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ABSTRACT Theoretical advantages of nonparametric
logarithm of odds to map polygenic diseases are supported by
tests of the ( model that depends on a single logistic param-
eter and is the only model under which paternal and maternal
transmissions to sibs of specified phenotypes are independent.
Although it does not precisely describe recurrence risks in
monozygous twins, the 8 model has greater power to detect
family resemblance or linkage than the more general A model
which describes the probability of 0, 1, or 2 alleles identical by
descent (ibd) with two parameters. Available data on ibd in
sibs are consistent with the ,8 model, but not with the equally
parsimonious but less powerful y model that assumes a fixed
probability of 1/2 for 1 allele ibd. Additivity of loci on the
liability scale is not disproven. A simple equivalence extends
the 18 model to multipoint analysis.

Genes of unknown structure and function can be identified by
linkage mapping to a small region that may be refined and
ultimately cloned preparatory to sequencing. This process has
been called positional cloning. A central problem in genetic
epidemiology is to extend positional cloning from major loci to
polygenes. Two directions have been pursued: parametric
models of two or more disease loci and nonparametric tests
that depend only on marker loci that may be linked to disease
loci. The latest development in nonparametric tests is the 13
model that specifies identity by descent at a linked marker
locus in terms of a single parameter (1). It predicts recurrence
risks, allelic interaction, locus additivity, and favorable com-
parison with alternative nonparametric models (Table 1 and
Fig. 1). We shall now test these predictions, leaving compar-
ison with parametric models to work in progress.

Recurrence Risks

Under the (3 model recurrence risks are functions of two
parameters a,,B > 0 and the following relations hold exactly.

Population risk: Ro= e-a

Recurrence risk in parents or children: RC = e-a+

Recurrence risk in MZ twins: Rm= e-a+2

To a good approximation the recurrence risk in sibs and other
relatives with kinship qp is Rp = e-a+4 , where Sp is 1/4 for sibs,
1/x for second degree relatives (uncle-niece), and 'A6 for the
third degree (first cousins). The assumptions are that alleles
and loci act independently (i.e., multiplicatively on risk) and
that family environment has a negligible effect on recurrence
or is confounded with genetic relationship. Not only are these
assumptions difficult to test directly, but estimates of recur-
rence risk vary among populations and are sensitive to defi-
nition of affection, age distribution, ascertainment, and repro-
duction rate. Therefore statistical significance must be exam-

ined cautiously. To do this letR = A/N, whereA is the number
of affected and N is sample size. Maximum likelihood scores
are

u0> Ar Nr -Ar] aR
UH = E [ - 1- ( 6)'

with information matrix

KE [R(¾ Rr)l (aRr) aRr)

where 0, 0' denote a,3. Newton-Raphson iteration on 0 +
UK-1 converges to maximum likelihood (ML) estimates with
standard error V/KW0' if X2/df < 1 or df = 0. Otherwise we take
the empirical standard error A/x2 KWjl/df based on residual x2
and its degrees of freedom (df = number of values of r - 2).
We applied this method to published data. When the

population risk was given as an interval, the mean was used;
when the size of the random sample was omitted, it was
arbitrarily taken as 10,000. When N for a sample of relatives
was not given it was arbitrarily taken as 100 for MZ twins and
1000 for other relatives. The data were not collected with this
analysis in view and do not yield precise estimates (2-10).
Notwithstanding this caveat, they are of some interest (Table
2).
The smallest ,B is for atopy as hay fever, which is less than half

as much as for asthma. The largest estimate is for hereditary
genius based on a study from the last century that does not
discriminate between genes and family environment (10).
Even if the latter were negligible, the value of (3 and therefore
the number of contributing genes does not seem to be much
greater than for the other traits. A substantial study is likely to
map a susceptibility locus if the closest marker has a value of
, as great as 0.25 (1). If the model is true, we might hope to
detect several leading factors for most of these traits (11), but
perhaps only two for atopy.
When residual x2 is significant, possible explanations are

random errors in the data and systematic departure from the
(3 model. This can be tested by fitting the more general A
model. Ignoring differences between recurrence risks in sibs
and parent-child pairs, which may have several causes, the
effect of the A model is to change recurrence risks in MZ twins
to e-a+I+A so that the 3model corresponds to the subhypoth-
esis A = 3 (1). We fitted the A model under the constraint 13
> 0, A 2 ln (2 - e-P), which confines identity by descent
estimates to the "possible triangle." The A model fits all five
traits with residual df, the total x2 for goodness of fit to
disease-specific parameters being 5.96 with 10 df (Table 3).
Three of these traits gives significant deviation from the ,3
model, as X1 = x2 (,3) - x2 (A). The most extreme deviation
is for Alzheimer disease, reflecting rare dominant genes in a
considerable proportion of early onset cases. Schizophrenia
also gives a much better fit to the A model, indicating non-

