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Abstract

Cooperative behavior, where one individual incurs a cost to help another, is a wide spread phenomenon.

Here we study direct reciprocity in the context of the alternating Prisoner’s Dilemma. We consider all

strategies that can be implemented by one and two-state automata. We calculate the payoff matrix

of all pairwise encounters in the presence of noise. We explore deterministic selection dynamics with

and without mutation. Using different error rates and payoff values, we observe convergence to a small

number of distinct equilibria. Two of them are uncooperative strict Nash equilibria representing always-

defect (ALLD) and Grim. The third equilibrium is mixed and represents a cooperative alliance of several

strategies, dominated by a strategy which we call Forgiver. Forgiver cooperates whenever the opponent

has cooperated; it defects once when the opponent has defected, but subsequently Forgiver attempts to

re-establish cooperation even if the opponent has defected again. Forgiver is not an evolutionarily stable

strategy, but the alliance, which it rules, is asymptotically stable. For a wide range of parameter values

the most commonly observed outcome is convergence to the mixed equilibrium, dominated by Forgiver.

Our results show that although forgiving might incur a short-term loss it can lead to a long-term gain.

Forgiveness facilitates stable cooperation in the presence of exploitation and noise.

Introduction

A cooperative dilemma arises when two cooperators receive a higher payoff than two defectors and yet

there is an incentive to defect [1,2]. The Prisoner’s Dilemma [3–9] is the strongest form of a cooperative

dilemma, where cooperation requires a mechanism for its evolution [10]. A mechanism is an interaction

structure that specifies how individuals interact to receive payoff and how they compete for reproduction.

Direct reciprocity is a mechanism for the evolution of cooperation. Direct reciprocity means there are

repeated encounters between the same two individuals [11–37]. The decision whether or not to cooperate

depends on previous interactions between the two individuals. Thus, a strategy for the repeated Prisoner’s

Dilemma (or other repeated games) is a mapping from any history of the game into what to do next.

The standard theory assumes that both players decide simultaneously what do for the next round. But
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another possibility is that the players take turns when making their moves [38–40]. This implementation

can lead to a strictly alternating game, where the players always choose their moves in turns, or to a

stochastically alternating game, where in each round the player to move is chosen at random. Here we

investigate the strictly alternating game.

We consider the following scenario. In each round a player can pay a cost, c, for the other player to

receive a benefit, b, where b > c > 0. If both players cooperate in two consecutive moves, each one gets

a payoff, b− c, which is greater than the zero payoff they would receive for mutual defection. But if one

player defects, while the other cooperates, then the defector gets payoff, b, while the cooperator gets the

lowest payoff, −c. Therefore, over two consecutive moves the payoff structure is the same as in a Prisoner’s

Dilemma: b > b− c > 0 > −c. Thus, this game is called “alternating Prisoner’s Dilemma” [29,39].

We study the strictly alternating Prisoner’s Dilemma in the presence of noise. In each round, a player

makes a mistake with probability ε leading to the opposite move. We consider all strategies that can

be implemented by deterministic finite state automata [41] with one or two states. These automata

define how a player behaves in response to the last move of the other player. Thus we consider a limited

strategy set with short-term memory. Finite-state automata have been used extensively to study repeated

games [42–45] including the simultaneous Prisoner’s Dilemma. In our case, each state of the automaton

is labeled by C or D. In state C the player will cooperate in the next move; in state D the player will

defect. Each strategy starts in one of those two states. Each state has two outgoing transitions (either

to the same or to the other state): one transition specifies what happens if the opponent has cooperated

(labeled with c) and one if the opponent has defected (labeled with d). There are 26 automata encoding

unique strategies (Fig. 1). These strategies include ALLC, ALLD, Grim, tit-for-tat (TFT), and win-stay

lose-shift (WSLS).

ALLC (S26) and ALLD (S1) are unconditional strategies (see Fig. 1 and Supporting Information

File S1 for strategy names and their indexing). ALLC always cooperates while ALLD always defects.

