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Supplemental materials and methods 

Linear stability analysis 

The initial dynamics of emerging polarity clusters can be studied using a linear stability analysis for problems 

with cytosol-membrane coupling [1]. Using this framework we asked how a small perturbation of the spatially 

homogenous steady state distribution of proteins would evolve in time. A decay of the perturbation implies that 

the homogenous state is stable and no polarization occurs. The advantage of this approach lies in the use of 

developed standard methods for systems of linear differential equations. The ability of the system to polarize for 

a certain set of parameters can be tested by finding the roots of polynomials instead of simulating the full 

dynamics each time. For all cases tested we found perfect agreement between linear stability analysis and 

simulation in predicting the spontaneous polarization efficiency. The full set of reaction-diffusion equations 

from the main text reads in spherical coordinates r,θ,φ 

∂tmT = (α1mBG +α2 )mD −α3mT +β1mBGcD +D2Δθ ,φ mT r=R ,

∂tmD = −(α1mBG +α2 )mD +α3mT +β2cD −β3mD +D2Δθ ,φ mD r=R
,

∂tmB = γ1mTcB −γ2mB −δ1mBcG +δ2mBG +D2Δθ ,φ mB r=R ,

∂tmBG = δ1mBcG −δ2mBG +D2Δθ ,φ mBG r=R
,

∂tcD = D3ΔcD ,
∂tcB = D3ΔcB ,
∂tcG = D3ΔcG ,

 

where ∆θ,φ stands for the angular part of the spherical Laplace operator ∆. The diffusive flux to the membrane is 

incorporated by the boundary conditions 

D3∂r cD r=R
= −(β1mBG +β2 )cD +β3mD r=R

,

D3∂r cB r=R = −γ1mTcB +γ2mB r=R ,

D3∂r cG r=R
= −δ1mBcG +δ2mBG r=R

.

 

As long as the perturbation is small compared to the homogenous steady state solution one considers a 

linearized version of the full set of reaction-diffusion equations as a good approximation for describing the time 

evolution of perturbations. The linearized version of full reaction-diffusion equations for the perturbations δmx, 

δcx reads 
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∂tδmT = (D2Δθ ,φ −α3)δmT + (α1mBG
0 +α2 )δmD + (α1mD

0 +β1cD
0 )δmBG +β1mBG

0 δcD r=R
,

∂tδmD =α3δmT + (D2Δθ ,φ −α1mBG
0 −α2 −β3)δmD −α1mD

0δmBG +β2δcD r=R
,

∂tδmB = γ1cB
0δmT + (D2Δθ ,φ −γ2 −δ1cG

0 )δmB +δ2δmBG +γ1mT
0δcB −δ1mB

0 δcG r=R
,

∂tδmG = δ1cG
0δmB + (D2Δθ ,φ −δ2 )δmBG +δ1mB

0 δcG r=R
,

∂tδcD = D3ΔcD ,
∂tδcB = D3ΔcB ,
∂tδcG = D3ΔcG .  

For the linearized boundary conditions one gets 

D3∂r δcD r=R
= β3δmD −β1cD

0δmBG − (β1mBG
0 +β2 )δc D r=R

,

D3∂rδ cB r=R = −γ1cB
0δmT +γ2δmB −γ1mT

0δcB r=R ,

D3∂rδ cG r=R
= −δ1cG

0δmB +δ2δmBG −δ1mB
0δcG r=R

.

 

The constants mx
0, cx

0 denote the values of mx, cx of the physical spatially homogenous steady state solution of 

the full set of reaction-diffusion equations. Note that these quantities depend on the particle numbers. 

To solve the linearized set of equations we made use of the spherical symmetry. We expanded the perturbations 

in a series of real spherical harmonics Yl,m(θ,φ) [2], assumed an exponential time dependence, and used the 

ansatz 

δmx (t,θ ,φ) = δmx
l ,mYl ,m(θ ,φ)e

ωl ,mt

m=−l

l

∑
l=0

∞

∑ ,

δcx (r,t,θ ,φ) = δcx
l ,mAl ,m(r)Yl ,m(θ ,φ)e

ωl ,mt

m=−l

l

∑
l=0

∞

∑ .
 

The aim of the following calculation is to find the largest real part wl,m of all rates ωl,m as a positive value implies 

a growth of pattern induced by a small perturbation. By combining the expansions of the cytosolic perturbations 

δcx with the corresponding diffusion equations for the cytosol and using r2Δθ ,φYl ,m(θ ,φ) = −l(l +1)Yl ,m(θ ,φ)  [3] 

we arrived at 

0 = r2∂r
2 + 2r∂r − l(l +1)−ωl ,mr

2 / D 3
"
#

$
%A

l ,m(r)  

for each mode l,m. Physical solutions of this equation are the modified spherical Bessel functions of the first 

kind il (r ωl ,m / D3 )  [4]. For the cytosolic perturbations we got 

δcx (r,t,θ ,φ) = δcx
l ,mil (r ωl ,m / D3 )Yl ,m(θ ,φ)e

ωl ,mt

m=−l

l

∑
l=0

∞

∑ .  