Abbreviations: ML, maximum likelihood; ibd, identical by descent;
lod, logarithm of odds; df, degrees of freedom.
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Table 1. Alternative models of allelic interaction

Probability of 0, 1, 2 alleles ibd in affected sib pair

Model Description {o Ci ;2
(3 No allelic interaction 1/(1 + e0)2 2eP/(l + eP)2 e2P/(l + e9)2

on logistic scale
'y No allelic interaction 1/2(1 + eY) 1/2 eY/2(1 + ey)

on penetrance scale
A Allelic interaction on 1/1 + 2e1 + el+A 2e1/1 + 2eg + el3+A el+A/1 + 2eP + e1+A

logistic scale (A * 1)
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FIG. 1. Alternative models of allelic interaction. (a) Alleles additive on logistic scale (13 model). (b) Alleles additive on penetrance (-y model).
(c) Allelic interaction (A model).

Table 2. Recurrence risks per 10,000 and 1B estimate
Kinship (p

Trait 0 0.0625 0.125 0.25 0.5 13 SE(3) Ref.

Cleft lip ± cleft palate 10 30 70 400 4000 2.79 0.20 2
Talipes equinovarus 10 20 50 250 3000 2.78 0.14 2
Congenital dislocation of hip 20 40 60 500 4000 2.58 0.19 2
Pyloric stenosis 50 80 250 500 4000 2.16 0.11 2
Schizophrenia 85 156 275 879 4559 1.91 0.14 3
Asthma 380 930 3700 1.06 0.14 4
Hay fever 1480 2417 4000 0.49 0.04 4
Multiple sclerosis 10 - 147 2714 2.85 0.15 5
Type 1 diabetes 40 - 600 3600 2.22 0.26 6
Type 2 diabetes 500 2600 9000 1.43 0.08 7
Coeliac disease 5 300 6800 3.39 0.27 8
Alzheimer disease 5 707 4118 2.78 0.88 9
Hereditary genius 3 74 279 1269 - 3.81 0.64 10

Table 3. Tests of hypotheses on recurrence risks

13 model A model

Trait x2 (1) df x2 (A) A SE(A) 1 SE(5) t/tl
Cleft lip ± cleft palate 9.36 3 0.12 2.29 0.19 3.65 0.32 0.978
Talipes equinovarus 2.00 3 0.02 2.49 0.25 3.23 0.36 0.993
Congenital diclocation of hip 10.74 3 1.65 2.11 - 0.18 3.28 0.26 0.978
Pyloric stenosis 5.04 3 4.16 2.01 0.26 2.31 0.27 0.997
Schizophrenia 29.58 3 0.01 1.65 0.07 2.33 0.09 0.977
Asthma 4.05 1 0 1.38 0.16 0.90 0.11 0.974
Hay fever 0.01 1 0 0.50 0.13 0.49 0.05 1.000
Multiple sclerosis 0.27 1 0 2.91 0.19 2.69 0.34 0.999
Type 1 diabetes 7.68 1 0 1.79 0.18 2.71 0.20 0.979
Type 2 diabetes 10.84 1 0 1.24 0.06 1.65 0.07 0.987
Coeliac disease 2.92 1 0 3.12 0.23 4.09 0.48 0.989
Alzheimer disease 61.63 1 0 1.76 0.30 4.95 0.45 0.879
Hereditary genius 62.71 2 3.81 0.64

Proc. Natl. Acad. Sci. USA 93 (1996)



Proc. Natl. Acad. Sci. USA 93 (1996) 9179

Table 4. Analysis of identity by descent in affected pairs of sibs by
the ,3 model