Both strategies are implemented by a one-state automaton (Fig. 1). The strategy Grim starts and stays in

state C as long as the opponent cooperates. If the opponent defects, Grim permanently moves to state D

with no possibility to return. TFT (S15) starts in state C and subsequently does whatever the opponent

did in the last round [5]. This simple strategy is very successful in an error-free environment as it promotes

cooperative behavior but also avoids exploitation by defectors. However, in a noisy environment TFT

achieves a very low payoff against itself since it can only recover from a single error by another error [46].

WSLS (S16) has the ability to correct errors in the simultaneous Prisoner’s Dilemma [47]. This strategy

also starts in state C and moves to state D whenever the opponent defects. From state D strategy WSLS

switches back to cooperation only if another defection occurs. In other words, WSLS stays in the current

state whenever it has received a high payoff, but moves to the other state, if it has received a low payoff.

We can divide these 26 strategies into four categories: (i) sink-state C (ssC) strategies, (ii) sink-

state D (ssD) strategies, (iii) suspicious dynamic strategies, and (iv) hopeful dynamic strategies. Sink-

state strategies always-cooperate or always-defect either from the beginning or after some condition is

met. They include ALLC, ALLD, Grim and variations of them. There are eight sink-state strategies

in total. Suspicious dynamic strategies start with defection and then move between their defective and

cooperative state depending on the other player’s decision. Hopeful dynamic strategies do the same, but
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start with cooperation. There are nine strategies in each of these two categories. For each suspicious

dynamic strategy there is a hopeful counterpart.

Some of the dynamic strategies do little to optimize their score. For example, Alternator (S22)

switches between cooperation and defection on each move. But a subset of dynamic strategies are of

particular interest: Forgiver (S14), TFT, WSLS, and their suspicious counterparts (S4, S8, and S12).

These strategies have the design element to stay in state C if the opponent has cooperated in the last

round but move to state D if the opponent has defected; we call this element the conditional cooperation

element (see Fig. S1 in File S1). In state D, TFT then requires the opponent to cooperate again in order

to move back to the cooperative state. WSLS in contrast requires the opponent to defect in order to

move back to the cooperative state. But Forgiver moves back to the cooperative state irrespective of the

opponents move (Fig. 1: hopeful dynamic strategies).

Neither TFT nor WSLS are error correcting in the alternating game [29,39]. In a game between two

TFT players, if by mistake one of them starts to defect, they will continue to defect until another mistake

happens. The same is true for WSLS in the alternating game. Thus WSLS, which is known to be a

strong strategy in the simultaneous game, is not expected to do well in the alternating game. Forgiver,

on the other hand, is error correcting in the alternating game. It recovers from an accidental defection

in three rounds (Fig. 2).

A stochastic variant of Forgiver is already described in [39]. In this study, strategies are defined by

a quadruple (p1, p2, p3, p4) where pi denotes the probability to cooperate after each of the four outcomes

CC, CD, DC, and DD. This stochastic strategy set is studied in the setting of the infinitely-repeated

alternating game. The initial move is irrelevant. In [39] a strategy close to (1, 0, 1, 2/3) is victorious

in computer simulations of the strictly alternating Prisoner’s Dilemma. For further discussions see also

pp. 78-80 in [29]; there the stochastic variant of Forgiver is called ‘Firm but Fair’.

Results

We calculate the payoff for all pairwise encounters in games of L moves of both strategies, thereby

obtaining a 26× 26 payoff matrix. We average over which strategy goes first. Without loss of generality

we set c = 1. At first we study the case b = 3 with error rate ε = 0.05 and an average game length of

L = 100. Table 1 shows a part of the calculated payoff matrix for six relevant strategies. We find that

ALLD (S1) and Grim (S17) are the only strict Nash equilibria among the 26 pure strategies. ALLC (S26)

vs ALLC receives a high payoff, but so does Forgiver vs Forgiver. The payoffs of WSLS vs WSLS and

TFT vs TFT are low, because neither strategy is error correcting (Fig. 2). Interestingly TFT vs WSLS

yields good payoff for both strategies, because their interaction is error correcting.

