>mVenus-PopZ<br>P146A                  | pBXMCS-2 | This study |
|--------|-----------------------------------------------------------|----------|------------|
| pAP264 | High copy PxylX-<br>mVenus-PopZ<br>D153A                  | pBXMCS-2 | This study |
| pAP265 | High copy PxylX-<br>mVenus-PopZ<br>L156A                  | pBXMCS-2 | This study |
| pAP266 | High copy PxylX-<br>mVenus-PopZ<br>V160A                  | pBXMCS-2 | This study |
| pAP267 | High copy PxylX-<br>mVenus-PopZ<br>V164A                  | pBXMCS-2 | This study |
| pAP268 | High copy PxylX-<br>mVenus-PopZ<br>E167A                  | pBXMCS-2 | This study |
| pAP269 | High copy PxylX-<br>mVenus-PopZ 113A                      | pBXMCS-2 | This study |
| pAP270 | High copy PxylX-<br>mVenus-PopZ 117A                      | pBXMCS-2 | This study |
| pAP271 | High copy PxylX-<br>mVenus-PopZ E12A                      | pBXMCS-2 | This study |
| pAP272 | High copy PxylX-<br>mVenus-PopZ R19A                      | pBXMCS-2 | This study |
| pAP277 | High copy PxylX-<br>mVenus-PopZ<br>△81–102                | pBXMCS-2 | This study |
| pAP278 | High copy PxylX-<br>mVenus-PopZ<br>Δ1–80                  | pBXMCS-2 | This study |
| pAP279 | High copy PxylX-<br>mVenus-PopZ<br>Δ160–177               | pBXMCS-2 | This study |
| pAP301 | High copy PxylX-<br>mVenus-PopZ<br>∆48–102                | pBXMCS-2 | This study |
| pAP332 | High copy PxylX-<br>mVenus-PopZ<br>∆48–102 + 24-47<br>scr | pBXMCS-2 | This study |
|        |                                                           |          |            |

| pAP333 | High copy <i>PxylX-</i><br><i>mVenus-PopZ</i><br>Δ24–81 + 82-102<br>scr    | pBXMCS-2 | This study |
|--------|----------------------------------------------------------------------------|----------|------------|
| pGB525 | PvanA-mCherry-<br>popZ R1integrates<br>at vanA locus                       | pVCHYN-2 | This study |
| pGB526 | <i>PvanA-mCherry-</i><br><i>popZ R2</i> integrates<br>at <i>vanA</i> locus | pVCHYN-2 | This study |
| pGB527 | PvanA-mCherry-<br>popZ R3 integrates<br>at vanA locus                      | pVCHYN-2 | This study |
| pGB528 | PvanA-mCherry-<br>popZ integrates at<br>vanA locus                         | pVCHYN-2 | This study |
| pGB570 | High copy PxylX-<br>mCherry-PopZ R1                                        | pBXMCS-2 | This study |
| pGB572 | High copy PxylX-<br>mCherry-PopZ R3                                        | pBXMCS-2 | This study |
| pGB822 | <i>PpopZ-PopZ P146A</i><br>integrates at <i>popZ</i><br>locus              | pMCS-4   | This study |
| pGB823 | PpopZ-PopZ<br>∆172–177<br>integrates at popZ<br>locus                      | pMCS-4   | This study |
| pGB844 | PpopZ-PopZ<br>∆134–177<br>integrates at popZ<br>locus                      | pMCS-4   | This study |
| pGB845 | PpopZ-PopZ<br>∆160–177<br>integrates at popZ<br>locus                      | pMCS-4   | This study |
| pGB848 | <i>PpopZ-PopZ D153A</i><br>integrates at <i>popZ</i><br>locus              | pMCS-4   | This study |
| pGB849 | PpopZ-PopZ L156A<br>integrates at popZ<br>locus                            | pMCS-4   | This study |
| pGB850 | PpopZ-PopZ V160A<br>integrates at popZ<br>locus                            | pMCS-4   | This study |

| pGB851  | PpopZ-PopZ V164A<br>integrates at popZ<br>locus                | pMCS-4 | This study |
|---------|----------------------------------------------------------------|--------|------------|
| pGB852  | <i>PpopZ-PopZ E167A</i><br>integrates at <i>popZ</i><br>locus  | pMCS-4 | This study |
| pGB853  | <i>PpopZ-PopZ I13A</i><br>integrates at <i>popZ</i><br>locus   | pMCS-4 | This study |
| pGB854  | <i>PpopZ-PopZ I17A</i><br>integrates at <i>popZ</i><br>locus   | pMCS-4 | This study |
| pGB855  | <i>PpopZ-PopZ E12A</i><br>integrates at <i>popZ</i><br>locus   | pMCS-4 | This study |
| pGB856  | <i>PpopZ-PopZ R19A</i><br>integrates at <i>popZ</i><br>locus   | pMCS-4 | This study |
| pGB1108 | PpopZ-PopZ $\Delta 1-80$<br>integrates at popZ<br>locus        | pMCS-4 | This study |
| pGB1109 | <i>PpopZ-PopZ</i><br>Δ24–81 integrates<br>at <i>popZ</i> locus | pMCS-4 | This study |
| pGB1110 | PpopZ-PopZ<br>$\Delta 24-102$ integrates<br>at popZ locus      | pMCS-4 | This study |
| pGB1111 | PpopZ-PopZ $\Delta 48-102$ integrates at popZlocus             | pMCS-4 | This study |
| pGB1112 | PpopZ-PopZ $\Delta 81-102$ integrates at popZlocus             | pMCS-4 | This study |
| pPD72   | PpopZ-mCherry-<br>PopZ integrates at<br>popZ locus             | pMCS-4 | This study |

Thanbichler, M., Iniesta, A.A., Shapiro, L. (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in *Caulobacter crescentus*. *Nucleic Acids Res* **35**: e137