Nk pairs with k alleles ibd (k = 0, 1, 2)
T= INk
k= probability of k marker alleles identical by descent
Under Ho, (k = Ck where co = 1/4, Cl = V2, C2 = 1/4
Likelihood L = exp(O3N, + 213N2)/(1 + e0)2T
ML score U = a ln L/la = N, + 2N2 - 2TeP/(1 + el)
Information K = -E(3U/al3) = 2Tef/(1 + eg)2
Under Ho (,B = 0): X2 = 2 E Nk ln (Nk/ck 1)
Under H1(,B > 0): Newton-Raphson iteration of ,B-* (3 + U/K;

at convergence to the ML
Estirmate j3, the standard error is Vi7K
Residual Xi = 2 E: Nk In (Nk/;k T)

multiplicative risks and perhaps a proportion with a dominant
leading factor. Liability models (logit or probit) are not
confined to additivity of alleles and loci and therefore approx-
imate but do not correspond to multiplicative risks, which are
also violated by etiological heterogeneity. The estimate of A is
less than 03 for six of the seven samples in which the A model
is significantly better, giving no indication of bias toward
ascertainment of concordant twins. The opposite bias is pos-
sible by misdiagnosis of zygosity, preferential publication of
discordant pairs, or confusion between concordance and re-
currence risk. Concordance falls progressively below recur-
rence risk as the ascertainment probability increases. For
recurrence risk each co-twin should be counted once for each
proband, and so concordant pairs with two probands should be
counted twice. Although probands are rarely indicated, most
work with twin concordance approaches single selection for
which concordance is equivalent to recurrence risk.

Because of the complexity of possible deviations from the 1
model, we cannot be certain of the cause for any particular
trait. However, there is no doubt that fit of the A model is
impressive. Assuming that it will continue to be superior to the
13 model for other traits and in better data, it does not follow
that it should be used to detect deviations from the null
hypothesis that ,B = A = 0. A basic principle of statistical
analysis is that power to reject a null hypothesis may be
increased by use of a parsimonious alternative, since power
depends on both df and noncentrality parameter ,u (12). The
expected value of noncentral x2 with 1 df is v + ,u, where ,u is
the noncentrality parameter for the observed sample size.
Assuming the sample frequencies as parameters, the noncen-
trality parameter for the 13 model with 1 df is k,u = x2 (a) -
X2 (13) where x2 (a) is the value of x2 when 13 = A = 0 (no family
resemblance) and x2 (13) is the value when A = 13. The
noncentrality parameter for the A model with 2 df is ,u = x2
(a) - x2 (A) where x2 (A) is the value for ML estimates of A
and 13 in the possible triangle. The ratio k,p/,&A in these samples
approaches 1, showing that the parsimony of the 13 model
increases power (Fig. 1). Even for the smallest value of ptp/k,
(Alzheimer disease) the 13 test is more powerful than the A test
(13).

Noncentrality parameters for 1 and 2 df

25

25
P2

FIG. 2. The power of and A models.

Allelic Interaction

Kruglyak and Lander (14) asserted that the probability Ci of 1
allele identical by decent (ibd) in two sibs is 1/2 on the
assumption of no dominance variance. Actually, the assump-
tions are more restrictive: {j = 1/2 if there is no dominance on
the penetrance scale or if there is free recombination between
marker and closest disease locus. On the contrary, the assump-
tion of no dominance on an underlying liability or logistic scale
leads to Ci < 1/2 for a linked marker (Fig. 1). This is reflected
in the 13 model as (j = 2ef'/(1 + eP)2, which is less than 1/2 unless
= 0 (Table 4). To test the 13 model we searched the literature

for data on affected sib pairs classified by 0, 1, 2 marker alleles
identical by descent. Unfortunately most recent studies give
only the 0, 1 distribution for maternal and paternal alleles
separately (15-18). All of the six distributions we found have
Ci < 1/2, as predicted (Table 5). Moreover they agree quanti-
tatively with ML estimates of 13.

On the contrary, the y model of Kruglyak and Lander (14)
fits poorly (Table 6). Summing X values for goodness of fit to
locus-specific parameters, the ratio of noncentrality parame-
ters for the y and 13 tests is 0.9 (Table 7). If these data are

representative, the 13 test is more powerful than the 'y and A

tests (Fig. 2).

Locus Additivity

Under the 13 model the probability that a heterozygous parent
transmits the same allele to a pair of affected children (1) is p
= e'/(1 + e0), and 13 = ln [pl(1 - p)]. If the observed numbers
of concordant and discordant transmissions are N1, No, re-

spectively, the ML estimate of p is N1/(NI + No) and the
corresponding lod z = N1 log [2N,/(N1 + No)] + No log
[2No/(N, + No)]. In large-sample theory (2 ln 10) z has a x2
distribution with 1 df on the null hypothesis of no linkage
between the marker and a disease locus. This test would be
optimal if all parents were typed and fully informative, whereas
the 13 model is general and includes this as a special case.