In the following, we study evolutionary game dynamics [48–50] with the replicator equation. The

frequency of strategy Si is denoted by xi. At any one time we have
∑n
i=1 xi = 1, where n = 26 is

the number of strategies. The frequency xi changes according to the relative payoff of strategy Si. We

evaluate evolutionary trajectories for many different initial frequencies. The trajectories start from 104

uniformly distributed random points in the 26-simplex.

Typically, we do not find convergence to one of the strict Nash equilibria (Fig. 3b). In only 5% of the
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cases the trajectories converge to the pure ALLD equilibrium and in 18% of the cases the trajectories

converge to the pure Grim equilibrium. However, in 77% of the cases we observe convergence to a mixed

equilibrium of several strategies, dominated by Forgiver with a population share of 82.6% (Fig. 3b). The

other six strategies present in this cooperative alliance are Paradoxic Grateful (S5; population share

of 3.2%), Grateful (S9; 5.6%), Suspicious ALLC (S13; 3.8%), and ALLC (S26; 0.3%), all of which have

a sink-state C, and TFT (S15; 4.1%) and WSLS (S16; 0.4%), which are the remaining two dynamic

strategies with the conditional cooperation element.

When increasing the benefit value to b = 4 and b = 5, we observe convergence to a very similar

alliance (Fig. 3c and 3d). For b = 2, however, the ssC (sink-state C) strategies (S5, S9, S13, S26) and

WSLS are replaced by Grim and the mixed equilibrium is formed by Forgiver, TFT, and Grim (Fig. 3a).

Very rarely we observe convergence to a cooperative alliance led by Suspicious Forgiver (S12; for short,

sForgiver). It turns out that for some parameter values the Suspicious Forgiver alliance is an equilibrium

(Fig. S5 and S7 in File S1).

From the 104 random initial frequencies, the four equilibria were reached in the proportions shown

in Table 2 (using ε = 0.05 and L = 100; for other values of ε and L see Tables S9 and S10 in File S1).

The mixed Forgiver equilibrium is the most commonly observed outcome. Note that in the case of b = 2

the mixed Forgiver equilibrium has a very different composition than in the cases of b = 3, b = 4, b = 5.

Changing the error rate, ε = 0.01, 0.05, 0.1 and the average number of rounds per game, L = 10, 100, 1000,

we find very similar behavior. Only the frequencies of the strategies within the mixed equilibria change

marginally but not the general equilibrium composition (Fig. 4). Though, there is one exception. When

the probability for multiple errors within an entire match becomes very low (e.g., L = 10 and ε = 0.05 or

L = 100 and ε = 0.01) and b > 2, the payoff of ALLC against Grim can become higher than the payoff

of Grim against itself. In other words, Grim can be invaded by ALLC. Hence, instead of the pure Grim

equilibrium we observe a mixed equilibrium between Grim and ALLC (Fig. S4b-d in File S1).

We check the robustness of the observed equilibria by incorporating mutation to the replicator equa-

tion. We find that both the ALLD and the rare Suspicious Forgiver equilibrium are unstable. In the

presence of mutation the evolutionary trajectories lead away from ALLD to Grim and from Suspicious

Forgiver to Forgiver (see Fig. S6 and S7 in File S1). The Grim equilibrium and the Forgiver equilibrium

remain stable. We note that this asymptotic stability is also due to the restricted strategy space. In [51]

it has been shown that in the simultaneous Prisoner’s Dilemma with an unrestricted strategy space, no

strategy is robust against indirect invasions and hence, no evolutionarily stable strategy can exist.

