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Appendix A: Details of the Data Generation for the Simulated Vaccine Trial

with a Constant Biomarker

We follow the simulation scheme of GH that is designed to mimic the first preventive HIV

vaccine efficacy trial. The candidate surrogate in this trial was 50% neutralization titers

against the HIV recombinant gp120 molecule measured at t = 1.5 months post-baseline, and

the primary outcome was HIV infection at 36 months follow-up. The constant biomarker in

this case is the lower limit of detection of the antibody assay, c = 0, so S(0) = 0 for all

patients. Simulated datasets contain 1,805 placebo recipients and 3,598 vaccine recipients,

and we assume that immune biomarker data are subject to limit-of-detection left censoring.

(X,S(1)) are simulated from a bivariate normal distribution with each component having a

mean of 0.41 and a standard deviation of 0.55. We set the correlation between X and S(1),

ρ, to be 0.5, 0.7, or 0.9 to represent scenarios where the pretreatment covariate predicts

immune responses to varying degrees. Values of S(1) < 0 were truncated to 0 to reflect the

limit-of-detection left censoring. The case-cohort sampling scheme follows from obtaining

measured samples on all infected patients (cases) and from a subcohort of uninfected patents

(controls) in both treatment arms. The ratio of controls:cases was 3:1 in both arms. Let δi be

the indicator of whether patient i is sampled in the case-cohort scheme. Values of (X,S(1))

were retained for all vaccine recipients with δi = 1, and values X were retained for all placebo

recipients with δi = 1.

Infection outcomes are simulated from rz(s1, s0, x) = P (Y (z) = 1|S(0) = s0, S(1) =

s1, X = x) = Φ(βz0 + βz1s1 + βz2x). For the vaccine arm, we set (β10, β11, β12) = (-1.21,

-0.67, -0.1). For the placebo arm, we consider two scenarios reflecting an overall vaccine

effect of 50% reduction in the number of infections: one where the surrogate has no value,

corresponding to β00 = −0.825, β01 = −0.67, and β02 = −0.1 (scenario (a)), and one where

it has high value, corresponding to β00 = −1.1, β01 = 0.0, and β02 = −0.1 (scenario (b)).
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Appendix B: Computational Details

With and without a constant biomarker, the complete-data likelihood is expressed as:

L(θ) =
∏n
i=1 f(Xi, Si(0), Si(1)|θ)×∏

i:Zi=0{r0(Si(1), Si(0), Xi)}Yi(0){1− r0(Si(1), Si(0), Xi)}1−Yi(0)×∏
i:Zi=1{r1(Si(1), Si(0), Xi)}Yi(1){1− r1(Si(1), Si(0), Xi)}1−Yi(1)

(1)

where the rz(s1, s0, x) are modeled with probit regressions. To ease computation, we represent

these probit models with latent continuous variables Y ∗i (Zi),

Yi(Zi) = 1 if Y ∗i (Zi) = gz(Si(1), Si(0), Xi; βz) + Ui(Zi) > 0

Yi(Zi) = 0, otherwise

where Ui(Zi) ∼ N(0, 1).

The first term in (1) is modeled with a normal distribution, and the latent Y ∗i allows

specification of a single normal distribution for each other lines of (1). In the steps described

below, all sampling is conditional on current parameter values and current sampled values

of missing data.

B.1 MCMC details with a constant biomarker and case-cohort sampling

We accommodate the limit-of-detection left censoring as described in Chib (1992). N0
+

and N0
− denote normal distributions truncated to be above and below 0, respectively. For

each analysis, three MCMC chains were run for 4,000 iterations, saving every 10th sample

and discarding the first 2,000 as burn-in iterations. Convergence was checked visually and

using the potential scale-reduction statistics (R̂) (Gelman and Rubin, 1992); no presented

analysis provided evidence against convergence, with a maximum value of R̂ of 1.11 across

all parameters of all simulations. The steps of the MCMC are outlined as follows:

(1) Sample a0, a1, σ
2
S(1)|X using a standard Bayesian regression of Si(1) on Xi.

(2) Sample µX and 1
σ2
X

from normal and gamma distributions, respectively, using standard

analysis tools.
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(3) For Zi = z and δi = 0, sample Xi ∼ N(mxzi, vxz) where

mxzi = µX
σ2
X

+ a1(Si(1)−a0)
σ2
S(1)|X

+ βz2(Y
∗
i (z)− βz0 − βz1Si(1))× vxz

vxz = ( 1
σ2
X

+
a21

σ2
S(1)|X

+ β2
z2)
−1

(4) For Zi = 1, δi = 1, and Si(1) = 0 ( the limit of detection), sample Si(1) ∼ N0
−(a0 +

a1Xi, σ
2
S(1)|X).

(5) For patients with Zi = z and zδi = 0, sample Si(1) ∼ N(mzi, vz) where

mzi = (βz1(Y
∗
i (z)− βz0 − βz2Xi) + a0+a1Xi

σ2
S(1)|X

)× vz

vz = ( 1
σ2
S(1)|X

+ β2
z1)
−1

(6) For all patients, sample the Y ∗i (z) for z = 0, 1:

For Yi(z) = 0, Y ∗i (z) ∼ N0
−(βz0 + βz1Si(1) + βz2Xi, 1)

For Yi(z) = 1, Y ∗i (z) ∼ N0
+(βz0 + βz1Si(1) + βz2Xi, 1)

(7) Sample the β parameters using a standard Bayesian regression:

Yi(Zi) = β10 + β11Si(1) + β12Xi+

(β00 − β10)(1− Zi) + (β01 − β11)(1− Zi)Si(1) + (β02 − β12)(1− Zi)Xi + Ui(Zi)

(8) Calculate EDE, EAE, and PAE.