Table 5. Tests of allelic interaction (0, 1, 2 ibd)
(3 model ry model a model

Disease Marker 0 ibd 1 ibd 2 ibd l3 Xi (1B) Xi (.Y) Xi (a) Ref.
Type 1 diabetes HLA 55 283 373 0.963 0.02 1.914 29.78 294.81 15
Type 1 diabetes FGF3 20 59 40 0.339 0.05 0.693 0.01 6.80 16
Coeliac disease HLA 0 16 20 1.253 4.64 13.077 0.45 28.17 17
Haemochromatosis HLA 0 3 15 2.398 0.27 14.509 8.73 29.53 17
Psoriasis HLA 3 24 37 1.184 0.13 2.512 4.04 38.18 17
Multiple sclerosis HLA 33 110 110 0.629 0.44 1.204 4.32 48.06 18
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Table 6. Analysis of identity by descent in affected pairs of sibs by
the y model

Likelihood L = eYN2/(1 + eY)No + N2
U = a ln L/ay = (N2 - No ey)/(1 + ey)
K = -E (aUlay) = T (e2y + ey)/2 (1 + ey)3
Under Ho (-y = 0), Xl = 2 2 Nk ln (Nk/Ck T)
Under HI (y> 0), Newton-Raphson iteration of y y + U/K;

at convergence to the ML
Estimate y the standard error is 1/K and residual x2 = 2 E Nk

ln (Nk/k T)

If disease loci act additively on the liability or logistic scale
their effects on risk are nearly multiplicative and therefore the
value of ( estimated from recurrence risks should be nearly the
sum of the values for contributory loci, or 1B = 2f3i. On the
contrary, 3 tends to be greater than 2l3i if there is recombi-
nation or a significant effect of family environment or if some
loci have not been detected, while , tends to be less than 213i
if type 1 errors are misinterpreted as contributory loci or if
gene effect is less than additive on the logistic scale. To test
locus additivity we may estimate ( either by Table 4 or from
transmission frequencies summed over informative parents
(Table 8). The 1B model is unique in making this information
additive if correctly tabulated, and so the y and A models
cannot be applied. The x2 (a) test for (3 = A = 0 should agree
closely with the x2 (MLS) test (20) on the same data, and so
the larger differences presumably reflect nonidentical samples.

Insulin-dependent diabetes (IDDM) currently provides the
best test of additivity, although many of the loci tentatively
identified are not supported by the conventional level of z >
3, corresponding to P < 0.0001 in large samples and to P <
0.001 in general (23, 24). In samples large enough to detect
leading factors with high power, the probability that a signif-
icant test is a type 1 error is small (25), in contrast to the
extremely conservative Ornstein-Uhlenbeck model under
which all significant tests are type 1 errors (26). However, both
approaches justify distrust of a weaker significance level. It
should be noted that several tentative IDDM loci give evidence
of allelic association ("transmission disequilibrium"), which by
an efficient test would increase significance. On these data the
hypothesis of locus additivity is not rejected, since estimates of
213 for significant loci are in reasonable agreement with the
estimate from recurrence risks (Table 9). If locus additivity is
true, nearly all the leading factors for IDDM have been

Table 9. Summary of locus additivity for IDDM

No. of
Ref. or source loci 213

20 10 2.52
19, 21, 22 10 3.24
19, 21, 22, x2 > 4 6 2.28
Recurrence risk 00 2.22
As (20) 00 2.71

Table 10. Relative effect of HLA on IDDM

Ref. or
source 1HLA 23 PHLA/21

19, 21, 22 1.01 2.22 0.45
20 0.80 2.71 0.30
ln As (20) 0.96 2.71 0.35

detected. If it is false, heterogeneous etiology and synergism on
the logistic scale are two possible mechanisms. Estimates of
relative effects of contributory loci are model-dependent but
in rough agreement (Table 10).