Essential for the stability in our model is that Forgiver can resist invasion by ssD strategies (S1, S17,

S21, S25), because Forgiver does better against itself than the ssD strategies do against Forgiver (Table 1).

However, Forgiver can be invaded by ssC strategies and TFT. But, since TFT performs poorly against

itself and ssC strategies are exploited by WSLS (Table 1), all these strategies can coexist in the Forgiver

equilibrium. Stable alliances of cooperative strategies have also been found in the context of the Public

Goods Game [52] and indirect reciprocity [53]. More detailed results and equilibrium analysis for a wide

range of parameter values for ε and L are provided in File S1 (Tables S1-S14 and Figures S2-S7).

In the limit of infinitely many rounds per game, we can derive analytical results for the average payoff

per round for the most relevant strategy pairs (Table 3; for the calculations see File S1: Section 2 and
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Fig. S8-S10). From these results we obtain that ALLD (or ssD strategies) cannot invade Forgiver if

b

c
>

2 + ε− ε2

1− 2ε
. (1)

This result holds for any error rate, ε, between 0 and 1/2 (Fig. 4d).

Discussion

Our results imply an indisputable strength of the strategy Forgiver in the alternating Prisoner’s Dilemma

in the presence of noise. For a wide range of parameter values, Forgiver is the dominating strategy of the

cooperative equilibrium, having a population share of more than half in all investigated scenarios.

Essential for the success of a cooperative strategy in the presence of noise is how fast it can recover

back to cooperation after a mistake, but at the same time, also avoid excessive exploitation by defectors.

The conditional cooperation element is crucial for the triumph of Forgiver. Even though, also TFT

and WSLS contain this element, which allows them to cooperate against cooperative strategies without

getting excessively exploited by defectors, these strategies are not as successful as Forgiver, because of

their inability to correct errors. Grim also possesses this conditional cooperation element. However, noise

on the part of Grim’s opponent will inevitably cause Grim to switch to always-defect. It is Grim’s ability

to conditionally cooperate for the first handful of turns that provides a competitive advantage over pure

ALLD such that the strict Nash equilibrium ALLD can only rarely arise.

The other strategies appearing in the Forgiver equilibrium for the cases of b = 3, b = 4, and b = 5 are

Paradoxic Grateful (S5), Grateful (S9), Suspicious ALLC (S13), and ALLC (S26). All of them are ssC

strategies that, in the presence of noise, behave like ALLC after the first few moves. The strategy ALLC

does very well in combination with Forgiver. Nevertheless, ALLC itself appears rarely. Perhaps because

of Paradoxic Grateful, which defects against ALLC for many moves in the beginning, whereas Suspicious

ALLC puts Paradoxic Grateful into its cooperating state immediately. One might ask why these ssC

strategies do not occupy a larger population share in the cooperative equilibrium. The reason is the

presence of exploitative strategies like WSLS which itself is a weak strategy in this domain. If only Forgiver

was present, WSLS would be quickly driven to extinction; WSLS does worse against itself and Forgiver

than Forgiver does against WSLS and itself (see Table 1). But WSLS remains in the Forgiver equilibrium

because it exploits the ssC strategies. Interestingly, higher error rates increase the population share of

unconditional cooperators (ssC strategies) in the cooperative equilibrium (Fig. 4c). Simultaneously, the

higher error rates can decrease the probability to converge to the cooperative equilibrium dramatically

and hence prevent the evolution of any cooperative behavior (Fig. 4a).

Grim and Forgiver are similar strategies, the difference being, in the face of a defection, Forgiver

quickly returns to cooperation whereas Grim never returns. An interesting interpretation of the relation-

ship is that Grim never forgives while Forgiver always does. Thus, the clash between Grim and Forgiver

is actually a test of the viability of forgiveness under various conditions. On the one hand, the presence

of noise makes forgiveness powerful and essential. On the other hand, if cooperation is not valuable

enough, forgiveness can be exploited. Moreover, even when cooperation is valuable, but the population is
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ruled by exploiters, forgiveness is not a successful strategy. Given the right conditions, forgiveness makes

cooperation possible in the face of both exploitation and noise.

