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1.  Abbreviations 

B3LYP, Becke3 Lee−Yang−Parr; SQ, semiquinone; RC, reaction center; EPR, electron 
paramagnetic resonance; HYSCORE, hyperfine sublevel correlation; Q-10, 2, 3-dimethoxy-5-
methyl-6-decaisoprenyl-1,4-benzoquinone; 2-MeO-Q, 2-methoxy-3,5-dimethyl-6-tetraisoprenyl-
1,4-benzoquinone; 3-MeO-Q, 3-methoxy-2,5-dimethyl-6-tetraisoprenyl-1,4-benzoquinone. 

 

2.  Experimental procedures 

Materials, cell growth, and reaction center preparation.  
13
C-labeled ubiquinone.  Headgroup 13C-methyl-labeled ubiquinone was biosynthesized in a 

strain of E. coli as previously described.1 After growth, ubiquinone was extracted in organic 
solvents and purified by TLC.2 

Monomethoxy ubiquinone analogs. The monomethoxy quinones, 2-MeO-Q and 3-MeO-Q, 
prepared by a modification of an improved method for ubiquinone synthesis,3 were kindly 
provided by Professor Bruce Lipshutz (University of California, Santa Barbara). 

Cells and RCs. Wild type reaction centers from Rhodobacter sphaeroides  were engineered with 
a C-terminal 7xhis-tag on the M subunit4. RCs were isolated from wild type cells grown 
photoheterotrophically on Sistrom's medium with malate as the carbon source, following 
published procedures.5 For HYSCORE measurements on the methoxy group orientations, wild 
type cells were grown in 15N media, to prevent peak overlap and the strong cross-suppression 
effects of 14N on the 13C modulation.6 15N was incorporated by substituting isotopically labeled 
ammonium sulfate (Cambridge Isotopes) in the medium. 

The M265IT mutant RCs with a 6xhis-tag were isolated from mutant cells grown 
semiaerobically in the dark, also on Sistrom's minimal medium. RC isolation procedures were 
identical to those for the wild type. 



Quinones were extracted from RCs by the method of Okamura et al.7 as modified by Graige et 
al.8, and were replaced with the 13C-methyl labeled ubiquinones for HYSCORE, or the 
monomethoxy analogs for kinetic measurements.  

Sample preparation for HYSCORE measurements. For EPR and related techniques 
(HYSCORE), the high spin Fe2+ coupled to the semiquinones must be replaced with diamagnetic 
Zn2+. This was achieved according to the procedures outlined by Utschig et. al.5 After metal 
exchange, RCs were concentrated to ~300-400 µM. Samples for HYSCORE measurements of 
the semiquinone radicals, SQA and SQB, were prepared as previously described.1b, 9 

HYSCORE experiments. Pulsed EPR (HYSCORE) measurements were carried out using an X-
band Bruker ELEXSYS E580 spectrometer with an Oxford CF 935 cryostat at 70 K, as 
previously described.10 Processed data were imported into Matlab R2010a via the EasySpin 
package6 to either be simulated by EasySpin, or be analyzed by a homemade script for fitting 
data in (ν1)

2 vs. (ν2)
2 coordinates.11 

Computational Methods. All density functional calculations were performed using Gaussian 
09.12 All calculations, including geometry optimization, conformational analysis and hyperfine 
coupling, were performed using the B3LYP functional and the EPR-II basis set. Specific details 
concerning hyperfine coupling calculations and the SQA and SQB site models are as previously 
described.11, 13 For the present work, one of two new models of ubisemiquinone was used, 
termed SQM2,

1b which is hydrogen bonded to a single water molecule (see Fig. S1). 
Conformational analysis using the SQM2 model was achieved by varying the CmOmC2C1 dihedral 
angle from 0º to 180º in 20º steps while optimizing all other parameters. 

Kinetic measurements. The kinetics of the back reaction (recombination of the light-generated 
charge separated states, P+QA

- and P+QB
-), after a short saturating flash, were monitored as the 

decay of P+ at 430 nm in a kinetic spectrophometer of local design. The decay of the P+ signal 
has, in general, two main components - a fast phase reflecting P+QA

- recombination in RCs 
lacking QB activity, and a slow phase due to P+QA

- recombination in RCs with functional QB.14 
The two phases can generally be readily deconvoluted to obtain the fraction of slow phase. The 
initial amplitude, immediately after a flash, and the fraction slow phase (∆S) corresponding to 
QB, allow for determination of the binding affinity of the quinones in the QA and QB sites, 
respectively (see Figures 1 and 2 in the main text). 

All kinetic experiments were performed on samples with RC concentrations of approx. 1 µM, in 
10 mM Tris buffer, pH 7.8, 0.1% LDAO (lauryl-dimethylamine-N-oxide detergent). 
Monomethoxy quinones were added from stock solutions in ethanol. The total accumulated 
ethanol was ≈2% for 2-MeO-Q, and ≈5% for 3-MeO-Q. The latter was high enough to cause 
some loss of activity towards the end of the titration, accounting for the slight decline in 
amplitudes seen in Figure 2. 

 



3.  Figures 

 

 

 
Figure S1. Model SQM2 used for DFT calculations. The quinone is 6-methyl-ubiquinone. 

 

 

 

 

Figure S2. Left: Effect of rotation of the 2-methoxy group on its 13C isotropic hyperfine constant 
for model SQM2; the pair of angles supported by the average values in >20 x-ray structures is 
indicated by the circles and the blue, solid arrow. Right: Effect of rotation of the 2-methoxy 
group on the electron affinity of the model SQM2; the values for QA and QB are indicated by the 
circles at the intersections of the dotted lines. (Adapted from ref. 1b) 
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