B.2 MCMC details with varying control-group response

Sampling Σ while holding fixed the elements corresponding to φ precludes the use of Wishart

or Inverse-Wishart distributions. We sample each element of Σ separately via a normal

random-walk proposal distribution and a Metropolis step (Gelman, Carlin, Stern, and Ru-

bin, 2004) subject to the constraint that Σ remain positive definite. The normal proposal

distributions are centered at the sampler’s current parameter values with proposal variances

that are obtained adaptively during a “pre burn-in” period of the sampler to ensure that the

sampler moves efficiently through the parameter space (Roberts and Rosenthal, 2009).

Three MCMC chains were run and proposal variances adapted until Metropolis steps

achieved approximately 44% acceptance, followed by 20,000 additional burn-in iterations
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and 20,000 more samples from which every 10th was used for inference. No analysis provided

evidence against convergence, with R̂ < 1.05 for all parameters under all assumed values of

φ. The steps of the MCMC are as follows:

(1) Update µ = (µS(0), µS(1), µX) from a multivariate normal distribution using standard

analysis tools.

(2) For j = 1, 2, 3 and k = 1, 2, 3, sample a proposal for the (j, k) element of Σ from a normal

distribution to generate Σ∗. Reject if the proposal value is 6 0 or if Σ∗ is not positive

definite, otherwise accept with probability:

exp[−4 + n

2
log(|Σ∗|)− 1

2
(tr(Σ∗−1SSw)) +

4 + n

2
log(|Σ|) +

1

2
(tr(Σ−1SSw))]

where SSw is the sum over i of WiW
′
i with Wi = (Si(0)− µS(0), Si(1)− µS(1), Xi − µX)′

and (k, j) 6= (1, 2) or (2, 1).

(3) Update the (1, 2) and (2, 1) elements of Σ with φ
√
σ2
S(0)σ

2
S(1) where σ2

S(z) is the (z+1, z+1)

element of Σ, z = 0, 1, provided the resulting Σ is positive definite.

(4) Sample the Smisi

For Zi = 0, sample from Si(1) ∼ N(m0iv0, v0) where v0 = (s22 + β2
02)
−1 and

m0i = β02(Y
∗
i (0)− β00 − (β01 − β02)(Si(0)− S̄(0))− β03(Xi − X̄))+

µS(1)s22 − (Si(0)− µS(0))s12 − (Xi − µX)s23 + β2
02S̄(1)

For Zi = 1, sample from Si(0) ∼ N(m1iv1, v1) where v1 = (s11 + (β12 − β11)2)−1 and

m1i = (β11 − β12)(Y ∗i (1)− β10 − β12(Si(1)− S̄(1))− β13(Xi − X̄))+

µS(0)s11 − (Si(1)− µS(1))s12 − (Xi − µX)s13 + (β11 − β12)2S̄(0)

Here, sjk denotes the (j, k) element of Σ−1 .

(5) Adapt steps (6) – (8) from Appendix B.1 accordingly.
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C Prior vs. Posterior distributions

C.1 Simulated scenario under the constant biomarker special case

Figure 1 presents prior densities and posterior histograms of the β parameters from the anal-

ysis of one dataset simulated with high surrogate value and ρ = 0.5. The prior specification

dominates the posterior distribution of (β02 − β12) reflecting prior belief in the absence of

an interaction between Z and X, although this interaction is not forced to be exactly 0 as

in previously-used strategies. Prior vs. posterior plots from other simulated scenarios are

not pictured, but appear similar to Figure 1 except for the increased flatness of the prior

distribution for (β01 − β11) in scenarios with higher ρ.

[Figure 1 about here.]

C.2 Data analysis of ACTG 320

Figure 2 depicts prior densities and posterior histograms of the β parameters for the analysis

with φ = 0.4. Examination of prior vs. posterior densities for other assumed values of φ

(not pictured) produced similar results. Here we see that prior specification dominates the

posterior distributions for β03 and β13 − β03, reflecting the the strong prior belief that the

relationship between X and Y (z) estimated from (4) in the main text is correct.

[Figure 2 about here.]

D Basic Graphical Checks of Multivariate Normality Assumption in the ACTG

320 Data Analysis

As basic summaries, we plot histograms of X in all patients (Figure 3(a)), of S(0) observed

in Z = 0 patients (Figure 3(b)), and of S(1) observed in Z = 1 patients (Figure 3(c)). We

also provide scatterplots of X vs. S(0) in Z = 0 patients (Figure 4(a)) and of X vs. S(1) in

Z = 1 patients (Figure 4(b))
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[Figure 3 about here.]

[Figure 4 about here.]
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Figure 1: Prior densities (dashed) vs. posterior histograms for β parameters from rz(s1, c, x)
from one simulation with a constant biomarker having high surrogate value and ρ = 0.5.
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Figure 2: Prior densities (dashed) vs. posterior histograms for β parameters from ACTG
320, φ = 0.4.
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0 0.66 1.33 1.99 2.66 3.32 3.98 4.65 5.31 5.97

(a) X, baseline log(CD4)

−4.01 −3.15 −2.29 −1.43 −0.57 0.3 1.16 2.02 2.88 3.74

(b) S(0), change in log(CD4), Z = 0

−1.5 −0.9 −0.3 0.31 0.91 1.52 2.12 2.72 3.33 3.93

(c) S(1), change in log(CD4), Z = 1

Figure 3: Observed distributions of X, S(0), and S(1).
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Figure 4: Bivariate distributions of S(Z), X for Z = 0, 1.