These results demonstrate a game-theoretic foundation for forgiveness as a means of promoting co-

operation. If cooperation is valuable enough, it can be worth forgiving others for past wrongs in order

to gain future benefit. Forgiving incurs a short-term loss but ensures a greater long-term gain. Given all

the (intentional or unintentional) misbehavior in the real world, forgiveness is essential for maintaining

healthy, cooperative relationships.

Methods

Strategy space. We consider deterministic finite automata [41] (DFA) with one and two states.

There are two one-state automata which encode the strategies always-defect (ALLD) and always-cooperate

(ALLC). In total, there are 32 two-state automata encoding strategies in our game: two possible arrange-

ments of states (CD, DC) and 16 possible arrangements of transitions per arrangement of states. For 8

of these 32 automata, the second state is not reachable, making them indistinguishable from a one-state

automata. Since we already added the one-state automata to our strategy space, these 8 can be ignored.

The remaining 24 two-state automata encode distinct strategies in our game. Hence, in total we have 26

deterministic strategies in the alternating Prisoner’s Dilemma (Fig. 1).

Generation of the payoff matrix. In each round of the game a player can either cooperate or

defect. Cooperation means paying a cost, c, for the other player to receive a benefit, b. Defection

means paying no cost and distributing no benefit. If b > c > 0 and we sum over two consecutive moves

(equivalent to one round), the game is a Prisoner’s Dilemma since the following inequality is satisfied:

b > b − c > 0 > −c. In other words, in a single round it is best to defect, but cooperation might be

fruitful when playing over multiple rounds. Furthermore also 2(b − c) > b − c holds, and hence mutual

cooperation results in a higher payoff than alternating between cooperation and defection.

For each set of parameters (number of rounds L, error rate ε, benefit value b, and costs c), we generate

a 26×26 payoff matrix A where each of the 26 distinct strategies is paired with each other. The entry aij

in the payoff matrix A gives the payoff of strategy Si playing against strategy Sj . Based on the average

of which strategy (player) goes first, we define the initial state distribution of both players as a row vector

QSi×Sj
. Since the players do not observe when they have made a mistake (i.e., the faulty player does

not move to the corresponding state of the erroneous action which he has accidentally played), the state

space consists of sixteen states namely CC, CD, DC, DD, D∗C, D∗D, C∗C, C∗D, CD∗, · · · C∗C∗.
The star after a state indicates that the player accidentally played the opposite move as intended by her

current state.

Each game consists of L moves of both player. In each move, a player makes a mistake with prob-

ability ε and thus implements the opposite move of what is specified by her strategy (automaton). We

denote 1− ε by ε̄. Although, the players do not observe their mistakes, the payoffs depend on the actual

moves. This setting relates to imperceptive implementation errors [16,18,29,45] (see section 3 in File S1

for a discussion on error types). The payoffs corresponding to their moves in the different states are given

by the column vector U .
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Next, we define a 16 × 16 transition matrix MSi×Sj
for each pair of strategies Si, Sj . The entries

of the transition matrix are given by the probabilities to move from each of the sixteen states (defined

above) to the next:

MSi×Sj =

p1p
′
1ε̄

2 p1(1− p′1)ε̄2 (1− p1)p′1ε̄
2 (1− p1)(1− p′1)ε̄2 p1εp

′
2ε̄ · · · (1− p1)(1− p′1)ε2

p2p
′
3ε̄

2 . . .
...

p3p
′
2ε̄

2

...
. . .