By putting this result and the expansion for the membrane perturbations δmx into the linearized boundary 

conditions we got for each mode l,m 
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D3δcD
l ,m∂r il (r ωl ,m / D3 )

r=R
= β3δmD

l ,m −β1cD
0δmBG

l ,m − (β1mBG
0 +β2 )δcD

l ,mil (R ωl ,m / D3 ),

D3δcB
l ,m∂ril (r ωl ,m / D3 )r=R = −γ1cB

0δmT
l ,m +γ2δmB

l ,m −γ1mT
0δcB

l ,mil (R ωl ,m / D3 ),

D3δcG
l ,m∂ril (r ωl ,m / D3 )r=R = −δ1cG

0δmB
l ,m +δ2δmBG

l ,m −δ1mB
0δcG

l ,mil (R ωl ,m / D3 ).

 

Using these equations we reexpressed the cytosolic perturbations δcx in terms of the membrane perturbation 

amplitudes δmx
l,m as 

δcD (r,t,θ ,φ) =
(β3δmD

l ,m −β1cD
0δmBG

l ,m )il (r ωl ,m / D3 )Yl ,m(θ ,φ)e
ωl ,mt

D3∂ril (r ωl ,m / D3 ) r=R + (β1mBG
0 +β2 )il (R ωl ,m / D3 )m=−l

l

∑
l=0

∞

∑ ,

δcB (r,t,θ ,φ) =
(−γ1cB

0δmT
l ,m +γ2δmB

l ,m )il (r ωl ,m / D3 )Yl ,m(θ ,φ)e
ωl ,mt

D3∂ril (r ωl ,m / D3 ) r=R +γ1mT
0il (R ωl ,m / D3 )m=−l

l

∑
l=0

∞

∑ ,

δcG (r,t,θ ,φ) =
(−δ1cG

0δmB
l ,m +δ2δmBG

l ,m )il (r ωl ,m / D3 )Yl ,m(θ ,φ)e
ωl ,mt

D3∂ril (r ωl ,m / D3 ) r=R +δ1mB
0il (R ωl ,m / D3 )m=−l

l

∑
l=0

∞

∑ .

 

These expressions allowed us to reduce the linearized set of reaction-diffusion equations to four equations with 

four independent variables δmx
l,m. After introducing the abbreviations 

 

A(ωl ,m ) =
1

D3∂ril (r ωl ,m / D3 ) r=R / il (R ωl ,m / D3 )+β1mBG
0 +β2

,

B(ωl ,m ) =
1

D3∂ril (r ωl ,m / D3 ) r=R / il (R ωl ,m / D3 )+γ1mT
0
,

C(ωl ,m ) =
1

D3∂ril (r ωl ,m / D3 ) r=R / il (R ωl ,m / D3 )+δ1mB
0

 

we combined all results and arrived at 

0 = −D2l(l +1) / R
2 −α3 −ωl ,m

"
#

$
%δmT

l ,m + α1mBG
0 +α2 +β1mBG

0 β3A(ωl ,m )"
#

$
%δmD

l ,m

+ α1mD
0 +β1cD

0 1−β1mBG
0 A(ωl ,m )"

#
$
%{ }δmBGl ,m ,

0 = α3mT
l ,m + −D2l(l +1) / R

2 −α1mBG
0 −α2 −β3 1−β2A(ωl ,m )"# $%−ωl ,m{ }δmDl ,m

+ −α1mD
0 −β2β1cD

0 A(ωl ,m )"
#

$
%δmBG

l ,m ,

0 = γ1cB
0 1−γ1mT

0B(ωl ,m )"
#

$
%δmT

l ,m + −D2l(l +1) / R
2 −γ2 1−γ1mT

0B(ωl ,m )"
#

$
%{

−δ1cG
0 1−δ1mB

0C(ωl ,m )"
#

$
%−ωl ,m}δmBl ,m +δ2 1−δ1mB0C(ωl ,m )"

#
$
%δmBG

l ,m ,

0 = δ1cG
0 1−δ1mB

0C(ωl ,m )"
#

$
%δmB

l ,m + −D2l(l +1) / R
2 −δ2 1−δ1mB

0C(ωl ,m )"
#

$
%−ωl ,m{ }δmBGl ,m

 

for each mode l,m. The rates ωl,m of nontrivial solutions can be found by setting the determinant of the 

coefficient matrix of this set of equations equal to zero. The growth rates wl,m we were interested in are the 

maximum real part of all possible ωl,m for a certain mode l,m and were calculated using Mathematica 8. Note that 



	
   5	
  

wl,m and ωl,m only depend on l. The parameters used are given in the main text. 

In general, random perturbations will be made of a superposition of all possible modes. Under physiological 

conditions only the first modes 1,m have a positive growth rate and the initial shape of emerging wild-type 

clusters is predicted to be a superposition of the first real spherical harmonics (Figure S1A). 

Robustness of polarization dynamics 

Next we asked whether the direct evolution of initial perturbations towards a single cluster is a robust property 

of polarization. We varied each model parameter separately and found that only for large changes of some 

parameters the linear stability analysis predicts higher modes (l=2,3,4,…) to have the largest growth rate. The 

changes from the control cell values needed to induce this behavior are 16x for N24, 46x for NB, 0.031x for D2, 

and 86x for δ1.  

However, given that also higher modes have a positive growth rate it is possible that a perturbation reaches a size 

where nonlinear effects become important before a single mode dominates its shape. This is the case if the initial 

perturbation is too large for the given differences of growth rates. To address this issue we numerically 

simulated the full polarization dynamics starting with different realizations of the perturbation function f(x,y,z) 

defined in the Materials and Methods section. We found that the initial small perturbations still directly evolved 

into a single cluster as we varied each model parameter separately from 1/3 to 3 times its wild-type value.  
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