Discussion

Cotterman (27) enumerated all possible identity coefficients
between two pairs of alleles, showed that they reduced to a

trinomial when each pair was independent (corresponding to
noninbred or "regular" relatives), introduced the symbol Ck for
the probability of k alleles identical by descent, and derived
conditional phenotype probabilities for single loci. Even for a

diallelic locus this requires four parameters (one gene fre-
quency and three penetrances), and so extension to complex
inheritance must be simplified. James (28) expressed recur-

rence risks in terms of variance components for a binary trait.
Risch (29) adopted this convention, dividing risk by population
prevalence K to give the risk ratio AR for a relative of type R.
For a particular locus the risk ratios for parent-offspring pairs
(o) and monozygous twins (m) are

Ao= 1 +A/2K2

Am= 1 + (A + D)/K2

Table 7. Noncentrality parameters

a test , test y test

Source X2 df ,LA X2 df ,A/P g-/wA X2 tt/k
Recurrence risks* 5316.08 34 5282.08 144.12 22 122.12 0.977 -

ibdt 445.55 12 433.55 5.55 6 0 1.000 47.33 .905

*Table 3, 12 diseases with MZ recurrence.
tTable 5, 6 diseases with ibd in sibs.

Table 8. Tests of locus additivity for type 1 diabetes

Locus 0 ibd 1 ibd 13 X2 (a) Chromosome MLS x2 (MLS) Todd 13 Ref.

IDDM1 98 268 1.01 82.08 6p2l 19.3 88.9 0.80 19, 20
IDDM2 227 287 0.23 7.02 llplS - 1.6 7.4 0.24 19, 20
IDDM3 271 329 0.19 5.62 15q 21
IDDM4 175 208 0.17 2.85 11ql3 1.3 6.0 0.07 19, 20
IDDM5 199 249 0.22 5.59 6q25 1.5 6.9 0.14 19, 20
IDDM6 55 72 0.27 2.28 18q 1.1 5.1 0.09 19, 20
IDDM7 177 226 0.24 5.97 2q31 1.3 6.0 0.12 20, 22
IDDM8 6q27 1.2 5.5 0.32 20
IDDM9 - 3q21-q25 0.22 20
DXS1068 32 24 0.29 1.15 Xq 0.18 20, 22
IDDM10 48 71 0.39 4.47 lOpll.2-qll.2 1.3 6.0 0.34 19, 20
GCK 120 151 0.23 3.55 7p - - 19
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where A, D are the additive and dominance genetic variances
for the binary trait. An established principle of biometrical
genetics is that gene effects should be studied on a scale that
minimizes interaction (30). Statistical experience has shown
that interaction is usually less on a liability (probit) or logistic
scale than for the corresponding binary trait, which is more
distribution-sensitive (12). This motivated our A model in
which AO = eP, Am = eg+A, where 13 = CA*12, A = C (A*/2 +
D*), C is a constant, and asterisks signify that variance
components are defined on the logistic scale. The hypothesis
of no dominance (D* = 0) corresponds to the 13 model (A =
1).

Risch and coworkers (31, 32) have preferred the y model in
which C, = c1 = 1/2. This is incompatible with the ,3 model
except for the trivial case 13 = A = 0. More seriously, we have
shown that j is usually less than ½/2 for loci with a real effect
and would equal 1/2 only for a rare dominant with no sporadic
cases, which would have expected frequencies 0, ½/2, '/2 for 0, 1,
2 genes ibd, and so would fit the y model better. However, this
is an unrealistic model for complex inheritance and would
readily be detected by any method. The y model cannot be
extended to unilineal relatives, for whom c1 = 1 - co0 1. Like
the A model it makes parental transmission frequencies de-
pendent, whereas the 13 model can be factored into indepen-
dent maternal and paternal contributions.
We have found the 13 model to be more powerful than y and

A alternatives. Discrepancies revealed by the A model in MZ
twins, whatever their cause, are not supported by tests of allelic
interaction in sibships and do not abrogate the superior power
of the 13 model. It therefore becomes interesting to extend the
13 model to multiple markers. Fortunately there is a simple
equivalence. One formulation of multipoint mapping ex-
presses probabilities in terms of Ao, As, and Am, the recurrence
risks for offspring, sibs, and monozygous twins (equation 3 in
ref. 14). The 13 model specifies Ao = eg, As = (1 + e0')2/4, Am
= e2 . With these substitutions, multipoint logic generates for
a standard map a table of lods as a function of 1, with map
location of the disease locus as an ancillary parameter. There
are 2 df for the sex-average map and 3 df for the sex-specific
map. Then x2 with the appropriate df provides a test of the null
hypothesis of no linked locus, no assumption being made about
disease loci outside the region of interest.
The properties demonstrated herein make the 13 model

superior to other nonparametric methods. It remains to be
determined how it compares with parametric alternatives.
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