...

p3p
′
3ε̄

2 · · · · · · (1− p3)(1− p′3)ε2


(2)

where the quadruple [39] (p1, p2, p3, p4) defines the probabilities of strategy Si to cooperate in the observed

states CC, CD, DC, and DD (errors remain undetected by the players). Respectively, the quadruple

(p′1, p
′
2, p
′
3, p
′
4) encodes the strategy Sj . For example, (1 − p4)εp3ε̄ is the probability to move from state

DD to state C∗C. A deterministic strategy is represented as a quadruple where each pl ∈ {0, 1}.
Using the initial state distribution QSi×Sj

, the transition matrix MSi×Sj
, and the payoff vector U ,

we calculate the payoff aij of strategy Si playing against strategy Sj via a Markov Chain:

aij = QSi×Sj
×
L−1∑
k=0

Mk
Si×Sj

× U . (3)

Applying equation (3) to each pair of strategies, we obtain the entire payoff matrix A for a given set of

parameter values. Although we use deterministic strategies, the presence of noise implies that the game

that unfolds between any two strategies is described by a stochastic process. Payoff matrices for benefit

values of b = 2, b = 3, b = 4, and b = 5, for error rates of ε = 0.01, ε = 0.05, and ε = 0.1, and for game

length of L = 10, L = 100, and L = 1000 are provided in File S1 (Tables S1-S8).

Evolution of strategies. The strategy space spans a 26-simplex which we explore via the replicator

equation [48–50] with and without mutations. The frequency of strategy Si is given by xi. At any time∑n
i=1 xi = 1 holds where n = 26 is the number of strategies. The average payoff (fitness) for strategy Si

is given by

fi =

n∑
j=1

aijxj . (4)

The frequency of strategy Si changes according to the differential equation

ẋi = xi(fi − f̄) + u

(
1

n
− xi

)
(5)

where the average population payoff is f̄ =
∑n
i=1 fixi and u is the mutation rate. Mutations to each strat-

egy are equally likely; for non-uniform mutation structures see [54]. Using the differential equation (5),
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defined on the n-simplex (here, n = 26), we study the evolutionary dynamics in the alternating Prisoner’s

Dilemma for many different initial conditions (i.e., random initial frequencies of the strategies). We gen-

erate a uniform-random point in the n-simplex by taking the negative logarithm of n random numbers

in (0, 1), then normalizing these numbers such that they sum to 1, and using the normalized values as

the initial frequencies of the n strategies [55].

Computer simulations. Our computer simulations are implemented in Python and split into three

programs. The first program generates the 26× 26 payoff matrix for each set of parameters. The second

program simulates the deterministic selection dynamics starting from uniform-random points in the 26-

simplex. The third program performs statistical analysis on the results of the second program. The code

is available at http://pub.ist.ac.at/~jreiter [56].

Supporting Information

Combined Supporting Information File S1. Detailed description of the model and the strategies;

Simulation results and equilibrium analysis for a wide range of parameter values; Calculations for the

infinitely-repeated game; Implementation of errors; Includes Tables S1-S14 and Figures S1-S10.
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Figure Legends

Figure 1: Deterministic strategies in the Prisoner’s Dilemma. Each automaton defines a different

strategy for how a player behaves during the game. If a player is in state C, she will cooperate in

the next move; if she is in state D, then she will defect. The outgoing transitions of a state define

how the state of an automaton will change in response to cooperating (label c) or defecting (label

d) of the opponent. The left state with the small incoming arrow corresponds to the initial state of

a strategy. The 26 distinct strategies (automata) are classified into four categories: (i) sink-state C

strategies, (ii) sink-state D strategies, (iii) suspicious dynamic strategies, and (iv) hopeful dynamic

strategies. The automata with the blue background shading contain a conditional cooperation
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element (Fig. S1 in File S1) which ensures the benefit of mutual cooperation but also avoids being

exploited by defection-heavy strategies.

Figure 2: Performance of the conditional cooperators in the presence of noise. An asterisk after

a move indicates that this move was caused by an error. When the conditional cooperators are

playing against a copy of themselves, Forgiver performs very well as it can recover from an accidental

defection within three rounds. Against defection-heavy strategies like Grim and ALLD, Forgiver

gets exploited in each second round. Both TFT and WSLS are not error correcting as they are

unable to recover back to cooperation after an unintentional mistake. Only another mistake can

enable them to return to cooperative behavior. When Grim plays against itself and a single defection

occurs, it moves to the defection state with no possibility of returning to cooperation.

Figure 3: The evolution of strategies in the alternating Prisoner’s Dilemma. In all panels, the

simulations start from a randomly chosen point in the 26-simplex. In the cases of b = 3, b = 4, and

b = 5, the evolutionary trajectories converge to a cooperative alliance of many strategies dominated

by the strategy Forgiver. In the case of b = 2, the evolutionary trajectories converge to a mixed

equilibrium of Forgiver, TFT, and Grim. The error rate ε is set to 5%, the number of rounds per

game is L = 100, and the mutation rate is u = 0.

Figure 4: Robustness of results across various benefit values and error rates. a | Convergence

probability to the Forgiver equilibrium of a uniform-random point in the 26-simplex. Note that for

higher error rates (increasing noise-level), the probability to converge to the cooperative equilibrium

is much lower. b | Population share of Forgiver (S14) in the Forgiver equilibrium. Observe the

relationship between the higher error rates and the lower population share of Forgiver. c | Population

share of sink-state C strategies (S5, S9, S13, S26) in the Forgiver equilibrium. Higher error rates

lead to higher proportions of unconditional cooperators. d | In the infinitely repeated game, for all

value pairs of b/c and ε in the blue shaded area, ALLD cannot invade Forgiver since the average

payoff of Forgiver playing against itself is higher than the average payoff of ALLD against Forgiver

(see Inequality (1)).
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Tables

Table 1. Payoff matrix for the most relevant strategies.

ALLD Forgiver TFT WSLS Grim ALLC
ALLD 10.0 148.4 24.8 144.9 11.5 280.0

Forgiver -36.1 174.8 163.5 166.9 -12.7 194.3
TFT 5.1 178.1 104.5 176.7 24.5 194.5

WSLS -35.0 169.1 162.3 106.5 -12.0 230.9
Grim 9.5 152.0 40.5 148.8 28.1 262.9
ALLC -80.0 177.2 176.6 67.3 -28.8 190.0

Excerpt of the payoff matrix with the most relevant strategies when the benefit value b = 3 (c = 1), the
error rate ε = 5%, and the number of rounds in each game L = 100. There are two pure Nash equilibria
in the full payoff matrix: ALLD (S1) and Grim (S17), both denoted in bold.

Table 2. Equilibrium frequencies.

ALLD Grim Forgiver sForgiver
b = 2 15% 52% 33% <1%
b = 3 5% 18% 77% 0%
b = 4 2% 7% 90% 1%
b = 5 1% 3% 93% 3%.

Proportions in which the four equilibria were reached from 104 uniformly distributed random points in
the 26-simplex. In the case of b = 2, the mixed Forgiver equilibrium has a different composition than in
the cases of b = 3, b = 4, b = 5. Parameter values: costs c = 1, error rate ε = 0.05, number of rounds
per game L = 100.

Table 3. Analytical results in the infinitely alternating Prisoner’s Dilemma.

ALLD Forgiver ALLC

ALLD ε · (b− c) b · 1−ε
2

2−ε − ε · c b− ε · (b+ c)

Forgiver ε · b− c · 1−ε
2

2−ε (b− c) · 1+ε
2·(1−ε)

1+3ε−ε2 b · (1− ε)− c · 1−ε·(1−ε)1+ε

ALLC ε · b− c · (1− ε) b · 1−ε+ε
2

1+ε − c · (1− ε) (b− c)(1− ε)

Analytical results of the average payoff per round in the infinitely alternating Prisoner’s Dilemma for
ALLD (S1), Forgiver (S14), and ALLC (S26) playing against each other. Derivations are provided in
File S1 (section 2).


